
1 of 6

Concurrent Design Methodology and Configuration Management of the
SIEMENS EWSD - CCS7E Processor System Simulation

Thomas W. Albrecht, Member, IEEE
Siemens AG Austria

Engineering Center for Electronics, EZE
A-1030 Vienna

e-mail: Thomas.Albrecht@p0.hai.siemens.co.at

Abstract - This paper outlines our successful Concurrent
Design Methodology and Configuration Management adopted
for a Processor system simulation at both VHDL and GATE
level. The complexity of the system simulated was
4 PENTIUMs and 28 ASICs with a total gate count of
2.4 MGates. It has been proven that simulation of such a
complex system can be done on VHDL level and the efficiency
of finding and correcting errors early in the design cycle was
demonstrated.

I. INTRODUCTION

The challenge was to simulate a pair of fully redundant boards
connected back to back in real configuration with identical
operating characteristics. The system itself is the heart of the
Enhanced CCS7E Unit of the EWSD-System developed by
Siemens AG, Public Communications Network Group.

The system simulated consists of
• 4 Pentium microprocessor
• 28 ASICs (a total gate count of 2.4 MGates)
• 320 MByte DRAM
• standard components

Due to the complexity this system required very careful
engineering. Simulation started on VHDL level as early as possible
in the design approach and moved towards GATE level after the
functionality of the system had been verified on VHDL level.

To minimize design cycle time, a concurrent development
approach was adopted and the process segmented, so that a number
of geographically dispersed groups using EDA tools by different
vendors were responsible for developing the ASICs and the board,
with the results combined into a single product. Such a large,
complex project requires very elaborate mechanisms for linking
ideas, configuration data, error reporting systems, feedback reports
to ASIC designers, automated data exchange - all being facts that
constitute configuration management.

II. DESIGN FLOW

It was decided that simulation would have to be done from the
earliest steps of the process and continue throughout the cycle,
which proved to be a key in minimizing problems later. This
approach meant that changes made by one group could affect what

the others did, so communication was of utmost importance, as
extensive and repetitive simulation was.

The intention of this system simulation was to test ASIC
interoperability that is to test board functionalities running across
several ASICs and other board components. In order to achieve that
goal the functionality of the system was splitted into several
testcases, more than 50 in number. Each testcase was supposed to
test a specific board functionality. Analysis of encountered
problems was done by expert engineers who focused on only a few
specific testcases and handled them across the ASICs.

Testcase development and ASIC development were aligned to
provide those ASIC functionalities first which had to be tested
firstly by board testbenches.

Simulation was started with early available versions of VHDL
ASIC codes and moved towards GATE simulation after ASIC
synthesis. GATE simulation was started after VHDL simulation
had checked compliance to specification. For GATE simulation the
same board testbenches were used as at VHDL simulation.

Fig.1 shows that during VHDL simulation many design cycles
were necessary to achieve specified functionality. These design
cycles were very short and overlapping. Each new ASIC delivery to
board simulation was used immediately.

III. TOOL CHAIN

Many tools of different vendors were used due to the fact that
development was geographically dispersed and every group was
used to its own tool set. Therefore it was decided to ensure tool
interoperability where needed (Fig. 2).

As configuration management played an utmost important role
VHDL configuration statements and Mentor Viewpoints were used
to control simulation configurations respectively.

It is important to note that board testbenches were used at all
levels of abstractions - from VHDL level down to GATE level. To
check simulation results waveforms produced by the respective
simulator and bus-cycle trace files were used. Especially these bus
cycle trace files were very useful to check results of regression tests
to support ASIC sign-off.

A. Board Development and Simulation
The tool chain for board development started with schematic

capturing of the board netlist using Cadence’s GED. This
schematic representation was then converted automatically to
Synopsys’ SGE, Mentor’s Design Architect and to our in-house
layout tool. Changes and bug fixing of the board netlist were only
allowed in the GED board schematic as a common source. The

32nd ACM/IEEE Design Automation Conference
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission. 1995 ACM 0-89791-756-1/95/0006 $3.50

2 of 6

automated conversion was done by tools purchased from a third
party vendor.

