
Spectral Partitioning: The More Eigenvectors, The Better�

Charles J. Alpert and So-Zen Yaoy

UCLA Computer Science Department, Los Angeles, CA 90024-1596

y Cadence Design Systems, San Jose, CA 94135

Abstract

A spectral partitioning method uses the eigenvec-
tors of a graph's adjacency or Laplacian matrix to
construct a geometric representation (e.g., a linear or-
dering) which is then heuristically partitioned. We
map each graph vertex to a vector in d-dimensional
space, where d is the number of eigenvectors, such
that these vectors constitute an instance of the vec-
tor partitioning problem. When all the eigenvectors
are used, graph partitioning exactly reduces to vector
partitioning. This result motivates a simple ordering
heuristic that can be used to yield high-quality 2-way
and multi-way partitionings. Our experiments suggest
the vector partitioning perspective opens the door to
new and e�ective heuristics.

1 Introduction

Given a netlist hypergraph, one may apply a trans-
formation (e.g., replacing each hyperedge by a clique
of weighted edges) to derive a graph partitioning in-
stance. Such an instance consists of a weighted graph
G(V;E), i.e., vertex set V = fv1; v2; : : : ; vng, and sym-
metric n�n adjacency matrix A = (aij), where aij > 0
is the cost of (vi; vj) 2 E, and aij = 0 if no (vi; vj)
edge exists. Let deg(vi) =

Pn
j=1 aij be the degree of

vi. The n � n degree matrix D = (dij) is given by
dii = deg(vi) and dij = 0 if i 6= j. The n � n Lapla-
cian matrix of G is de�ned as Q = D �A.

De�nition: A k-way partitioning of G is a set of clus-
ters (subsets of V) P k = fC1; C2; : : : ; Ckg such that
each vi 2 V is a member of exactly one Ch, 1 � h � k.

Almost all of the proposed multi-way partitioning ob-
jectives involve some combination of the number of
cut edges and cluster size balance. We assume that
the objective is to minimize the total cost of cut edges
while satisfying cluster size constraints; however, the
following discussion is applicable to other objectives
as well.

Min-Cut Graph Partitioning: Given the adja-
cency matrix A corresponding to G, and cluster size

�This work was performed during Charles J. Alpert's sum-
mer 1994 internship at Cadence Design Systems.

lower and upper bounds Lh and Wh, �nd P k that
satis�es Lh � jChj � Wh for each 1 � h � k and
minimizes

f(P k) =

kX
h=1

Eh where Eh =
X
vi2Ch

X
vj =2Ch

aij: (1)

In other words, each Eh is the edge cut of cluster Ch.

Min-cut graph partitioning is NP-complete, and
many types of heuristic methods have been proposed
(see the recent netlist partitioning survey [4]). Spectral
methods [1] [2] [6] [7] [8] [10] [12] [15] have been suc-
cessful in recent years; these methods all use eigenvec-
tors of the Laplacian or adjacency matrix to construct
some type of geometric representation of the graph.
We note examples of four such representations:

� Linear orderings: Hall [12] showed that the
second eigenvector of the Laplacian yields the
optimum 1-dimensional placement in terms of
squared wirelength. Barnes [6] proposed a multi-
eigenvector method that reduces to spectral bipar-
titioning (sorting the coordinates of the largest
eigenvector of A) when k = 2. Hagen and Kahng
[10] applied this approach to the ratio-cut objec-
tive and Riess et al. [15] used analytic methods
to construct linear orderings.

� Points in d-dimensional space: Hall [12] also
proposed constructing 2-dimensional graph place-
ments with vertex coordinates derived from two
eigenvectors. Alpert and Kahng [1] [2] extended
this approach to higher dimensions, i.e., the ith

entries of d eigenvectors yield the coordinates of
vi in d-space. Geometric partitioning heuristics
in [1] and a linear ordering heuristic in [2] were
applied; dynamic programming was used to split
the ordering into a k-way partitioning.

� d-dimensional vectors: Chan et al. [7] use the
same representation as [12] [1] [2], but view each
vertex as a vector rather than as a point in space.
Their KP algorithm constructs partitioning so-
lutions using the directional cosine between two
vectors as a similarity measure between vertices.

� Indicator vectors: Any bipartitioning can be
represented as an n-dimensional 0-1 indicator vec-
tor. Frankle and Karp [8] proposed sending probes
into the d-dimensional space spanned by the best
d eigenvectors; for a given probe, they �nd the in-
dicator vector that maximally projects onto the
probe in O(n logn) time.

