
Quanti�ed Suboptimality of VLSI Layout Heuristics�

Lars W. Hageny, Dennis J.-H. Huang and Andrew B. Kahng

UCLA Department of Computer Science, Los Angeles, CA 90024-1596
y Cadence Design Systems, Inc., San Jose, CA 95134

Abstract

We show how to quantify the suboptimality of
heuristic algorithms for NP-hard problems arising in
VLSI layout. Our approach is based on the notion of
constructing new scaled instances from an initial prob-
lem instance. From the given problem instance, we
essentially construct doubled, tripled, etc. instances
which have optimum solution costs at most twice,
three times, etc. that of the original instance. By
executing the heuristic on these scaled instances, and
then comparing the growth of solution cost with the
growth of instance size, we can measure the scaling
suboptimality of the heuristic. We give experimentally
determined scaling behavior of several placement and
partitioning heuristics; these results suggest that sig-
ini�cant improvement remains possible over current
state-of-the-art methods.

1 Introduction

For many problems in VLSI design, users will im-
plicitly bene�t from accurate estimates of the subop-
timality of a given heuristic solution. Such estimates
can be used to determine which heuristic should be
used in a given application, or to determine the best
allocation of design e�ort to various phases of layout.
With cell placement and netlist partitioning in partic-
ular, the suboptimality of a heuristic directly a�ects
the area and wire estimates used for performance esti-
mation and high-level design space exploration. How-
ever, accurate estimates of suboptimality are di�cult
to obtain, for two reasons:

� First, determining the optimum solution is usu-
ally intractable, and theoretical bounds on the
optimum solution cost may be quite loose. For
example, spectral lower bounds for partitioning
can be far from the optimum solution cost [3].

�This research was supported in part by NSF grant MIP-
9257982. ABK would like to thank Yoji Kajitani and Majid

Sarrafzadeh for a discussion at Schloss Dagstuhl, October 1993.

� Second, input constructions for which optimum
solution costs are known (i.e., for which the error
of a heuristic can be quanti�ed) are often con-
sidered \arti�cial". For example, mesh- or chain-
like topologies for placement, and the instances
of Bui et al. [6], Garbers et al. [8] and Ackley
[1] for partitioning, may be helpful in measuring
algorithmic suboptimality but do not always give
meaningful performance estimates for \real" ex-
amples.

In this paper, we propose a general measure of
heuristic performance, based on the notion of the scal-
ing suboptimality of a given heuristic. We believe that
our work is interesting because it gives practically use-
ful, quanti�ed estimates of suboptimality for problem
instances where there is no hope of knowing the op-
timal solution or establishing tight theoretical lower
bounds on the optimal solution cost. From a given
problem instance, our methodology essentially con-
structs `doubled', `tripled', etc. instances which have
optimumsolution costs at most twice, three times, etc.
that of the original instance. Executing the heuristic
on these scaled instances, then comparing the growth
of solution cost with the growth of instance size, yields
the scaling suboptimality of the heuristic.

Our approach can extend to provide estimates of
optimal solution cost for speci�c problem instances,
and also a�ords the means to construct a range of
realistic test cases of arbitrary size. Beyond yielding
insights into the relative utility of various heuristics
as problem sizes grow large, our experimental results
reinforce the need for continued research in layout de-
sign.

Previous estimates of heuristic suboptimality have
centered on the construction of instances for which
the optimal solution cost is known. As noted above,
such methods have included the use of mesh and chain
topologies for placement, and \di�cult" (highly clus-
tered or even disconnected) classes of partitioning in-
stances [6, 8, 1]. Historically, the major objection to
the constructive approach has been that the instances
are artifactual and \not realistic". Two recent meth-
ods which start with \real" instances are thus of in-
terest:

� Nakatake and Kajitani [11] generate a sequence
of global routing instances, each of which has
known minimum-possible maximumchannel den-
sity. Then, [11] derives a parameter of the heuris-

32nd ACM/IEEE Design Automation Conference 
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.  1995 ACM 0-89791-756-1/95/0006 $3.50

tic, analogous to the parameter we develop below,
which measures the growth rate of the maximum
channel density.