Simulation on VHDL level was done by the Synopsys VSS 3.0b
simulator. The goal was to check functional compliance to
specification. Simulation on GATE level was intended to check the
timing behavior whereby all the worstcases (minimum and
maximum) postlayout timing information of both all the ASICs and
the board were included into the simulation database.

Simulation results were checked firstly by verification of
waveforms generated by the simulator tools and secondly by
verification of bus-cycle trace files for address and data buses
(Fig. 3) generated by the VHDL testbench using VHDL textio
constructs.

For each board component a VHDL model was available. For
the PENTIUM either the bus-functional-model (BFM) or the
LM1200-hardware model (HWM) was used. In the early stages of
simulation, when memory accesses did not work properly, the
PENTIUM BFM was used. After memory cycles had worked
correctly we switched to the PENTIUM HWM to get closer to
reality because the HWM functions equally in terms of generating
more bus cycles in number, e.g. code pre-fetching cycles. For
GATE simulation only the HWM was used.

The behavior of complete analog circuitries such as clock
generation and clock synchronization was modeled in VHDL inside
the Board Testbench were needed to verify board/system
functionalities.

In case of locating an ASIC to be the source for board
malfunctioning all pins of the respective ASIC were traced in

simulation. Out of the waveform file a VHDL ASIC testbench was
generated automatically by one of our in-house tools and provided
to the ASIC designers to investigate. This VHDL ASIC testbench
contained all stimulus applied to the ASIC during the whole
simulation and all monitored ASIC responses.

Following tool set were used:
VHDL-simulation-

• Synopsys VSS 3.0b
• PENTIUM Bus Functional Model by LMC and
LM1200-HW-Model (since memory accesses had worked correctly)
• VHDL models for glue-logic components by Siemens Nixdorf AG

GATE-simulation-
• Mentor Quicksim II, V8.2
• System 1076, V8.2
• PENTIUM LM1200-HW-Model
• MENTOR models for glue-logic components

B. ASIC Development
To produce the ASIC VHDL code a standard texteditor was

used. ASIC internal blocks were connected together by using a
Racal Redac schematic editor and VHDL netlister. For each ASIC
there was an ASIC specific testbench for the ASIC to be simulated
before released to board simulation.

It was experienced that Racal Redac might have interpreted
IEEE1076 differently than Synopsys did, e.g. concatenations (&)
are not allowed in “case selector“ expressions for Synopsys. These
and other differences were considered in ASIC VHDL code
development or were automatically “corrected“ by an in-house
conversion program.

C. Board Testbench Development
Board Testbench VHDL code, PENTIUM bus-functional-model

code and assembler code were produced using a standard
texteditor.

Since Mentor’s VHDL simulator System1076 does not fulfill the

time

de
si

gn
 p

ha
se

im
pl

em
en

ta
tio

n

synthesis

simulation simulation

layout layout

simulation
simulation

synthesis

simulation

layout

simulation

fu
nc

tio
na

l d
es

cr
ip

tio
n

pa
rt

iti
on

in
g

fabrication

specification

simulation
R

ef
in

ed
 V

H
D

L
de

sc
rip

tio
n

uCoreSWboard netlist
(VHDL)

ASIC-1
(VHDL)

ASIC-2
(VHDL)

B
ug

-F
ix

in
g

B
ug

-F
ix

in
g

Bu
g-

Fi
xi

ng

B
ug

-F
ix

in
g

B
ug

-F
ix

in
g

B
ug

-F
ix

in
g

Bu
g-

F
ix

in
g

B
ug

-F
ix

in
g

B
ug

-F
ix

in
g

Bu
g-

Fi
xi

ng

B
ug

-F
ix

in
gB

ug
-F

ix
in

g
B

ug
-F

ix
in

g

simulationsimulation

simulation
simulation

simulation

fabrication fabrication

Fig. 1. The first step in the design was to prepare the specification. Each of
the ASIC groups simulated its own design and afterwards board-
simulation was done. The results were used to identify and correct
errors, with the next version being used in additional simulations
through final re-simulation for fabrication.