32nd ACM/IEEE Design Automation Conference 
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.  1995 ACM 0-89791-756-1/95/0006 $3.50

Our geometric representation is similar to that of
the third approach, but we scale each coordinate by a
function of the eigenvalue. The resulting vectors com-
prise a vector partitioning instance in which n vectors
are partitioned into k subsets. The objective is to
maximize the sum of the squared magnitudes of the
k vectors that result by adding the vectors in each
subset. Unlike directional cosines [7], this objective
captures both vector magnitude and direction. Our
representation is also similar to the indicator vector
representation [8] since our n vectors are the indi-
cator vectors for bipartitioning solutions of the form
P 2 = ffvg; fV � vgg; hence, we extend the basic ap-
proach of [8] from 2-way to multi-way partitioning.

Our main contribution is the result that when n
eigenvectors are used, the min-cut graph partitioning
and max-sum vector partitioning objectives are iden-
tical. When d < n eigenvectors are used, the vec-
tor partitioning instance is an approximation of graph
partitioning, but as d gets larger, the instance provides
a progressively better approximation, until it is exact
for d = n. Hence, unlike works [1] [6] [7] that propose
using d = k eigenvectors for k-way partitioning, we
believe that d should always be as large as practically
possible.

The rest of our paper is organized as follows. Sec-
tion 2 develops the relationship between eigenvectors
and the Min-Cut objective. Section 3 introduces the
vector partitioning problem and shows the equiva-
lence between graph and vector partitioning. Sec-
tion 4 presents a simple ordering heuristic. Section 5
presents experimental results for multi-way and 2-way
partitioning, and Section 6 concludes with directions
for future research.

2 Eigenvectors and Min-Cuts

In this section, we review terminology and key re-
sults that have appeared in the literature.

De�nition: Given P k, the corresponding n � k as-
signment matrix X = (xih) has xih = 1 if vi 2 Ch and

xih = 0 otherwise. ~Xh, the h
th column of X, is the in-

dicator vector for cluster Ch. Consequently, each row
of X has sum one, and column h has sum jChj.

Theorem 1: f(P k) = trace(XTQX).

This theorem is a well-known extension to multi-
way partitioning (e.g., [14]) of the bipartitioning re-

sult 1
2
f(P 2) = ~X1

T
Q ~X1. Each ~Xh can be viewed

as a linear combination of the n indicator vectors
corresponding to singleton clusters, e.g., [11001]T =
[10000]T + [01000]T + [00001]T . Alternatively, we can

express ~Xh in terms of a di�erent set of basis vectors,
namely, the eigenvectors of the Laplacian.

De�nition: An n-vector ~� is an eigenvector of Q with
eigenvalue � if and only if Q~� = �~�. The eigenvec-
tors of Q are given by ~�1; ~�2; : : : ; ~�n and have cor-
responding eigenvalues 0 = �1 � �2 � : : : � �n.
The n � d eigenvector matrix Ud = (�ij) has columns
~�1; ~�2; : : : ; ~�d (we use U for Un) and the n� n eigen-
value matrix � = (�ij) has diagonal entries �ii = �i
and 0 entries elsewhere.

We assume that the eigenvectors are normalized, i.e.,

for 1 � j � n, ~�j
T
~�j = 1. The eigenvectors of Q have

many desirable properties, including [13]:

� The eigenvectors are all mutually orthogonal,
hence they form a basis in n-dimensional space.

� �1 = 0 and ~�1 = [1p
n
; 1p

n
; : : : ; 1p

n
]T .

� If G is connected then �2 > 0.

For simplicity, we assume that G is connected.
Because the eigenvectors form a basis, any n-vector
~x can be expressed in terms of this basis. Since
UUT = I, we may write ~x = U (UT~x), or equivalently

~x =
Pn

j=1(~�j
T
~x) ~�j.

De�nition: The n� k projection matrix � = (�jh) is

given by �jh = ~�j
T ~Xh, and thus � = UTX. The hth

column of � is given by ~�h = UT ~Xh. We say that �jh
is the magnitude of the projection of ~Xh onto ~�j .

We can now write each indicator vector ~Xh in
terms of the eigenvector basis, i.e., ~Xh = U ~�h =Pn

j=1�jh ~�j. Notice that jChj = jj ~Xhjj
2 =Pn

j=1�
2
jh = jj ~�hjj

2. Thus, ~Xh and ~�h give two repre-

sentations of the same indicator vector. It is easy to
show (since Q = U�UT) that

Theorem 2: trace(XTQX) = trace(�T��).

By combining Theorems 1 and 2 and performing
the matrix multiplication, we observe:

Corollary 1:

f(P k) =

kX
h=1

nX
j=1

�2jh�j : (2)

This corollary is the k-way extension of the bipar-

titioning result [8]: E1 = ~X1

T
Q ~X1 =

Pn
j=1�

2
j1�j.