� A construction of Boese [5] can be used to esti-
mate the suboptimality of cell-based placement
algorithms. Given a netlist hypergraph GH =
(V;E) and an array of jV j placement slots, the
idea is to construct a new hypergraph G0

H which
optimally assigns the terminals of each hyperedge
onto a number of contiguous slots equal to the
hyperedge size. The resulting G0

H can be \di�-
cult" to distinguish from GH , yet the optimum
placement cost (Manhattan wirelength) of G0

H is
known.

The rest of this paper is organized as follows. In
Section 2, we de�ne the scaling parameter of subop-
timality. Sections 3 and 4 respectively describe the
application of the scaling parameter, along with ex-
perimental results, for cell placement and netlist bi-
partitioning. Section 5 summarizes the implications
of the results that we present.

2 The Scaling Parameter of Subopti-

mality

Consider a heuristic H for a given combinatorial
(minimization) problem. For any problem instance I,
we say that executing H on I yields a solution with
cost cH (I), while the cost of the optimal solution is
denoted c�(I).

Given any instance I with optimal solution cost
c�(I), and any positive integer k, suppose that we can
construct a new instance kI which has optimal so-
lution cost at most k � c�(I). It is easy to see that
k � cH(I) � k � c�(I) � c�(kI). Thus, if execut-
ing H on the instance kI yields a solution with cost
cH(kI) > k � cH(I), we have a lower bound for the
suboptimality of heuristic H on instance kI.

In other words,

cH(kI)

c�(kI)
� cH(kI)

k � c�(I) �
cH (kI)

k � cH (I)

so that whenever cH(kI)
k�cH(I)

> 1, we immediately know

that the heuristic is suboptimal (the error is at least
cH(kI)
k�cH(I)

� 1). The key point is that we do not need to

know the optimum solution costs c�(I) or c�(kI): we
have \bootstrapped" an estimate of suboptimality.

The construction of instance kI from instance I al-
lows us to experimentally determine the error �H(k) =
cH(kI)
k�cH(I)

� 1 as a function of k (e.g., we might �nd that

�H(k) grows linearly or exponentially with k). We
propose to use �H(k) as a measure of the scaling sub-
optimality of the heuristic H. Several interesting ap-
plications immediately arise.

� The growth of �H(k) can be used to predict the
continuing utility of various heuristics as problem
sizes increase. For example, we may �nd that a
certain heuristic is most useful for a particular
range of instance sizes.

� Similarly, the functions �H1
and �H2

correspond-
ing to two heuristics H1 and H2 could be used to
determine which heuristic is asymptotically bet-
ter. For example, if there is some k0 such that for
all k � k0, �H1

(k) < �H2
(k), then we might say

that heuristic H1 dominates heuristic H2.

� If we know the (expected value of the) function
�H for any given instance size n, we obtain a new
estimate for the optimum solution cost of such
an instance:1 simply execute H and divide by
1 + �H(n).

Thus, the idea of scaling suboptimality can poten-
tially lead to quanti�ed lower error estimates for ar-
bitrary optimization heuristics. For a given problem
domain, the key question is whether we can �nd an
appropriate construction of scaled instances kI from
a given instance I. With such problems as the planar
traveling salesman problem or graph coloring, some
constructions appear more useful than others, but the
best constructions are not clear. However, for several
basic VLSI layout optimizations, we have devised very
straightforward scaling constructions, as described in
Sections 3 and 4 below. In the context of cell place-
ment we demonstrate our methodology using two
leading standard-cell layout tools (the TimberWolf7.0
place-and-route package [13] and the GORDIAN-L
package [14]), and in the context of netlist bipartition-
ing we use Fiduccia-Mattheyses (FM) [7], two-phase
matching-based clustering FM [6], the EIG1 spectral
method [9], and the RCut1.0 ratio cut partitioner [17].

3 Scaling Suboptimality in Cell Place-

ment

Our �rst set of experiments examines the scaling
behavior of heuristics for cell placement. In order to
construct scaled instances from a given real netlist, we
simply replicate the netlist I so that the new instance
kI consists of k disjoint copies of I; the optimum lay-
out area for kI cannot be worse than k times the op-
timum layout area for I. While this construction may
seem \unrealistic", note that each copy of I is presum-
ably a \real" netlist. We believe that using disjoint
copies of I makes matters simpler for the placement
algorithm in that, e.g., the connected components of
kI can be processed separately. Therefore, if we �nd
a scaling suboptimality �H using our construction of
instances kI, we may interpret it as evidence of poor
scaling by the heuristic.