Fig. 2. This figure gives a brief overview about the tool chain and
interfaces between tools by different vendors.

Cadence GED

Synopsys SGE

Synopsys VHDL netlister

editor

Synopsys VSS 3.0b

VHDL ASIC code

VHDL Board netlist

waveformsbus cycle
trace files

Racal Redac VHDL2000

Synthese

edif

Mentor Design Architect

automated conversion

automated conversion

Layout

Layout

QuicksimII

timing backannotation

timing backannotation

waveforms bus cycle
trace files

Racal Redac's
Cadat Gate simulator

BOARD DEVELOPMENT
and SIMULATION

ASIC DEVELOPMENT

automated
testbench
generation

editor

VHDL testbench

VHDL configuration

Viewpoint

BOARD TESTBENCH
DEVELOPMENT

3 of 6

whole IEEE1076 standard, not supported constructs, e.g. VHDL
configuration declarations, were considered in the board testbench
VHDL code. Nevertheless VHDL configuration declarations were
used extensively to control design hierarchy for VHDL level
simulation to gain from its powerfulness and benefits. They were
“replaced“ by Mentor Viewpoints for GATE simulation to control
design hierarchy and to connect timing backannotation information.

To program the PENTIUM either BFM code was loaded into the
BFM controlled by VHDL configuration constructs or assembler
code was assembled and built and loaded into FEPROM and
DRAM area on the board considering the address management
scheme designed for memory access cycles.

Longest simulation real times defined were about 850us for a
single board configuration and 550us for a system/double board
configuration.

Table I shows some performance figures measured on a
SunSPARC10 workstation with 512MByte and 1.5GByte swap
space equipped.

IV. VHDL-CONFIGURATION MANAGEMENT

This chapter addresses primarily how VHDL has been used for
configuration management.

All activities shown in Fig. 1 were done in parallel - ASIC
development, board development, board-testbench development,
board simulation and bug fixing. Therefore many versions of each
of the developed objects were produced. This resulted in following
major requirements for configuration management:

• new versions must be included into simulation immediately
with less effort

• including a new ASIC version in one board-testbench must
not effect other testbenches

• it must be clear which version of each object is in use for
current simulation runs

• it must be clear in which versions bugs were found and
where these bugs have been corrected

• minimization of compilation effort
• a very effective incident reporting system
• re-simulation of ASICs as stimulated on the board at ASIC

design site to investigate in ASIC bugs with no travel effort
required between ASIC design site and board simulation site

A. Design Hierarchy
To control design hierarchy (Fig. 4) the VHDL configuration

declarations were used.

Each delivered ASIC-VHDL code in a specific version was
compiled into a unique VHDL library (design unit), e.g.

delivered container code VHDL library
ASIC1_CZ_204 ASIC1_CZ_204
ASIC1_CZ_225 ASIC1_CZ_225

The naming scheme of delivered ASIC-VHDL codes was as
follows:

<ASICname>_<VHDL leaf cell library><slice of functionality>_<version>

ASICname.................... 6 types of ASICs are on this board
VHDL leaf cell library. different ASIC cell libraries were used
slice of functionality..... testbench development was aligned to
...................................... ASIC development
version unique version number

TABLE I
SOME PERFORMANCE FIGURES FOR BOTH VHDL AND GATE SIMULATION FOR

3 REPRESENTATIVE BOARD TESTBENCHES

Fig. 3. Example of a bus-cycle trace file generated automatically by VHDL
textio constructs within board testbenches during simulation.

