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1.  Abstract
We present an algorithm for accurately controlling delays

during the placement of large standard cell integrated circuits.
Previous approaches to timing driven placement could not
handle circuits containing 20,000 or more cells and yielded
placement qualities which were well short of the state of the
art. Our timing optimization algorithm has been added to the
placement algorithm which has yielded the best results ever
reported on the full set of MCNC benchmark circuits, includ-
ing a circuit containing more than 100,000 cells. A novel pin-
pair algorithm controls the delay without the need for user
path specification. The timing algorithm is generally applica-
ble to hierarchical, iterative placement methods. Using this
algorithm, we present results for the only MCNC standard cell
benchmark circuits (fract, struct, and avq.small) for which
timing information is available. We decreased the delay of the
longest path of circuit fract by 36% at an area cost of only
2.5%. For circuitstruct, the delay of the longest path was
decreased by 50% at an area cost of 6%. Finally, for the large
(22,000 cell) circuitavq.small, the longest path delay was
decreased by 28% at an area cost of 6% yet only doubling the
execution time. This is the first report of timing driven place-
ment results for any MCNC benchmark circuit.

2.  Introduction
A placement algorithm must control the wire lengths on a

set of critical signal paths. If the parasitic delays are large
enough for these critical paths, the circuit may not function
properly. In general, there is an upper bound  on the time

 that a signal may propagate from the input to the output for
which the circuit still functions,

(1)

The delay from input to output can be decomposed into
two pieces: component or gate delay and parasitic delay. The
placement algorithm must ensure that all wiring parasitics are
within their bounds.

Figure 1 shows an example of a digital logic circuit.
There are three inputs (A, B, C) and two outputs (D, E).

The gate and wiring delays for this circuit may be repre-
sented using a timing graph as shown in Figure 2. The timing
graph is a weighted directed acyclic graph (dag). The nodes of
the graph represent the signal pins of the circuit. The edges of
the graph connect the pins. Each edge has a weight corre-
sponding to the propagation delay. There are two types of
edges: internal and external. The internal edges are signal
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paths which exist between pins of a gate. The weights of these
edges are fixed by technology and device physics. The exter-
nal edges denote paths created by the signal network. The
weight of these edges depends on the length of the intercon-
nect. The goal of the placement algorithm is to satisfy the time
bounds for all signal paths through the circuit.

Often the designer knows the timing constraints between
a primary input pin and a primary output pin (such as B and E
in Figure 2) but does not know the gates or nets of the paths
between them. In Figure 2, there are three unique paths
between pins B and E. The longest time among the three paths
will set the upper bound on the time delay. However, some of
these paths may be logically or temporally incompatible and
are therefore,false paths. A timing constraint for a false path
is meaningless since the path can never be switched orsensi-
tized. A false path unnecessarily constrains the placement
problem.

Previous timing driven placement schemes have either
been net-based [1] [4] [7] [9] [12] [14] [19] [20] or path-based
algorithms [2] [5] [8] [11] [14] [15] [17] [18]. Net-based algo-
rithms seek to control the delay on a signal path by putting a
separate constraint on each net in the signal path. This usually
severely overconstrains the placement algorithm since some
of the nets in the path may be well shorter than their bounds
implying that the other nets could accommodate more delay
than their bounds without having excessive delay on the path.
Consequently, the placement quality suffers badly since the
algorithm seeks to make nets shorter than they really need to
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Figure 1. Example circuit.
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Figure 2. Timing graph for the example circuit of Figure 1. The nodes of
the graph are the signal pins. The edges of the graph connect the pins.
There are two types of edges. The thick edges are signal paths through
the gates whereas the thin lines denote the signal nets.
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be. Path-based approaches correctly model the problem but
have previously been limited to small problems. As a conse-
quence, path-based approaches have not been adopted in
industry.