For analytic placement methods that are based on
quadratic optimization and that require a connected
netlist and prescribed pad locations, we have an al-
ternative construction which maintains pads and con-
nectivity in the scaled instances. We accomplish this
by removing all but four pads from the original netlist
and locating one pad on each side of the layout region.
In addition, we make sure that each pad is connected
to only one cell by a single net. We can now construct

1Where no confusion can result, we overload the de�nition of
�H to encompass either (i) the suboptimality �H(k) associated

with scaling the instance by a factor k, or (ii) the suboptimality
�H(n) associated with a given absolute instance size n.

scaled copies of the benchmark using the construction
shown in Figure 1. This construction will maintain
connectivity,2 and the directional \pull" from the pads
is maintained by our method of connecting eliminated
pads. In addition, it is easy to continue replicating
any scaled instance, since it already satis�es our con-
straints with respect to the number of pads and their
location. As in the case of the disjoint scaled construc-
tion, we believe that any suboptimality in �H provides
evidence of poor scaling by the heuristic.

pad

pad

X

X

X

X X

X

X X

X

X

(a) (b)

Figure 1: (a) Modi�ed instance for single copy
of benchmark X. Four modules are connected to
the pads at the center of each side. (b) A scaled
instance of benchmark X which consists of nine
copies of benchmark X. The four pads of the
\multiplied" benchmark are the pads belonging
to the copies of benchmark X at the center of
each side; remaining unconnected pads are elim-
inated.

Experimental Results

We have run experiments to test the scaling subop-
timality of two \industrial-strength" placement and
routing tools: the TimberWolf7.0 package [13, 15] and
the GORDIAN-L package [14]. The basic optimiza-
tion engine of TimberWolf7.0 is simulated annealing,
and thus TimberWolf7.0 enjoys the attractions of the
general simulated annealing approach { in particu-
lar, that the results (given su�cient CPU time and
an appropriate annealing temperature schedule) are
\asymptotically optimal".3 GORDIAN-L is an ana-
lytic approach and arrives at a deterministic cell place-
ment by performing quadratic optimization with an
objective that iteratively approximates a linear wire-
length objective.

We construct the scaled instances for our Timber-
Wolf7.0 experiments using k disjoint copies of the orig-

2Connectivity is maintained given that the original netlist is
connected, which holds for all test cases that we discuss.

3Note that many problem- and technology-speci�c heuris-
tics have been added over the years to enhance the annealing
approach. For example, invoking TimberWolf7.0 using default

parameters, as in our experiments, will result in clustering op-
timizations being applied before placement is performed.

inal netlist, as outlined above. The Primary1 bench-
mark with all pads removed serves as the original in-
stance I, and we invoke TimberWolf7.0 to compute
a good placement of the remaining \core". We then
construct a new instance kI consisting of k uncon-
nected copies of the original core, and run Timber-
Wolf7.0 on this multiple-copy scaled instance. To en-
sure that the �nal layout remains roughly square, we
set the number of placement rows equal to

p
k times

the number of rows in the layout of the original in-
stance. Given that the simulated annealing approach
is { in theory { asymptotically optimal, and given the
substantial CPU requirements of TimberWolf7.0 (the
runtimes increase rapidly with k), we feel that our re-
sults are quite surprising. As shown in Table 1, the
layout areas for the core multiples show that Tim-
berWolf7.0 has over 10% area suboptimality for the
largest netlist.

Circuit #Runs Area (107) Range (107) Ratio

Prim1 10 1.70 (1.68{1.71) 1.00

Prim1x4 10 6.90 (6.82{7.04) 4.06

Prim1x9 10 15.9 (15.6{16.3) 9.35

Prim1x16 10 29.1 (28.3{29.3) 17.12

Prim1x25 10 46.4 (45.8{46.7) 27.29

Prim1x36 6 68.6 (67.9{69.3) 40.35

Table 1: Layout area results for TimberWolf7.0
on multiple copies of the Primary1 benchmark
netlist. Ratio is the average layout area for the
multiple-copy (scaled) instance divided by the
average layout area for the single-copy (original)
instance.