========== S-BUS INTERFACE ==========
 Column1: Time
 Column2: Pipeline/Non-Pipeline
 Column3: Single/Burst
 Column4: Data/Code
 Column5: Read/Write
 Column6: Address [hex]
 Column7: BE_L [bin]
 Column8: Data [hex]
 Column9: Pipe-depth
 5805 NS: PI S C RD 0000FFF0 00000000 90909000_003000EA 1
 5945 NS: PI S C RD 0000FFF8 00000000 00000000_00000000 1
 6065 NS: PI S C RD 00000000 00000000 11111111_11111111 1
 6225 NS: PI S C RD 00000008 00000000 00CF9200_0000FFFF 1
 6525 NS: NP S C RD 00000010 00000000 00C09E00_0000FFFF 0
 6785 NS: PI S C RD 00003000 00000000 0F66100C_E0200F66 1
 6925 NS: PI S C RD 00003008 00000000 00001000_B866E022 1
 7065 NS: PI S C RD 00003010 00000000 0001B866_D8220F66 1
 7205 NS: PI S C RD 00003018 00000000 23EAC022_0F668000 1

 10365 NS: PI B C RD 00003018 00000000 23EAC022_0F668000 1
 10385 NS0001B866_D8220F66 1
 10445 NS00001000_B866E022 1
 10465 NS0F66100C_E0200F66 1
 10525 NS: NP S D RD 00001000 11110000 0040009B_00002003 0
 10785 NS: NP S D RD 00001000 11110000 0040009B_00002003 0
 10925 NS: NP S D WR 00001000 11110000 00000020_00002023 0

 58345 NS: NP S D RD 00010000 11110000 00000000_00000021 0
 58765 NS: NP S D RD 00010000 11110000 00000000_00000021 0
 59105 NS: NP S D RD 00010000 11110000 00000000_00000000 0
 59245 NS: PI S D WR 00010000 11110000 0C438005_0C438005 1
 59305 NS: PI S D WR F0300100 11110000 0C438005_0C438005 1
 59785 NS: NP S D RD 00010000 11110000 00000000_0C438005 0
 60285 NS: NP S D RD 00010000 11110000 00000000_0C438005 0
 60685 NS: NP S D RD 00010000 11110000 00000000_0C438005 0

 63265 NS: PI B C RD 000031A0 00000000 003E8300_00000207 1
 63285 NS0C438285_06C7FB75 1
 63345 NSF4B90C43_828507C7 1
 63365 NS71D8BEFE_E2000001 1
 63425 NS: NP S D RD 00010000 11110000 00000000_00010008 0

 434225 NS: NP S D RD F0290018 11111110 FFFFFFFF_00000005 0
 434525 NS: PI B C RD 00003260 00000000 00000000_00000000 1
 434545 NS00000000_00000000 1
 434605 NS00000000_00000000 1
 434625 NS00000000_00000000 1
 434665 NS: NP S D WR 00010000 11110000 0000000C_0000000C 0
 434745 NS: PI S D WR F0300100 11110000 0000000C_0000000C 1
 435185 NS: NP S D RD 00010000 11110000 00000000_0000000C 0
 435525 NS: NP S D RD 00010000 11110000 00000000_0000000C 0
 435905 NS: NP S D RD 00010000 11110000 00000000_0000000C 0
 436305 NS: NP S D RD 00010000 11110000 00000000_0000000C 0
 436705 NS: NP S D RD 00010000 11110000 00000000_0000000C 0
 437045 NS: NP S D RD 00010000 11110000 00000000_0000000C 0
 437505 NS: NP S D RD 00010000 11110000 00000000_00000000 0
 437825 NS: NP S C WR 00000000 11111011 004F0000_004F0000 0

VHDL
no. of
boards

real-time
[us]

simulation
time [h]

real-
time :

simulation
time

TC-1 1 850 19,5 1 : 82,6E+6

TC-2 2 250 13,5 1 : 194,4E+6

TC-3 2 500 23 1 : 165,6E+6

GATE
no of

boards
real-time

[us]
simulation
time [h]

real-
time :

simulation
time

TC-1 1 850 48 1 : 203,3E+6

TC-2 2 250 48 1 : 691,2E+6

TC-3 2 500 73 1 : 525,6E+6

4 of 6

Stimulus-
Model

Response-
Model

Testbench with Test Fixture Circuit

UUT

GPM

Pentium

ASIC ASIC ASIC

DRAM

Board Netlist:
each version is
compiled into its
own VHDL-Library

BFM or
HW-Model DRAM Model

ASIC-Model each model and each
of its version is
compiled into its own
VHDL-Library

each Testbench and
each of its version is
compiled into its own
VHDL-Library

Only complete VHDL-ASIC codes were accepted by board
simulation.