In this paper, we present a path-based timing driven
placement algorithm which can handle very large integrated
circuits. The paper is organized as follows. In Section 3, we
review the necessary fundamentals of the placement algorithm
upon which we base our new approach to timing driven place-
ment. The new timing optimization algorithm is presented in
Section 4. In Section 5, we describe how the timing optimiza-
tion algorithm was extended for hierarchical placement.
Finally, in Section 6, we present our results.

3.  Review of the Basic Placement Algorithm
We felt that we could develop the most effective timing

driven placement algorithm by adding the new timing optimi-
zation algorithm to the most effective row-based placement
algorithm available, namely TimberWolfSC version 1. In this
section we review the relevant aspects of the TimberWolfSC
version 1 placement algorithm.

Figure 3 shows the hierarchical placement methodology
described in [16], which combined a new clustering technique
with a new approach to simulated annealing. The original
netlist is hierarchically clustered into various levels of netlists.
Then the new approach to simulated annealing was used to
place those various levels of netlists.

In the clustering stages, the original netlist is condensed
into the first and then the second level netlists. The produced
clusters in the higher level netlists have similar size, which
greatly aids the annealing placement stages. In the placement
stages, the condensed second level netlist is placed using sim-
ulated annealing at the higher temperatures. Then the second
level netlist is decomposed back to the first level netlist. Cells
of the lower level netlist are randomly placed within the range
of the cluster to which they belong in the higher level netlist.
At the new lower level, these cells may then move outside the
bounds of the higher level cluster. The first level netlist is then
placed at the middle temperatures. Next, the first level netlist
is decomposed back to the original netlist, and the original
netlist is placed at the lower temperatures. There are two clus-
tering stages and three placement stages. The right hand side
of Figure 3 shows some typical values.

4.  Timing Optimization Algorithm
We now present our new timing optimization algorithm.

We will first describe how the delay on a critical path is com-
puted. We then show how critical path delays enter into the
computation of the simulated annealing cost function. A
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Figure 3. Hierarchical Placement

description of the various ways in which timing constraints
may be specified by users and how the algorithm efficiently
handles the potentially huge numbers of critical paths. Finally,
we show how we handle sequential circuits.

4.1  Computing the Delay on a Critical Path
The arrival time (delay) for a pathp is the summation

of all the net delays  for the path.

(2)

The delay for a single netn is the sum of the intrinsic gate
delay associated with the driver of the netn, and the prod-
uct of the equivalent driver resistance , and the total load
capacitance seen by the driverCn.

(3)

The total capacitance for a net has two components: gate
input capacitance  and parasitic capacitance .

(4)

During placement, we can estimate the parasitic capaci-
tance using the half-perimeter bounding-box metric where

 and  are the capacitance per length in thex and y
directions respectively, and  and  are the hori-
zontal and vertical spans, respectively, of the bounding box of
netn.

(5)

Substituting (4) and (5) into (3), we get:

(6)

We can precompute the terms in the summation which do
not depend on wire length by defining:

(7)

This results in the following simplified equation for the
arrival time:

(8)

4.2  Cost Function
We now show how critical path delays enter into the com-

putation of the simulated annealing cost function. The penalty
due to timing for a pathp is zero unless  is greater than

 in which case
(9)

where the user has specified an upper bound(Tru) on the
required arrival times.

The total timing penalty  is just the sum over all criti-
cal paths:

(10)

The simulated annealing cost functionC consists of two
terms. The first term is the total wire length, represented byW.
The second term is the timing path penalty function .

(11)
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A very large value of  will surely satisfy all timing con-
straints (if they can be satisfied) but will result in poor values
of . Conversely, too small a value of  will yield very good
values of  but with some of the time constraints remaining
unsatisfied. We therefore experimented to find a relationship
for  which did not degrade , and correspondingly the chip
area, but which satisfies all the feasible path constraints. Since
the ratio of paths specified to the total number of nets will
vary from zero to a large number from circuit to circuit and
run to run, we had to ensure that the timing penalty term was
felt, regardless of its absolute value. The best results were
obtained when we assigned

(12)

where  is the average change in wire length and  is
the average change in the timing penalty measured during the
first iteration (line 5 in Figure 4) of the simulated annealing
algorithm. This implies that the changes in the timing penalty
are (in some sense) three times as important as the changes in
the wire length.