Our GORDIAN-L experiments construct scaled
versions kI by connecting k copies of the original
netlist and four pads, as outlined above. Again,
we use the Primary1 benchmark and remove all but
four of the pads from the original design; we invoke
GORDIAN-L to compute a good placement of this
instance I. The scaled instances kI consisting of k
connected copies of instance I are then constructed
and passed to GORDIAN-L for placement. The per-
formance measure used by GORDIAN-L is wirelength
(measured as sum of bounding box half-perimeters
and reported by GORDIAN-L itself) which, although
not identical to area, is considered to be a reasonable
placement objective. The results in Table 1 show that
GORDIAN-L has notable scaling suboptimality. This
is somewhat surprising in light of : (i) GORDIAN-
L is a deterministic, \global" method, and one might
expect the solution quality to scale better than that
of an inherently \local" move-based algorithm such as
TimberWolf7.0; and (ii) recent trends in CAD vendor
tools show a migration to GORDIAN- or PROUD-
style [16] approaches. Very recent work [12] has shown
that GORDIAN-L shows almost \perfect" scaling on a
set of scaled instances constructed using a slightly dif-
ferent but similar methodology to the one we used.4

4The methodology of Riess [12] preserved nearly all of the
original pads, thereby resulting in instances with greater pull

Although this result does not explain the poor scal-
ing of GORDIAN-L shown in our experiments, it does
raise the question of whether the construction we use
is somehow biased against GORDIAN-L.

Circuit Half-Perimeter (106) Ratio

Prim1 2.14 1.00

Prim1x2 4.86 2.27

Prim1x4 10.18 4.76

Prim1x9 26.70 12.48

Prim1x16 48.76 22.78

Table 2: Wirelength (measured as sum of bound-
ing box half-perimeters) results for GORDIAN-
L on multiple copies of the Primary1 benchmark
netlist. Ratio is the wirelength for the multiple-
copy (scaled) instance divided by the wirelength
for the single-copy (original) instance.

4 Scaling Suboptimality in Netlist Bi-

partitioning

Our second set of experiments examines the scal-
ing behavior of netlist bipartitioning heuristics. For
the bipartitioning problem, we can construct scaled
instances kI by simply \tying" k copies of a given
netlist I together such that the optimum bisection of
kI must bisect each of the k copies of I. A construc-
tion which accomplishes this is now described. Given
an instance I with n nodes and m edges, we can dou-
ble I by constructing an instance 2I which contains
both I and I0, an isomorphic copy of I. Next, we add
an edge to 2I between each node in I and the corre-
sponding node in I0, and assign some large weight M
to each of these n edges. If we setM =1, the new in-
stance 2I will trivially have optimal partitioning cost
that is twice the optimal partitioning cost for instance
I (i.e., c�(2I) = 2 � c�(I). However, setting M = 1
will make it impossible for any heuristic to split the
two copied nodes, i.e., the resulting doubled instance
is essentially identical to a copy of I where the weight
of each edge has been doubled.

To make scaled instances that have \scaling at-
tributes", we propose setting M = degree(v), where
degree(v) is the number of edges incident to node v in
instance I. In other words, we create an edge (v; v0)
connecting v 2 I and its corresponding node v0 2 I0,
and assign it weight w(v; v0) = degree(v). The follow-
ing theorem proves that our construction of 2I has the
desired property c�(2I) = 2 � c�(I).

Theorem 1 : If instance I has optimal bisection cut-
size d, then 2I has optimal bisection cutsize 2d.

Proof : We can bisect 2I with cutsize 2d by simply
bisecting each of the two isomorphic copies in the same

towards the edges. It should be noted that since the Timber-
Wolf7.0 cost measures total core area (cells + wiring), while

GORDIAN-L cost measures wiring area alone, the scaling pa-
rameters are not directly comparable.

place as the optimal bisection in I. This is shown as
the (Aj �A) cut in Figure 2(b), with cutsize C(A; �A) =
2d.

Cut = d

Cut1 = 2d Cut2

w x y z

w x y z′ ′ ′ ′

I

I*
I

I

1

2

A A

B B

(a)

(b)

w x y z

X

X’

Y

Y’

A A

B B
(c)

Figure 2: (a) The optimal cut for instance I. (b)
Cut1 = (Aj �A) is the optimal cut for instance 2I.
Cut2 = (B; �B) is the cut that results if nodes x
and y0 are swapped. (c) Result of swapping node
sets X and Y 0.