Not only ASIC versions were compiled into specific libraries,
but also each version of the board netlist, each version of each
testbench and the library containing all other board component
VHDL models.

In order to both minimize compilation effort due to new versions
used for simulation and keep up all 50 testbenches independently
VHDL library clauses were used very carefully and only where
really needed.

Subsequent examples show parts of the board netlist (Fig. 5),
board testbench (Fig. 6) and VHDL-configuration file (Fig. 7)
which is part of the testbench.

B. VHDL Board Netlist

• total line count: 5958
• compiled into VHDL-library, e.g. “GPS_288“

The board schematic itself was captured using the Cadence GED
and then transformed to a Synopsys SGE input file. To generate the
VHDL netlist (Fig. 5) the SGE VHDL writer was used.

As there are no board component or ASIC specific library
clauses within the board netlist file this netlist can be kept up
independently from ASIC VHDL code versions as long as it
matches to the component declaration as specified in IEEE1076.

The VHDL board netlist entity header's port list contains all
board component interconnection signals with mode "inout" and
default signal expression =‘Z’ which is the weakest state defined in
IEEE1164. Each board testbench can therefore use a different
subset of board signals to be connected to for stimulation and
monitoring. This was important because each board testbench
addressed different functionality and needed therefore specific
board signals to be stimulated or monitored.

C. Board Testbench

• compiled into VHDL library “WORK“

Every board testbench (Fig. 6) has its own interconnection to the
unit-under-test, that are 2 boards connected back-to-back building
up the system.

The entity declaration contains only a generic list in the formal
generic clause to determine some values within the testbench, e.g.
timing parameters.

The architecture declarative part contains signal declarations for

board interconnection signals, component declarations but no
component configurations.

Testbenches can use a different subset of board component
interconnection signals, exactly those signals that need to be
stimulated and monitored by the respective board testbench to
check board functionality.

The architecture statement part contains the structural board
interconnection and stimulus and response processes.

D. VHDL Configuration File

• for board testbench shown in Fig. 6
• compiled into VHDL library “WORK“

Out of the VHDL configuration file (Fig. 7) it could be seen
easily which version of objects was used for simulation identified
by an unique board testbench configuration identifier.

Having a new ASIC version to be used for board simulation
following steps have to be done:

• the respective ASIC VHDL code has to be compiled into its
unique VHDL library once

• board testbench VHDL configuration files have to be updated
and compiled. Re-compilation of one testbench did not affect other
board testbenches.

V. INCIDENT REPORTING SYSTEM

After a malfunction has been nailed down to a specific
component an incident report has been distributed to all board
engineers and to the ASIC team leaders using the Internet e-mail
system. The incident reports were numbered consecutively. This
ensured a consequent update and follow-up of all incident reports.
Each error report/incident report contains the information shown in
Fig. 8.

Due to the fact that most of the functionality of this system/board
is implemented within ASICs they were naturally the main source
for generating incident reports.

The total number of IRs, IRs alive and finalised, was reported in
a graphical representation (Fig. 9) on a weekly basis.

The curve number of IRs over time (Fig. 9) shows that during
simulation phase many IRs were generated and alive. After fixing
bugs and re-simulation the number of IRs alive became smaller and
were related to not ASIC specific problems and the curve goes into
saturation. This was one of the indicators to allow ASIC sign-off.

VI. TYPES OF ERRORS FOUND

A total of more than 320 incident reports were raised during
simulation phase.

More than 150 serious problems were found in ASICs within the
system. Because they were found early through the board level
simulation these errors did not appear at GATE simulation.