It should be noted that there is no fundamental reason for
using the lumped capacitance model in the timing analysis.
Other models which incorporate resistance of the routing lay-
ers can be used as well.

4.3  Specification of Critical Paths
We now describe the ways in which timing constraints

may be specified by users and how the algorithm efficiently
handles the potentially huge numbers of critical paths. The
simplest way for users to specify critical paths is by listing the
sequence of nets comprising a path. However, often users do
not know which paths are critical through the circuit. Instead,
they are concerned with the timing delays between the pri-
mary inputs and primary outputs of the integrated circuit. In
this latter case, our timing optimization algorithm must find
all the relevant critical paths.

The number of critical paths that could potentially violate
delay specifications can be truly large and unwieldy. Not only
might the user list a vast number of critical paths, but between
a single pair of I/O pins there may be huge number of non-
false signal paths. If all such paths were entered into the cost
function in the manner described in the previous subsection,
the computation time for a placement run can go up by orders
of magnitude compared to the unconstrained case. The secret
to controlling the run time hit is to have the annealing algo-
rithm pay attention to only theK costliest paths (those paths
yielding the largest penalty as in (9) in the previous section) at
any given time. Of course, it is vitally important that this list
of K costliest paths be updated often enough during the course
of an annealing run. And updating the list more often than
necessary wastes computation time.

We modified the simulated annealing algorithm as shown
in Figure 4. The first step of the algorithm reads false paths
designated by the user. The user may remove any false paths
by enumerating them in a file. This is similar to the TA timing
analyzer which allowed the user to adddelay modifiers to
indicate that a path was not possible [10]. The false paths may
be obtained by using external timing analyzers.

In the second step, a timing graph for each specified pin-
pair is constructed. The timing graph construction routine cre-
ates a directed acyclic graph (dag). It is important that the
graph be a dag; the dag’s special properties are exploited in
theM shortest path algorithms. It allows the use of the PERT
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algorithm to calculate the longest path in the graph in
 time. It further allows the use of Dreyfus’s method

to compute all the remainingM longest paths of a single pin-
pair in time complexity  [3][13]. This is in con-
trast to Yen’s method for general networks with time com-
plexity  [21]. Dreyfus’s method finds paths in which
repeated nodes are admissible paths in a general network. We
seek paths without repeated nodes. Since the graph is a dag,
repeated nodes are not possible.

After each iteration of the outer loop, a new set of paths
to be monitored is created in lines 11 through 13. For each
specified pin-pair, theM longest paths of this pair are found by
negating the edge weights of the timing graph and running the
M shortest paths algorithm. This is possible since the timing
graph is a dag. These paths are now treated as time critical
paths and (9) is used to determine the cost. In line 13, all but
the costliestK time critical paths are discarded. The parameter
K controls the number of paths to be monitored during a sin-
gle execution of the outer loop. We have found empirically
that updating the list ofK costliest paths every iteration is suf-
ficient to meet the timing specifications. Updating it more
often only increases the total CPU time but does not yield bet-
ter timing performance. Updating it appreciably less often can
cause the timing penalty function to fail to converge for some
circuits.

4.4  Sequential Circuits
Until now we have described how to optimize a strictly

combinational circuit. In these circuits, the input/output pin-
pairs are relatively easy to discover. We simply need to exam-
ine the cross product of primary inputs and primary outputs.
The cross product yields  pin-pairs, assumingm
inputs andn outputs. Many of these pin-pairs have no path
between them. To save computation time, we preprocess the
pin-pairs before the placement process begins and retain only
those pairs of I/O pins which have at least one path between
them, thereby avoiding unneeded searching in the timing
graph. We employ a similar technique for synchronous cir-
cuits.