We �rst show that swapping any pair of nodes
across the (Aj �A) cut will yield a new cut with cut-
size � 2d. If both the swapped nodes are in ei-
ther I1 or I2, this is equivalent to swapping nodes x
and y in Figure 2(b), which results in a new cutsize
� 2d+ w(x; x0) +w(y; y0). Otherwise, without loss of
generality we can assume that nodes x 2 A \ I1 and
y0 2 �A \ I2 in Figure 2(b) are being swapped. This
results in a cutsize

C(B; �B) = w(x;x
0

)+C(B\I1; �B\I1)+w(y; y
0

)+C(B\I2 ; �B\I2)

where B = A[fy0g� fxg. Since C(B \ I1; �B \ I1) �
C(B \ I1; �A \ I1) and w(x; x0) = degree(x), we have

w(x; x0) + C(B \ I1; �B \ I1)

� degree(x) +C(B \ I1; �A \ I1)

� C(fxg; �A \ I1) +C(B \ I1; �A \ I1)

= C(A \ I1; �A \ I1)

Similarly, we can show w(y; y0) +C(B \ I2; �B \ I2) �
C(A \ I2; �A \ I2). Thus,

C(B; �B) � C(A \ I1; �A \ I1) + C(A \ I2; �A \ I2) = C(A; �A)

To prove the general result, observe that any bisection
can be obtained by swapping m pairs of nodes from
cut (A; �A), where 1 � m � n. Assume, again without
loss of generality, that we swap the set X of nodes in
A \ I1 with the set Y 0 of nodes in �A \ I2 as shown in
Figure 2(c). Using an argument similar to the case of
a single pair of nodes, we have

C(B; �B)

= C(X;X
0

) + C(B \ I1; �B \ I1) + C(Y;Y
0

) + C(B \ I2; �B \ I2)

� C(A \ I1; �A \ I1) + C(A \ I2; �A \ I2)

= C(A; �A)

Theorem 1 shows that our construction will result
in partitioning instances that are well-suited for test-
ing the scaling of bisection heuristics. We also test
the scaling suboptimality of two algorithms which ad-
dress the ratio cut bipartitioning objective of Wei and

Cheng [17]. The ratio cut objective minimizes C(U;W)
jUj�jW j

where C(U;W) is the number of signal nets cross-
ing between the two partitions U and W . When
a ratio cut instance is doubled as described above,
the new instance 2I will have optimal solution cost

c�(2I) = 2�C(U;W)
2jUj�2jW j

= 1
2 � c�(I) as long as the optimal

cut does not split duplicated nodes. We believe that a
result analogous to Theorem 1 holds for optimal ratio
cut bipartitions when the same scaling construction
is applied (i.e., the optimal ratio cut cost decreases
by a factor of exactly two each time the instance is
\doubled").

Experimental Results

We have run experiments to test the scaling sub-
optimality of four partitioning heuristics: (1) the FM
algorithm [7] for bisection, (2) a two-phase Matching-
Based Compaction and FM (MBC+FM) algorithm
due to Bui et al. [6] that is also for bisection, (3) the
EIG1 spectral method from [9] for ratio cut biparti-
tioning, and (4) the RCut1.0 [17] ratio cut partitioner.
FM, MBC+FM, and RCut1.0 perform greedy local
search from a given (random or constructed) starting
solution, while EIG1 is a deterministic algorithm that
relies on a \global" eigenvector computation.

Our FM and MBC+FM experiments compared the
performance on a real benchmark instance with the
performance on a \doubled" and a \quadrupled" in-
stance of the same benchmark. The MBC+FM imple-
mentation we used performed a single clustering pass
over the set of nodes by �nding a maximummatching
and then �rst ran FM on the clustered instance to get
a \good" starting point for the second FM run on the
original \
at" instance. Both the FM and MBC+FM
results are based on 50 independent runs from random
starting points. From the results in Table 3 it is clear
that both FM and MBC+FM scale quite poorly: the
heuristic cutsize seems to grow roughly quadratically
(1, 4, 16, ...) while the optimal cutsize grows linearly
(1, 2, 4, ...). It is particularly interesting to note that
although the MBC+FM results are considerably bet-
ter than the FM results, the MBC+FM scaling pa-
rameter is as bad as and sometimes worse than the
FM scaling parameter.