This corollary gives the key insight behind our vector
partitioning formulation. We now de�ne the vector
partitioning problem and show how graph partition-
ing reduces to vector partitioning.

3 The Vector Partitioning Problem

De�nition: A k-way vector partitioning of a set of
vectors Y is a set of k subsets Sk = fS1; S2; : : : ; Skg
such that each ~y 2 Y is a member of exactly one Sh,
1 � h � k.

Max-Sum Vector Partitioning: Given a set Y of
n vectors, and subset cardinality bounds Lh and Wh,
�nd Sk that satis�es Lh � jShj � Wh for each 1 �
h � k and maximizes

g(Sk) =

kX
h=1

jj ~Yhjj
2 where ~Yh =

X
~y2Sh

~y: (3)

We call ~Yh the subset vector for Sh. Intuitively,
the goal of vector partitioning is to �nd subsets of
vectors that point in the same direction. Observe that
Equation (3) induces an obvious pairwise similarity
measure for vector partitioning, i.e., jj~yi + ~yj jj

2 for ~yi

and ~yj . In contrast, graph partitioning has no natural
analogous similarity measure (cf. the many ad hoc
means in the literature such as all-pairs shortest paths,
k � l connectivity [9], etc.).

Because the min-cut objective of Equation (1) is to
minimize f and the max-sum objective of Equation
(3) is to maximize g, the two objectives appear in-
compatible. However, following [8], we may transform
f into a maximization objective. Let H � �n be some
constant. Corollary 1 allows us to formulate the new
maximization objective as

nH � f(P k) =

kX
h=1

(HjChj �

nX
j=1

�2jh�j) (4)

=

kX
h=1

nX
j=1

�2jh(H � �j):

The choice of H � �n ensures that nH � f(P k) � 0.

De�nition: The n�d scaled eigenvector matrix Vd =
(�ij) is given by �ij = �ij

p
H � �j, i.e., by Ud with

each column ~�j scaled by
p
H � �j .

Let ~ydi denote the ith row of Vd. Consider the
d-dimensional vector partitioning instance with the
vector set Y = f~yd1 ; ~y

d
2; : : : ; ~y

d
ng, in which each

graph vertex vi corresponds to a vector ~ydi . For
this Y , we say that a graph partitioning P k =
fC1; C2; : : : ; Ckg corresponds to a vector partitioning
Sk = fS1; S2; : : : ; Skg if and only if vi 2 Ch when-
ever ~ydi 2 Sh. Our main result shows that the min-cut
graph partitioning and max-sum vector partitioning
objectives are identical.

Theorem 3: If P k corresponds to Sk, then for d = n,

nH � f(P k) = g(Sk):

Proof: For a given Sh 2 Sk , let ~Y d
h =

P
~yd
i
2Sh

~ydi .

First we establish that jj~Y d
h jj

2 =
Pd

j=1 �
2
jh(H � �j),

and the theorem will follow. For every i, the jth com-

ponent of ~ydi is �ij, hence the j
th component of ~Y d

h isP
~yd
i
2Sh

�ij. Therefore, computing the norm of ~Y d
h by

summing over components yields

jj~Y d
h jj

2 =

dX
j=1

(
X

~yd
i
2Sh

�ij)
2

and since membership of ~ydi 2 Sh corresponds to mem-
bership of vi 2 Ch,

=

dX
j=1

(
p
H � �j

X
vi2Ch

�ij)
2 =

dX
j=1

(
p
H � �j(~�j

T ~Xh))
2

=

dX
j=1

(
p
H � �j(�jh))

2 =

dX
j=1

�2jh(H � �j)

Recalling that
Pn

j=1 �
2
jh = jChj, we have

jj~Y n
h jj

2 =

nX
j=1

�2jh(H � �j) = HjChj � Eh: (5)

Combining this result with Equations (3) and (4)
yields

g(Sk) =

kX
h=1

(HjChj � Eh) = nH � f(P k):

Corollary 2: Min-cut graph partitioning reduces to
max-sum vector partitioning, hence max-sum vector
partitioning is NP-Hard.

Corollary 3: jj~yni jj
2 = H � deg(vi).

Equation (5) states that the magnitude of a subset
vector gives the cost of the edges cut by its corre-
sponding cluster. Corollary 3 is just a special case of
this equation for Ch = fvig, i.e., the degree of each
vertex can be computed from the magnitude of its
corresponding vector.

Finally, we show that ignoring the �rst eigenvector
~�1 leads to the same vector partitioning formulation,
but with a nice geometric property. The magnitude of

the projection of Ch onto ~�1 is �1h = ~�1
T ~Xh = jChjp

n
.