Most of errors encountered were bugs in the behavior of ASIC
interoperability which were in large part related to
misunderstandings and different interpretations of the
specification.

Also many ASIC internal errors occurred due to internal counter
or stack overflows.

About 35 problems were found in library models of board

Fig. 4. A hierarchical representation of the board netlist including the
design under test UUT

5 of 6

components others than ASICs and ASIC libraries.
More than 40 problems were encountered in tools or tool

interfaces.

VII. CONCLUSION

Simulation of complex system level products can be done on a
VHDL basis. The efficiency of finding and correcting errors
through simulation early in the design cycle, rather than let them
propagate to the end, was demonstrated.

It turned out that it is a better possibility to stress ASICs in a
system/board environment where a processor is available to
produce thousands of bus cycles which is a hard task to be achieved
in an ASIC-testbench only by applying VHDL stimulus.

Consistency of the simulation databases was ensured by
applying configuration management through the whole design
approach consequently.

Such large, complex projects require very elaborate mechanisms
for linking ideas, configuration data, error reporting systems,
feedback reports to ASIC designers, automated data exchange - all
the facts that constitute configuration management in a concurrent
design environment.

-- VHDL Model Created from SGE Schematic gps.sch
-- May 11 13:40:50 1994

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

entity GPS is
 Port (A_ADDRTCMS : InOut std_logic := 'Z';
 RSATM1I : InOut std_logic := 'Z';
 RSATM0I : InOut std_logic := 'Z';
 RSATM1O : InOut std_logic := 'Z';
 RSATM0O : InOut std_logic := 'Z';
 -- all component interconnection signals are declared
 -- within this port list with mode „inout“ and default
 -- signal expression := ‘Z’

);
end GPS ;

architecture SCHEMATIC of GPS is
 component GPELINK_1
 Port (ATMADS : In std_logic;

 TOUT : Out std_logic);
 end component;
 component ATM30_2_1
 Port (ACT : In std_logic;

 WR : InOut std_logic);
 end component;
 component GPXLINK_1
 Port (AABTOUT : In std_logic;

 XXADS : Out std_logic);
 end component;

-- component declarations for all board components

begin

 P2_8 : GPELINK_1
 Port Map (ATMADS=>B_ATMADS_L, ATMBRDY=>B_ATMBRDY_L,

 RRUNBIST=>B_BSTE, TDO=>B_ELTDO, TOUT=>open);
 P18_8 : ATM30_2_1
 Port Map (ACT=>B_ATMACT, AR=>B_ATMAR, BM0=>B_BM0, BM1=>B_BM1,

 TXD0=>A_ATMTXDO, TXD1=>A_ATMTXD1, WR=>B_OWR);
 P1_6 : GPXLINK_1
 Port Map (AABTOUT=>B_IBTO_L, AADMANRM=>B_IDMA_L,

 XSINIT=>open, XSMUXOUT=>B_XSMUXO, XXADS=>B_XXADS_L)

-- port maps of all board components
end SCHEMATIC;

Fig. 5. Some important details of the VHDL board netlist

--
-- FILE: tb_soatm_01.vhd
-- AUTHOR: Thomas Albrecht
-- DEPARTMENT: SAG Oesterreich, EZE45
-- DESCRIPTION:
-- @(#) tb_soatm_01.vhd Version(1.15) 94/06/01
--
-- Copyright(c) SIEMENS AG 1994, ALL RIGHTS RESERVED
--
--
library IEEE;

use IEEE.std_logic_1164.all;

USE WORK.tracer.all;
use std.textio.all;

entity TB_SOATM_01_E is

 Generic (
--timing parameters--
);

 -- Output files for Bus Tracer
 CONSTANT sbus_a0_trace_file : string := "sbus_a0_trace";

end TB_SOATM_01_E;

Architecture TB_SOATM_01_A of TB_SOATM_01_E is

 -- UUT0
 signal RSATM1I_0 : std_logic;
 signal RSATM0I_0 : std_logic;
-- all signal declarations for board_0