In a sequential circuit, the cycle time is determined by the
longest delay on a combinational path between an output of

Algorithm  Simulated-Annealing-With-Timing(M,K)
1
2 buildTimingGraph
3 determine initial temperature
4 start with a random initial placement of the cells
5 for each of the 150 iterations of the outer loop do
6 do
7 generate a move
8 determine whether to accept/reject based on
9 periodically adjust the temperature

10 until  iteration is complete
11 for  each do
12
13 discard all but theK costliest paths
14 until  cost cannot be reduced any further
Figure 4. Modified simulated annealing algorithm with timing analysis.
After each iteration of the outer loop, a new set of timing constraints is
generated. An upper bound ofM such constraints are generated for each
pin-pair. The key new steps in the timing driven placement algorithm are
enclosed by the boxes.
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one storage element and the input of another (or the same)
storage element. In timing driven placement we seek to mini-
mize (or control) the longest path delay between storage ele-
ments. To discover the connected pairs of storage elements,
we examine each of the outputs of a storage element in turn.
Each output is used as a source in the PERT algorithm; all
inputs of storage elements are used as targets. The longest
path algorithm is executed. If a target has been labeled by the
algorithm, a path exists between these pairs. We output this
pair and continue until all storage element outputs have been
exhausted. We were able to process the 4007 sources and
4277 targets found in the benchmark circuitavq.small in less
than 800 seconds (a small portion of the overall run time) on a
DECstation 3000/400. The timing graph for this circuit had
64074 nodes and 80508 edges. The preprocessing program
located the 33,829 viable pin pairs out of a possible 17 million
in this circuit.

5.  Hierarchical Placement
Recall from Section 3 and Figure 3 that our placement

algorithm is hierarchical. That is, during the first two of the
three placement stages, clustered (or condensed) versions of
the original flat netlist are used in the simulated annealing
algorithm.

If the only critical paths are those actually listed by the
user, it is straight forward to incorporate timing in the first two
(clustered) placement stages. The lengths of nets which are
fully internal to a cluster are unknown and rather short, and
hence the delays due to these nets can be successfully approx-
imated to zero. Only the delays due to inter-cluster nets need
to be computed by the timing optimization algorithm.

However, if pin-pair constraints are present, problems
arise if one attempts to simplify the timing graph during clus-
tering. The clustering will generally induce cycles in the sim-
plified graph. Removal of the cycles will remove valid
constraints.

For these reasons, we retain the flattened timing graph
throughout all of the three placement stages if pin-pair con-
straints have been specified. Steps 11-13 of Figure 4 are modi-
fied slightly. As before, the delays due to intra-cluster nets are
approximated to zero and hence their edge weights are set to
zero in the flattened timing graph. All inter-cluster edges are
updated with their parasitics based on the half-perimeter
bounding box metric (as before). The graph is then searched
for the longest M paths discarding all but theK costliest paths.
These paths are then simplified by removing any intra-cluster
edges. The simulated annealing based placement optimization
proceeds for another iteration using this set of paths derived
from the original timing graph.

6.  Results
Three MCNC benchmark circuits contain timing infor-

mation. The first two,fract and struct, have combinational
paths between their primary inputs and primary outputs. The
third, avq.small is a sequential circuit. Table 1 displays the
characteristics of the benchmark circuits and their timing
graphs

For circuitfract, the most interesting pair of I/O pins isX
andZ with 17 unique paths between them. Table 2 compares
the effect of varyingM, the maximum number of longest
paths generated for each pin pair, on the longest path in the
circuit. In this case, none of the constructed paths were pruned
(i.e. ). The results of using the pin-pair timing algo-
rithm are dramatic; the longest path delay decreased by 36%.

K ∞=

Among the 17 paths fromX to Z, it was discovered that five
paths were much longer than the others. Curiously, the best
average results were obtained when we setM = 5. In this case,
the longest timing path through the chip was reduced by 41%.
Our experience suggests that this is because the algorithm was
not distracted by the easily satisfiable paths.

A decrease in the delay for the other (lower delay) paths
was also realized. The average delay in the circuit was
reduced from 115 nanoseconds to 37 nanoseconds, a savings
of 67%.