Hence, for any P k

kX
h=1

�21h(H � �1) =

kX
h=1

HjChj
2

n
; (6)

which is a constant, i.e., if the �21h(H � �1) terms are
discarded in Equation (2), and if the �rst component
of each ~yni is discarded, Theorem 3 still holds. Each
eigenvector ~�j (2 � j � n) is orthogonal to ~�1, so
for each such ~�j , we have

Pn
i=1 �ij = 0. Thus, ignor-

ing the �rst eigenvector yields the following desirable
result.

Theorem 4: For any vector partitioning Sk of Y =
f~yd1 ; ~y

d
2; : : : ; ~y

d
ng, if the �rst component of each ~ydi 2 Y

is discarded, then
Pk

h=1

P
~y2Sh

~y = ~0.

Theorem 4 states that the sum of all the subset
vectors is the zero vector, e.g., for k = 2, the subset

vectors ~Y1 and ~Y2 have the same magnitude and point
in opposite directions.

An Example

Consider the 5-vertex graph with adjacency matrix

A =

2
664

0 4 0 0 1
4 0 1 1 0
0 1 0 1 0
0 1 1 0 4
1 0 0 4 0

3
775

The eigenvalues for the Laplacian of this graph are
�1 = 0:000; �2 = 2:298; �3 = 2:469; �4 = 8:702 and
�5 = 10:531, and the eigenvector matrix is given by

U5 =

2
664

0:447 0:309 0:530 0:452 0:467
0:447 0:131 0:468 �0:532 �0:530
0:447 �0:880 0:000 0:159 0:000
0:447 0:131 �0:468 �0:532 0:530
0:447 0:309 �0:530 0:452 �0:467

3
775

We choose H = �5, so that the last component of
each vector is zero. The scaled eigenvector matrix is

V5 =

2
664

1:451 0:886 1:505 0:612 0:000
1:451 0:377 1:329 �0:719 0:000
1:451 �2:526 0:000 0:215 0:000
1:451 0:377 �1:329 �0:719 0:000
1:451 0:886 �1:505 0:612 0:000

3
775

By Theorem 4, we can ignore the �rst column
of V5, and our choice of H permits us to ignore
the last column. The subset vectors corresponding

to the bipartitioning ffv1; v2; v3gfv4; v5gg are ~Y1 =

~y1 + ~y2 + ~y3 = [�1:263; 2:834; 0:108]T and ~Y2 =

~y4 + ~y5 = [1:263;�2:834;�0:108]T. We have jj ~Y1jj
2 =

jj ~Y2jj
2 = 9:637. The constant from Equation (6) isP2

h=1
10:531

5 jChj
2 = 27:378, hence g(S2) = 9:637 +

9:637 + 27:378 = 46:652. The maximization objec-
tive from Equation (4) evaluates to nH � f(P 2) =
5 � 10:531 � (3 + 3) = 46:655, and we see that the
vector and graph partitioning objectives (except for
rounding errors) are identical.

Other Objectives

We note that di�erent graph partitioning objectives
will induce corresponding vector partitioning objec-
tives.

Chan et al. [7] proposed to minimize the Scaled

Cost objective f(P k) =
Pk

h=1
Eh

jChj
with no size

constraints, i.e., a \generalized ratio-cut". Our
maximization objective becomes kH � f(P k) =Pk

h=1

Pn
j=1 �

2
jh

H��j
jChj

. From Equation (5), we have

jj~Y n
h jj

2

jChj
= H � Eh

jChj
, which is the contribution of clus-

ter Ch to our new objective. The vector partitioning

objective becomes to maximize g(Sk) =
Pk

h=1
jj ~Yhjj

2

jShj
,

which captures an \average vector" formulation.

FPGA partitioning might require minimizing the
maximum degree of any cluster, i.e., minimizing
f(P k) = max1�h�kEh = max1�h�k �

2
jh�j , or equiv-

alently, maximizing min1�h�k �
2
jh(H � �j). The cor-

responding vector partitioning objective becomes to

maximize g(Sk) = min1�h�k jj~Y
n
h jj

2.

4 Linear Ordering Algorithm

We now propose a simple, greedy graph partition-
ing heuristic that utilizes the corresponding vector
partitioning instance. Instead of explicitly solving vec-
tor partitioning, we construct a linear ordering of the
vectors (and hence the vertices). Previous work [2]
[10] [15] has shown the e�ectiveness of this approach.