 -- UUT1
 signal RSATM1I_1 : std_logic;
 signal RSATM0I_1 : std_logic;
-- all signal declarations for board_1

 Component GPM
 Port (
 --
 -- RSATM Interface
 --
 RSATM1I : InOut std_logic;
 RSATM0I : InOut std_logic;
-- other signals to be stimulated or monitored

);
 end component;

 Component icable_delay
 -- generic ();
 Port (P1 : INOUT std_logic;
 P2 : INOUT std_logic);
 end component;

begin --test fixture circuit:
--wires board-netlist to testcase

 UUT0 : GPM
 Port Map (
 RSATM1I => RSATM1I_0,
 RSATM0I => RSATM0I_0,

);
 UUT1 : GPM
 Port Map (
 RSATM1I => RSATM1I_1,
 RSATM0I => RSATM0I_1,

);

--********Test Bench - User Defined Section*********

 -- interconnection cables between both boards

 XLK_X0D31: icable_delay port map (P1 => X0D_0(31), P2 => X0D_1(31));

 TB_SOATM : block
 begin

-- stimuli processes like clock and reset generation, board settings

 --
 -- Tracer procedure calls

 SBUS_A0 : PROCESS (A_CLK50PNT_0)
 -- declarations
 BEGIN -- PROCESS SBUS_A0

 SBUS_TRACE (A_CLK50PNT => A_CLK50PNT_0,

 T_A_BE_2 => T_A_BE_2
);

 END PROCESS SBUS_A0;

end block;
--********End Test Bench - User Defined Section********
end TB_SOATM_01_A;

Fig. 6. Some important details of the board testbench

There are no library clauses for board
components.

This is a pure structural netlist.

Only a subset of board
component interconnection
signals is used.

Procedure call for bus-cycle-trace file
as described in Chapter “Board
Development and Simulation“.

The architecture declarative part contains all component
declarations of all board components but no component
configurations.

Component declaration for a board
interconnection model.

The architecture statement part contains the structural
board interconnection and stimulus and response
models as concurrent statements.

The architecture declarative part
contains signal declarations for
signals used to interconnect both
boards to a system but no component
configurations.

There are no library clauses for board components.

6 of 6

ACKNOWLEDGMENTS

I express my thanks to Mr. Johann Haslinger for the approval of
publication, Mr. Horst Kukse and his team, Mr. Michael Bruenger
and his team, all of Siemens Public Communications Network
Group in Munich/Germany and Dr. Tobolka of Siemens
Engineering Center of Electronics in Vienna/Austria for many
helpful discussions and on comprehensive comments on early
drafts of this work.

REFERENCES

[1] Peter Kensett. “Concurrent Engineering, Crisis or Opportunity“.
Presentation at EuroDAC ‘94, September 1994

[2] Kenneth A. Radtke. “The AT&T 5ESS™ Hardware Design
Environment: A Large System’s Hardware Design Process“. In
Proceedings 31st ACM/IEEE Design Automation Conference, pages
527-531, June 1994

[3] IEEE Standard VHDL Language Reference Manual. IEEE Std 1076-
1987

** INCIDENT REPORT **
** GP Board-Level Simulation **

IR_Number: IR_BoardSim_<consecutive number>
Status: LIVE | FINALISED

Owner of this IR: responsible person
related IRs:

originator: name of person who raised the IR
date: , 1994

Name of Testcase: e.g. TB_SOATM_01
Name of Testbench-Configuration: CFG_TB_SOATM_03 (as in Fig. 7)

Problem:
 - brief description
 - in case of an ASIC bug where to retrieve the VHDL ASIC testbench
generated out of board simulation to investigate in ASIC bugs at ASIC design
site from a common data pool.