Experiments with EIG1 and RCut1.0 compared ra-
tio cut results for the real benchmark instance with ra-
tio cut results for the \doubled" instance of the same
benchmark. The results in Table 4 show a striking
di�erence in that the EIG1 results scale nearly per-
fectly (i.e., Ratio = 0.5) while the RCut1.0 results do
not { the ratio cut for the \doubled" instance is in
many cases larger than the ratio cut for the original
instance.

Test FM MBC+FM
Circuit Avg Ratio Avg Ratio

Prim1 x 1 86 1.00 78 1.00
x 2 328 3.81 272 3.49
x 4 1079 12.54 866 11.10

Prim2 x 1 295 1.00 220 1.00
x 2 1613 5.46 1008 4.58
x 4 4260 14.44 3713 16.88

Test02 x 1 182 1.00 149 1.00
x 2 677 3.71 650 4.36
x 4 2457 13.50 1911 12.83

Test03 x 1 126 1.00 90 1.00
x 2 615 4.88 521 5.79
x 4 2415 19.16 1880 20.89

Test04 x 1 149 1.00 116 1.00
x 2 639 4.28 589 5.08
x 4 2556 17.15 1966 16.95

Test05 x 1 196 1.00 166 1.00
x 2 976 4.97 913 5.50
x 4 3634 18.54 3073 18.51

Test06 x 1 95 1.00 95 1.00
x 2 637 6.70 571 6.01
x 4 2306 24.27 1869 19.67

Table 3: Mincut bisection results for FM and
MBC+FM heuristics on single, doubled, and
quadrupled instances of standard benchmarks.
The numbers in the table give the average num-
ber of cut edges for 50 runs. Ratios are the av-
erage cutsizes for the doubled and quadrupled
instances divided by the average cutsize for the
single (original) instance. All module areas were
set to 1.0 and each partition was required to be
within �1:0 of half the total module area.

Test EIG1 RCut1.0
Circuit x 1 x 2 Ratio x 1 x 2 Ratio

Primary1 14.64 7.32 0.50 14.8 14.8 1.00
Primary2 4.70 2.29 0.49 5.6 6.4 1.14

Test02 19.43 10.06 0.52 10.0 13.2 1.32
Test03 9.45 4.275 0.45 13.9 16.1 1.16

Test04 5.85 2.93 0.50 11.1 22.0 1.98

Test05 6.13 3.06 0.50 5.7 7.1 1.25
Test06 12.75 6.385 0.50 11.5 11.4 0.99

Table 4: Ratio cut results for EIG1 and RCut1.0
on single and doubled instances of standard test
cases. The values in the table are multiples of
10�5. The RCut1.0 values are the best of 10
runs with di�erent random seeds. All module
areas were set equal to 1.0.

5 Conclusions

In conclusion, we have investigated the general
problem of obtaining quanti�ed estimates of subopti-
mality for heuristic algorithms in VLSI layout. Most
previous works which estimate heuristic suboptimal-
ity rely on speci�c constructions for which optimal
solution costs can be determined. In contrast, our
approach relies on the simple notion of constructing
doubled, tripled, etc. instances from a known \realis-
tic" instance such that the doubled, tripled, etc. in-
stances have optimum solution cost equal to at most
twice, three times, etc. that of the original instance.
By upper-bounding the optimal solution cost of the
scaled instances, we can obtain lower bounds on the
heuristic error. We have presented simple scaling con-
structions for the CAD domains of placement and par-
titioning, and run experiments to measure the scaling
behavior of the current state-of-the-art algorithms.

Our results from Section 3 indicate that both Tim-
berWolf7.0 and GORDIAN-L can be expected to ar-
rive at solutions which may be far from optimal. This
leads to some interesting speculations. In particular,
we believe that our results indicate there is de�nite
room for improvement over current placement algo-
rithms (TimberWolf7.0 and GORDIAN-L are consid-
ered the current state of the art). Similarly, the results
of Section 4 indicate that iterative partitioning meth-
ods, even in combination with clustering approaches,
scale quite poorly. While spectral methods seem to
scale better, they su�er from other limitations (mem-
ory requirements, inability to model variable areas,
pre-placements, and other constraints, etc.). Again,
there seems to be room for improvement over current
partitioning methodologies.