In a good vector partitioning solution Sk, any given
subset of vectors Sh will generally consist of vectors
that sum to a vector of large magnitude. Thus, our
MELO (Multiple Eigenvector Linear Orderings) algo-
rithm in Figure 1 greedily constructs such a subset.
MELO begins by constructing the d-dimensional vec-
tor partitioning instance and initializes the set of vec-
tors S to empty (Steps 1-2). MELO then adds to S

the vector with largest magnitude, removes this vec-
tor from Y , and labels the vector's corresponding ver-
tex �rst in the ordering. Each subsequent iteration
through Steps 4-6 chooses the \best vector" ~ydi remain-
ing in Y , i.e., the one that maximizes the magnitude
of the sum of the vectors in S plus ~ydi . Throughout
MELO's execution, S should consist of a reasonably
good subset for vector partitioning. MELO's com-
plexity is no worse that O(dn2), although speedups
are possible (see [5]).

This idea of iteratively constructing a cluster (i.e.,
subset of vectors) seems to be the most direct method
for constructing a linear ordering. MELO may not
seemmuch di�erent from a greedy graph traversals (cf.
[3]); however, with our approach each added vector
incorporates global partitioning information while a
greedy graph traversal can only make local decisions.

The MELO Algorithm
Input: Graph G(V;E), number of eigenvectors d
Output: A linear ordering of V
1. Construct scaled eigenvector matrix Vd, set S = ;.
2. Y = f~ydi g, 1 � i � n, where ~ydi is row i of Vd.
3. for j = 1 to n do

4. Find ~ydi 2 Y that maximizes jj
P

~y2S ~y + ~ydi jj.

5. Add ~ydi to S and remove ~ydi from Y .
6. Label vi as the j

th vertex in the ordering.

Figure 1: The MELO Algorithm

We may also motivate MELO in the context of
Equation (4) for k = 2. In this case, the degree of the
�rst cluster is the same as the degree of the second
cluster (i.e., E1 = E2) and the objective equivalently

becomes H �
f(P2)
2 =

Pn
j=1�

2
j1(H � �j). Since in

practice, we have only d of the eigenvectors, we can-
not evaluate all the terms in this summation; however,
the �rst d terms should provide a reasonable approx-

imation, i.e., H �
f(Pk)
2 /

Pd

j=1�
2
j1(H � �j). If we

can �nd a cluster C1 that maximizes this summation,

then H �
f(Pk)

2 should be close to optimal. A reason-
able algorithm for constructing C1 might be to begin
with C1 = ;, and then iteratively add the vertex to C1

that optimizes this approximation. Such an approach
is exactly equivalent to MELO.

We have not yet discussed how to choose H. When
d = n, H is inconsequential; however, when d 6= n, the
choice of H can a�ect the ordering. We tried four dif-
ferent schemes for scaling the eigenvectors (see [5] for
more details): H =1, H = �d+�2, H chosen to min-

imize
Pd

j=1

�2j1
�j

, and H =
E1�
P

d

j=1
�2j1�j

jChj�
P

d

j=1
�2
j1

for a given

P 2 [8]. Our multi-way partitioning results indicate
the second scheme is slightly better, averaging 1.70%,
0.01% and 1.41% improvement over the �rst, third and
fourth schemes respectively. Our experiments in the
next section use the second scheme for multi-way par-
titioning and the best results derived from the second,
third, and fourth schemes for bipartitioning.