Solution: - proposed or requested solution

** END of REPORT **

-- ***
-- Copyright (C) 1994 - Siemens AG, Vienna EZE45.
-- ***
-- File: tb_soatm_c_03.vhd
-- Title: Configuration for TC_SOATM
-- Author: Thomas Albrecht
-- Created: Thu May 26 14:41:33 1994 <albrecht@kuldi>
--
-- @(#) tb_soatm_c_03.vhd Version(1.10) 94/08/22
--

library IEEE;
 use IEEE.STD_LOGIC_1164.ALL;

library GPS_288; -- Board Netlist
library DAT_CZ_140; -- Library ASICs
library ADR_CZ_1240;
library XLK_CZ_122;
library ELK_CZ_229;
library P1_ATM30_V21_07;
library LRT_CZ_110;
library P1_EPLD_06;
library GPM_LIB_233; -- Library Elements
library PASSIV_DEV_08;
library MEMORY_DEV_08;
library TTL_DEV_08;
library UTIL_08;
 use UTIL_08.UTIL_P.ALL;
library VHDL_SHELLS_04;
library SYNOPSYS;
 USE SYNOPSYS.attributes.ALL;

configuration CFG_TB_SOATM_03 of TB_SOATM_01_E is

for TB_SOATM_01_A

for all : icable_delay
 use entity WORK.ICABLE_DELAY_E(ICABLE_DELAY_A)
 generic map (t_delay => 8 NS);
end for;

for UUT0, UUT1 : GPM
 use entity GPS_288.GPS(SCHEMATIC);
 for SCHEMATIC
 for P46_8: R15N1B_PU_1
 use CONFIGURATION GPM_LIB_233.CFG_R15_PU_1;
 end for;
 for P90_8, P67_8, P39_8, P14_8,
 P1_8, P2_7, P1_7, P8_7: ABT16245_1
 use ENTITY TTL_DEV_08.SN74ABT16245(SN74ABT16245_A);
 end for;
 for P91_8, P93_8, P101_8, P98_8,
 P78_8, P26_8, P51_8, P50_7: R15PU_SIZE_4
 use CONFIGURATION GPM_LIB_233.CFG_R_PU_1;
 end for;

 for P2_8, P4_7: GPELINK_1
 use CONFIGURATION ELK_CZ_229.CFG_GPELINK_1;
 end for;

 for P18_8, P17_7: ATM30_2_1
 use configuration P1_ATM30_V21_07.CFG_ATM30_1;
 end for;
 for P1_6, P1_5: GPXLINK_1
 use CONFIGURATION XLK_CZ_122.CFG_GPXLINK_1;
 end for;
for P2_2, P2_1: PENTIUM_1
 use entity VHDL_SHELLS_04.PENTIUM_LM1200(STRUCTURAL)

 Generic Map (
 NewStartAddress => "00000000000000001111111111110000",

 P5_StartAddress => "11111111111111111111111111110000",
 Run_Bist => FALSE

);

 for STRUCTURAL
 for PENTIUM : P5LM1200
 USE configuration GPM_LIB_233.CFG_PENTIUM_1
 Generic Map (
 timing => disabled,
 delay => typical
);
 end for;
 end for;
 end for;
........
end for; -- UUT

 for TB_SOATM
 end for;
 end for; -- TB
end CFG_TB_SOATM_03;

0

50

100

150

200

250

300

350

43 46 49 52 3 6 9 12 15 18 22 25 28 31 34 37

time

nu
m

be
r

of
 IR

s

0

50

100

150

200

250

300

350

IRs finalised total IRs alive Total Number of IRs

Fig. 9. Number of IRs over time

Fig. 8. Template for Incident Reports

Fig. 7. Some important details of the VHDL configuration file

Library clauses to control the
versions (design units) to be
used in this simulation.

Generic map aspects to control behavior
of instanced components.

Each ASIC has a top
level configuration
identifier.

An unique board testbench configuration identifier allows to
hold different configurations in parallel with reference to
version of board testbench entity and architecture identifier.

Unique VHDL library where this ASIC version
has been compiled into.

Generic map aspect to control behavior of
instanced components; in this case to aviod the
PENTIUM to run into BIST and to start
program execution at a different DRAM
address as it would be by default.

Configuration declaration.

Configuration specification for a certain design unit.

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