Table 2 compares wire length, area after global routing,
and execution times for each case. WhenM is set to 1 andK is
set to infinity, the longest path delay was reduced by 36%,
with an area penalty of only 2.5% and an execution time
increase of 16%. Generally, the area after global routing corre-
lates with the wire length after placement. For this circuit,
dynamically searching (at the beginning of each of the 150
iterations) and retaining only the longest among the set of
paths for each pin pair yields excellent results with minimal
increase in the execution time.

To further reduce the run time, the number of time critical
paths retained at the start of each iteration was pruned to only
the 5 costliest paths. Table 3 shows the delay of the longest
path using pruning. Notice that the longest delay path did not
increase (actually decreased). In Table 3, we see that the area
after global routing also remained the same. In addition, the
CPU time was reduced.

In Table 4, the longest delay in the circuitstruct was
reduced from 907 nanoseconds to 449 nanoseconds, a reduc-
tion of 50%. The user needed no knowledge of the time criti-

Table 1 Circuit and timing graph characteristics.

Circuit # cells # nets V[G] E[G]

fract 149 171 486 588

struct 1952 1984 5535 7134

avq.small 21918 22178 64074 80508

Table 2 Results for circuit fract ( ).

unconstrained M=1 M=5 M=17

longest path 208ns 134ns 124ns 130ns

wire length 57276 60691 63073 61209

area( )

run time 670 sec 801 sec 966 sec 1201 sec

Table 3 Results for circuit fract using pruning.

M=1, K= M=1, K=5

longest path (ns) 134 131

wire length 60691 60322

area ( )

run time (secs.) 801 750

K ∞=

µm
2 1.56 6×10 1.60 6×10 1.68 6×10 1.58 6×10

∞

µm2
1.60 6×10 1.60 6×10



cal paths in the circuit. The longest paths in the circuit were
discovered and optimized automatically. Table 4 contrasts the
wire length, chip area, run time, and memory utilization for
the unconstrained and constrained cases. Here, a 6% increase
in area results in a 50% decrease in longest path delay. Notice
that the run time remains feasible and memory utilization is
comparable.

In Table 5, we present the results of the circuitavq.small
using the hierarchical placement algorithm. In this case, a 6%
increase in the area results in a 28% decrease in the longest
path delay. Time and memory resources increased less than a
factor of two over the unconstrained case.

7.  Conclusions
We presented an algorithm for accurately controlling

delays during the placement of large standard cell integrated
circuits. Previous approaches to timing driven placement
could not handle circuits containing 20,000 or more cells and
yielded placement qualities which were well short of the state
of the art. Our timing optimization algorithm has been added
to the placement algorithm which has yielded the best results
ever reported on the full set of MCNC benchmark circuits,
including a circuit containing more than 100,000 cells. A
novel pin-pair algorithm controls the delay without the need
for user path specification. The timing algorithm is generally
applicable to hierarchical, iterative placement methods. Using
this algorithm, we present results for the only MCNC standard
cell benchmark circuits (fract, struct, and avq.small) for
which timing information is available. We decreased the delay
of the longest path of circuit fract by 36% at an area cost of
only 2.5%. For circuitstruct, the delay of the longest path was
decreased by 50% at an area cost of 6%. Finally, for the large
(22,000 cell) circuitavq.small, the longest path delay was
decreased by 28% at an area cost of 6% yet only doubling the
execution time. This is the first report of timing driven place-
ment results for any MCNC benchmark circuit.

Table 4 Results for benchmark circuitstruct.

no constraints M=1, K = 2000

longest path (ns) 907 449

wire length 699144 734330

area ( )

run time (secs.) 802 2175

memory 34 Mbyte 37 Mbyte

Table 5 Results for benchmark circuit avq.amall.

no constraints M=1, K = 2000

longest path (ns) 1106 798

wire length

area ( )

run time (secs.) 24049 47990

memory 43 Mbyte 61 Mbyte

µm2
1.89 7×10 2.01 7×10

5.30 6×10 5.68 6×10
µm2

1.33 8×10 1.41 8×10
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