Test Scheme Number of Clusters - k Avg %

Case 10 9 8 7 6 5 4 3 2 improv

19ks MELO 9.85 9.10 8.31 7.87 6.84 6.14 5.32 4.99 4.79 +0.00

EIG1 13.9 11.6 9.15 8.74 8.87 7.00 6.51 6.45 6.35 +18.9

KP 9.09 9.37 10.7 9.52 9.00 9.00 6.95 6.58 6.20 +17.8

SFC 15.1 14.3 13.8 13.2 12.2 11.1 8.37 7.48 5.44 +35.7

bm1 MELO 25.5 23.4 21.8 18.6 16.0 12.5 8.63 6.61 5.53 +0.00

EIG1 33.3 31.1 26.9 22.7 17.0 11.3 8.63 6.61 5.53 +8.94

KP 27.5 23.1 18.9 18.2 12.5 10.7 8.67 6.61 5.53 -4.97

SFC 24.8 22.8 20.7 18.0 14.4 11.5 8.89 6.61 5.53 -3.17

prim1 MELO 44.6 41.9 39.7 37.0 34.0 29.4 22.5 17.1 13.4 +0.00

EIG1 53.1 44.6 40.5 38.1 32.4 28.1 23.9 17.0 13.4 +2.51

KP 44.7 41.3 32.3 33.2 31.3 29.9 21.2 14.7 13.5 -6.16

SFC 38.9 36.7 35.2 31.7 28.8 26.0 21.8 14.6 13.4 -10.6

prim2 MELO 13.7 12.7 12.0 11.2 10.1 9.18 7.95 6.76 4.71 +0.00

EIG1 11.2 10.9 10.1 9.73 9.33 8.33 7.85 7.69 5.55 -5.33

KP 15.0 15.2 13.5 11.0 10.5 10.1 9.23 7.25 4.64 +7.38

SFC 13.7 13.3 12.8 12.1 11.0 9.43 7.95 6.86 5.05 +4.14

test02 MELO 21.1 19.9 18.5 17.0 15.4 13.9 12.4 10.7 8.07 +0.00

EIG1 31.3 31.4 20.2 29.8 28.6 28.8 18.4 18.2 12.4 +36.4

KP 24.4 22.6 22.1 19.1 19.3 18.7 17.4 12.0 9.26 +16.8

SFC 25.5 24.1 22.8 20.9 18.5 16.1 13.4 10.9 8.07 +12.4

test03 MELO 19.0 17.6 16.7 15.3 14.6 13.7 12.5 11.6 9.29 +0.00

EIG1 20.3 19.9 17.7 17.0 16.7 17.6 16.0 14.3 11.9 +14.6

KP 20.3 22.4 19.1 17.3 18.4 22.8 19.9 14.7 9.45 +19.2

SFC 22.6 21.1 19.2 17.1 16.2 15.2 14.3 13.0 10.2 +12.0

test04 MELO 13.2 12.3 11.5 10.8 9.97 9.32 8.21 6.83 5.78 +0.00

EIG1 14.3 12.5 11.8 11.1 10.2 10.3 9.08 8.65 5.85 +6.46

KP 18.3 16.3 15.0 12.2 13.7 12.5 8.98 12.0 6.74 +22.9

SFC 22.2 19.9 17.8 17.6 16.5 15.1 11.6 8.19 5.78 +30.7

test05 MELO 7.42 7.03 6.53 6.11 5.79 5.50 4.85 4.35 3.09 +0.00

EIG1 7.50 6.82 6.70 6.12 5.38 4.97 4.26 4.06 3.09 -3.85

KP 10.8 10.6 9.28 6.80 6.60 6.69 7.81 7.34 4.52 +27.2

SFC 9.88 8.66 8.06 7.84 7.32 6.56 5.49 4.90 3.09 +16.1

test06 MELO 21.3 20.2 18.5 16.7 14.7 13.5 11.3 9.54 8.80 +0.00

EIG1 17.8 17.3 16.0 15.6 16.2 17.3 19.9 15.6 14.3 +10.3

KP 21.0 20.9 19.7 18.5 19.1 19.1 18.0 18.2 28.6 +24.9

SFC 27.1 25.1 23.7 20.2 18.4 16.5 13.7 11.3 9.21 +17.3

balu MELO 54.0 50.1 46.5 43.2 40.0 36.7 32.3 24.4 17.6 +0.00

EIG1 72.2 76.6 81.8 91.3 84.6 74.5 57.8 55.4 47.2 +46.9

KP 45.7 58.6 56.8 47.9 45.9 35.9 33.2 32.9 48.7 +14.2

SFC 82.0 79.1 74.1 70.3 64.9 62.2 49.4 47.3 17.6 +34.3

struct MELO 12.9 12.0 10.9 9.82 8.46 7.56 6.53 5.54 4.25 +0.00

EIG1 9.52 9.15 8.72 7.96 8.03 6.60 6.15 5.68 4.85 -10.7

KP 14.9 15.7 13.8 14.4 11.4 9.32 7.91 7.51 6.60 +23.8

SFC 12.1 11.2 10.5 9.41 8.65 7.93 7.05 6.42 4.85 +2.04

biomed MELO 1.87 1.73 1.62 1.49 1.34 1.23 1.11 0.89 0.61 +0.00

EIG1 1.68 1.67 1.60 1.58 1.60 1.20 1.27 1.28 0.85 +8.29

KP 3.22 3.03 2.65 1.75 1.63 1.36 1.83 1.16 0.84 +24.3

SFC 1.84 1.69 1.59 1.47 1.51 1.48 1.25 1.15 0.85 +9.22

Average EIG1 +4.39 +5.47 +2.64 +8.30 +11.8 +9.60 +13.9 +19.7 +20.0 +10.6

KP +10.2 +16.0 +13.4 +9.35 +12.8 +15.8 +20.1 +21.1 +23.2 +15.8

SFC +13.6 +13.5 +14.0 +14.0 +15.2 +15.4 +14.0 +13.2 +6.06 +13.2

Table 1: Scaled cost (�10�5) comparisons for the MELO, EIG1 [10], KP [7], and SFC [2] algorithms.