A second observation is that the � parameter can
lead to new layout area estimation methodologies. By
quantifying the performance degradation of a given
heuristic, it becomes possible to achieve an area es-
timate that is not only design-dependent, but also
algorithm-dependent. Many existing estimation tools,
such as Rent-based methods [10], give estimates that
are \intrinsic" to the netlist topology (e.g., estimates
of the minimumarea needed to embed the design). On
the other hand, for many applications the designer
must know the area requirements of the placement
that will result after particular design tools are ap-
plied.

For an � parameter-based estimation methodology
to succeed, two assumptions about the netlist must
be made: (1) the connection structure must be rela-
tively homogeneous; and/or (2) we must be able to
extract representative subgraphs of the design for the
initial analysis. The �rst assumption may be reason-
able in light of the local hierarchy and regularity that
is typical in most VLSI designs. The second assump-
tion may also be reasonable in light of vertex-ordering
or graph-search techniques (e.g., [2]) which can be
used to extract a closely-connected subgraph from the
netlist. Such techniques can be applied from various
locations in the netlist in order to obtain a sampling
of subgraphs which can together serve as the original
instance I in the scaling calculation.

References
[1] D. H. Ackley, A Connectionist Machine for Genetic Hill-

climbing, Kluwer, 1987.

[2] C. J. Alpert and A. B. Kahng, \A General Framework
for Vertex Orderings, With Applications to Netlist Clus-
tering", Proc. IEEE Intl. Conf. Computer-Aided Design,
1994, to appear.

[3] C. J. Alpert and A. B. Kahng, \RecentDirections in Netlist
Partitioning: A Survey," to appear in Integration: the

VLSI Journal, 1995.

[4] E. B. Baum, \Iterated Descent: A Better Algorithm for
Local Search in Combinatorial Optimization Problems",
Proc. Neural Information Processing Systems, D. Touret-
zky, ed., 1987.

[5] K. D. Boese, personal communication, January 1994.

[6] T. Bui, S. Chaudhuri, T. Leighton, and M. Sipser, \Graph
Bisection Algorithms with Good Average Case Behavior",
Combinatorica 7(2) (1987), pp. 171{191.

[7] C. M. Fiduccia and R. M. Mattheyses, \A Linear
Time Heuristic for Improving Network Partitions", Proc.

ACM/IEEE Design Automation Conf., 1982, pp. 175{181.

[8] J. Garbers, H. J. Promel, and A. Steger, \Finding Clusters
in VLSI Circuits", Proc. IEEE Intl. Conf. on Computer-

Aided Design, 1990, pp. 520{523. Extended version.

[9] L. Hagen and A. B. Kahng, \New Spectral Methods for
Ratio Cut Partitioning and Clustering", IEEE Trans. on

CAD 11(9), Sept. 1992, pp. 1074-1085.

[10] L. Hagen, A. B. Kahng, F. J. Kurdahi, and C. Ramachan-
dran. \On the IntrinsicRent Parameter and Spectra-Based

Partitioning Methodologies." IEEE Trans. Computer-

Aided Design, 13(1):27{37, 1994.

[11] S. Nakatake and Y. Kajitani, \Channel-Driven Global
Routing with Consistent Placement", Proc. IEEE Intl.

Conf. on Computer-Aided Design, 1994, pp. 350-355.

[12] B. M. Riess, personal communication, January 1995.

[13] C. Sechen, Placement and Global Routing of Integrated

Circuits Using Simulated Annealing, PhD thesis, Univ. of

California, Berkeley, 1986.

[14] G. Sigl, K. Doll, and F. M. Johannes, \Analytical Place-
ment: A Linear or a QuadraticObjectiveFunction?",Proc.
ACM/IEEE Design Automation Conf., June 1991, pp.
427{432.

[15] W. J. Sun, K. Roy and C. Sechen, \Fast, High-Quality
Placement for Large Circuits", Proc. 4th ACM/SIGDA

Physical Design Workshop, Lake Arrowhead, April 1993,

pp. 11-12.

[16] R.-T. Tsay, E. S. Kuh. and C.-P. Hsu, \PROUD: A Fast
Sea-of-Gates Placement Algorithm", In Proc. ACM/IEEE

Design Automation Conf., 1988, pp. 318-323.

[17] Y. C. Wei and C. K. Cheng, \Towards E�cient Hierarchi-
cal Designs by Ratio Cut Partitioning", Proc. IEEE Intl.

Conf. on Computer-Aided Design, 1989, pp. 298-301.

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