5 Experimental Results

Our experiments use the set of ACM/SIGDA
benchmarks listed in Table 2 (available via the World
Wide Web at http://ballade.cs.ucla.edu/~cheese).
Each netlist was �rst transformed into a graph using a
clique net model that adds weight 4

p(p�1) �
2p�2
2p to each

possible edge in a p-pin net [1], and the eigenvectors
were then computed using LASO2 code.

To generate multi-way partitionings from MELO
orderings, we apply the \DP-RP" algorithm of [2].
DP-RP accepts a vertex ordering and returns the op-
timal k-way partitioning such that each cluster is a
contiguous subset of the ordering. We choose to min-
imize Scaled Cost since it has no size constraints, it
provides a single quantity that measures the quality
of a linear ordering, and permits easy comparison to
previous algorithms. With the Scaled Cost objective
and no cluster size bounds, DP-RP has O(kn2) time
complexity.

Table 1 compares MELO with the multi-way par-
titioning algorithms EIG1 [10], KP [7], and SFC [2].
The rightmost column of the Table reports the aver-
age percent improvement of MELO versus the other
schemes. Positive improvement is indicated with a +;
if the improvement is negative, we report the percent
improvement of the superior algorithm versus MELO

and indicate this with a �. Note that the EIG1 and
KP results reported in Table 1 are considerably im-
proved from the values reported in [7] due to two fac-
tors: a di�erent net model, and no thresholding of
large nets (see [5]). The SFC results are quoted from
[2]. The MELO results are the best observed from
the ten linear orderings generated using the d best
eigenvectors of Q (discarding ~�1) for 1 � d � 10.
These experiments were not performed for the larger
benchmarks because DP-RP's O(n2) space require-
ment makes it infeasible on small workstations for
netlists with around 7000-8000 modules. MELO aver-
ages 10.6%, 15.8% and 13.2% improvement over EIG1,
KP and SFC respectively. MELO also seems to per-
form consistently well over the range of benchmarks
and values of k.

In separate experiments [5], we compared the qual-
ity of MELO partitionings run on a single eigenvector
(d = 1), on a 10-dimensional vector partitioning in-
stance (d = 10), and the best combined of the ten
orderings (d = 1� 10), reported as MELO in Table 1.
Overall, the d = 1� 10 orderings averaged 32:6% im-
provement over the d = 1 orderings but only 6:43% im-
provement over the d = 10 orderings, i.e., the d = 10
orderings signi�cantly outperformed the single eigen-
vector orderings. Indeed, the d = 10 orderings alone
still yield lower average Scaled Cost than the EIG1,

Test # # # EIG1 PARABOLI MELO Runtimes(s) improv % improv %
Case modules nets pins cuts RC cuts RC cuts RC d = 2 d = 10 EIG1 PARABOLI
19ks 2844 3282 10547 179 8.92 119 5.89 40 79 +34.0
bm1 882 903 2910 75 38.9 48 30.0 4 9 +22.9
prim1 833 902 2908 75 43.6 53 30.6 64 36.9 3 8 +15.4 -17.1
prim2 3024 3029 11219 254 11.3 146 6.47 169 7.48 26 89 +33.9 -13.6
test02 1663 1720 6134 196 28.4 106 15.4 9 29 +46.6
test03 1607 1618 5807 85 13.2 60 9.29 9 27 +29.7
test04 1515 1658 5975 207 36.2 61 10.6 8 24 +70.8
test05 2595 2750 10076 167 9.93 102 6.07 20 67 +39.0
test06 1752 1541 6638 295 38.5 90 11.7 10 31 +69.7
balu 801 735 2697 110 69.2 41 25.8 28 17.6 3 7 +74.6 +31.8
struct 1952 1920 5471 49 5.16 40 4.20 38 4.00 12 38 +22.5 +4.77
biomed 6514 5742 21040 286 2.69 135 1.28 115 1.08 132 496 +59.9 +15.7
s9234 5866 5844 14065 166 1.95 74 0.86 79 0.92 108 516 +52.8 -6.53
s13207 8772 8651 20606 110 0.57 91 0.48 104 0.54 186 710 +5.27 -12.1
s15850 10470 10383 24712 125 0.46 91 0.33 52 0.19 308 1197 +58.7 +42.4

industry2 12637 13419 48404 525 1.32 193 0.49 319 0.81 478 1855 +38.6 -39.5

Table 2: Min-cut and ratio cut (�10�5) comparisons for MELO bipartitionings versus PARABOLI
[15] and EIG1 [10] such that each cluster contains at least 45% of the total modules. Missing entries
indicate data unavailable.

SFC and KP heuristics.

Finally, we used MELO orderings to construct bi-
partitionings by choosing the one with lowest ratio
cut (i.e., Scaled Cost for k = 2) from all possible
splits of the ordering while ensuring that each clus-
ter contains at least 45% of the modules. We quote
the PARABOLI results of [15] for comparison, and
additionally compare against EIG1.1 Table 2 also re-
ports Sun Sparc-10 runtimes required for MELO to
construct and split orderings using two and ten eigen-
vectors, after the eigenvectors have been computed.
Despite MELO's O(dn2) complexity, these runtimes
seem quite reasonable (see [1] for detailed runtimes for
eigenvector computations). The results from Table 2
do not suggest that MELO is a superior bipartition-
ing approach, but rather that multiple eigenvectors
can be used to yield high-quality balanced bipartition-
ings. We hypothesize that directly solving the vector
bipartitioning problem will improve these results even
further.

6 Future Work

We note possible directions for future research:

� Modify MELO to run in sub-O(n2) time, e.g., by
adding vectors to S only from a candidate set of
�xed size.

� Find and apply lower bounds, e.g., we would like
to be able to bound the quality of a d-dimensional
approximation of the n-dimensional vector parti-
tioning instance.

� Most importantly, vector partitioning heuristics
seem worth exploring, e.g., an FM-type of local
improvement method could be applied.

Acknowledgments

We thank Pak Chan, Martine Schlag and Jason
Zien for giving us the LASO2, KP, and EIG1 codes

1The circuits s9234, s13207, and s15850 containmultiple con-
nected components, so we ran MELO and EIG1 on the largest

component and added the remaining components to the smaller
cluster, while ensuring that the 45% constraint was satis�ed.

and their entire set of experimental data. We also
thank Jon Frankle for his useful discussions and in-
sight.

References
[1] C. J. Alpert and A. B. Kahng, \Geometric Embeddings for

Faster and Better Multi-Way Netlist Partitioning," Proc.
ACM/IEEE Design Automation Conf., 1993, pp. 743-748.

[2] C. J. Alpert and A. B. Kahng, \Multi-way Partitioning
Via Space�lling Curves and Dynamic Programming," Proc.
ACM/IEEE Design Automation Conf., 1994, pp. 652-657.

[3] C. J. Alpert and A. B. Kahng, \A General Framework for
Vertex Orderings, With Applications to Netlist Clustering,"
IEEE Intl. Conf. on Computer-Aided Design, 1994, pp. 63-
67.

[4] C. J. Alpert and A. B. Kahng, \Recent Directions in Netlist
Partitioning: A Survey," to appear in Integration: the VLSI
Journal, 1995.

[5] C. J. Alpert and S.-Z. Yao, \Spectral Partitioning: The More
Eigenvectors, the Better," UCLA CS Dept. Technical Report,
#940036, October 1994.

[6] E. R. Barnes, \An Algorithm for Partitioning the Nodes of
a Graph," Siam J. Algorithms and Discrete Methods (3)4,
1992, pp. 541-549.

[7] P. K. Chan, M. D. F. Schlag and J. Zien, \Spectral K-Way Ra-
tio Cut Partitioning and Clustering", IEEE Trans. on CAD
13(9), 1994, pp. 1088-1096.

[8] J. Frankle and R. M. Karp, \Circuit Placements and Cost
Bounds by Eigenvector Decomposition," IEEE Conf. Com-
puter Aided Design, 1986, pp. 414-417

[9] J. Garbers, H. J. Promel and A. Steger, \Finding Clusters in
VLSI Circuits" Proc. IEEE Intl. Conf. on Computer-Aided
Design, 1990, pp. 520-523.

[10] L. Hagen and A. B. Kahng, \Fast Spectral Methods for Ratio
Cut Partitioning and Clustering", Proc. IEEE Intl. Conf.
Computer-Aided Design, 1991, pp. 10-13.

[11] L. Hagen and A. B. Kahng, \A New Approach to E�ective
Circuit Clustering", Proc. IEEE Intl. Conf. on Computer-
Aided Design, 1992, pp. 422-427.

[12] K. M. Hall, \An r-dimensional Quadratic Placement Algo-
rithm", Manag. Sci., 17(1970), pp. 219-229.

[13] B. Mohar, \The Laplacian Spectrum of Graphs", Proc. 6th
Quadrennial Intl. Conf. on Theory and Applications of
Graphs, 1988, pp. 871-898.

[14] F. Rendl and H. Wolkowicz, \A Projection Technique for Par-
titioning the Nodes of a Graph", Univ. Waterloo Technical
Report, May 1994.

[15] B. M. Riess, K. Doll, and F. M. Johannes, \Partitioning
Very Large Circuits Using Analytical Placement Techniques",
Proc. ACM/IEEE Design Automation Conf., 1994, pp. 646-
651.

	DAC95
	Front Matter
	Table of Contents
	Session Index
	Author Index

