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Abstract

Partitioned memory with bus interconnect architec-

ture in its most general form consists of several func-

tional units with associated memory accessible to the

functional unit via local interconnect and global buses

to communicate data values across from one func-

tional unit to another. As can be expected, the time

at which certain values are communicated a�ect the

size of the local memories and the number of buses

that are needed. We address the problem of scheduling

communications in a bus architecture under memory

constraints. We present here a network 
ow formula-

tion for the problem and obtain an exact algorithm to

schedule the communications, such that the constraint

on the number of registers in each functional unit is

satis�ed. As an increasing number of architectures use

multiple memories in addition to (or instead of) one

central RAM, this work is especially interesting. Sev-

eral authors have already studied this problem in re-

lated architectures, yet all use heuristic approaches to

schedule the communications. Our technique is the

�rst exact solution to the problem. Also, our graph

theoretic formulation provides a clearer insight into

the problem.

1 Introduction

A commonapproach to high-level synthesis involves
a data-
ow graph scheduling and functional unit allo-
cation and then proceeds to interconnect and storage
allocation. In bus based architectures, there is a direct
correlation between the time for transporting values
over the buses and the number of buses and registers
needed.

If only one main memory (RAM, register �le) is
available for all the variables, the time of communica-
tion is �xed to the execution time of the operation us-
ing this value. In the fetch phase of its communication
time, the value will be loaded onto a bus and will then
be directly fed into the port of the appropriate func-
tional unit. Therefore, the number of buses needed is
given by the maximumnumber of distinct values con-
sumed by all functional units at each cstep. The num-
ber of registers is given by the maximum density of
all lifetimes of the variables. Several authors use this
target architecture to validate their scheduling and es-
timate interconnect and storage cost ([10, 8, 2, 6]).

On the contrary, having local memory (registers,
register �le, distributed RAM's) in each functional
unit allows for the 
exibility of scheduling these com-
munications onto speci�c time steps. A simple archi-
tecture enabling this freedom is given in Figure 1. In
this architecture a functional unit consists of an ALU
and a register �le. Variables are transported over a
global bus, if the source FU and the target FU are dif-
ferent. There is a local interconnect structure between
the functional unit and its associated register �le. A
control step consists of two micro operations (fetch,
execute). A value which is produced at a time step
t will be stored in the local register �le of its source
functional unit. It is then available for transportation
on the bus in the following fetch phase at the earliest
and has to be communicated at the latest when it is
needed at the target FU. We refer to these two time
steps as the fat (or �rst available time) and lat (last

available time) times of a communication. Note that
the schedule of the data-
ow graph is already known
(this is an input to our problem) and the fat and the
lat for each of the data values are known a priori.

This mobility range (fat, lat) for communications
gives us the 
exibility to choose speci�c time steps for
each communication. This in
uences register and bus
cost. We present a resource constrained approach for
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Figure 1: Architecture of the data path with local

register �les

determining these times. In this paper we only regard
constraints on the size of the register �les, but equiv-
alent constraints can also be imposed on the number
of buses.

1.1 Related Research

Several authors have presented methodologies and
heuristics to solve the problem of scheduling com-
munications (known also as data routing ([7])). In
the Cathedral-II system [1] the synthesis process is
directed towards a similar architecture, yet they do
not exploit the freedom of scheduling communications.
Every value is stored in the source functional unit and
communicated on a bus when it is needed, i.e. as late
as possible. The buses are allocated by merging point-
to-point wires, which do not con
ict in time.

Lanneer et al. [7] present a general data routing
paradigm. In their architecture a value not only has
the possibility to be scheduled at di�erent time steps
but also on di�erent global routes. A global route is an
interconnection between storage devices, but in their
architecture it does not necessarily have to be a bus.
They do not give an analysis on the complexity of the
problem even for simpler architectures. Rather, they
present an e�cient heuristic to the problem based on
a force-directed scheduling approach [9].

In [3], the problem of scheduling communications is
regarded in a related architecture too, yet the authors
solve the problem heuristically as well. Our approach
can be adopted to their target architecture.

Ewering [4] schedules communications on a parti-
tioned bus architecture. Partitioned bus architectures

have the advantage that di�erent values can be sched-
uled onto one bus track at the same time, as long as
their global routes do not overlap. This is achieved by
introducing switches on the buses and thereby being
able to physically partition each bus by desire. The
approach taken by Ewering is to solve the scheduling
of communications and the assignment of communi-
cations to speci�c bus tracks at the same time. This
is achieved by enumerating all possible routes for a
communication and solving a maximum independent
set problem to decide which communications do not
con
ict each other. Their algorithm works by per-
forming an exhaustive search and they do not present
an analysis for the runtime of their approach.

In this paper we solve the problem of scheduling
communication graphs, given constraints on the num-
ber of registers in each functional unit. Our paper
emphasizes on two aspects. At �rst, we model our
problem as a new and interesting network 
ow prob-
lem, which we call a commodity constrained network

ow problem. We solve the problem, by performing
an intelligent exhaustive search on this network. The
runtime can be upper bounded by an exponentiation
in the number of time steps, compared to a simple
exhaustive search, which has an exponentiation in the
number of communications. As the number of commu-
nications in general is large, compared to the number
of time steps, this leads to a sophisticated improve-
ment.

The rest of our paper is organized as follows: We
will start with giving a formal de�nition to the prob-
lem of register constrained scheduling of communica-
tions on our architecture. Although our methodology
can be applied to several settings (bus constraints,
memory port constraints, partitioned bus architec-
tures), we will only present the approach taken for
single target communications (each value is only con-
sumed by one functional unit) without bus or port
constraints for purposes of simplicity. In section 3 we
reduce the problem of scheduling communications to a
special max
ow problem (which we call a commodity
constrained network 
ow) and present a modi�ed aug-
menting path method for the Ford Fulkerson Method
[5], which solves this problem exactly. The augment-
ing path method performs an exhaustive search, which
is bounded by O((m=n)T ), where m is the number of
communications, n is the number of functional units
and T is the number of time steps. We conclude in
section 5.



2 De�nitions and Problem Formula-

tion

The input to our problem is a scheduled data-
ow
graph with each of the operations in the data-
ow
graph bound to a speci�c functional unit. The task
to be performed is to schedule the communications of
the data values at speci�c times such that the local
register �le sizes satisfy the constraints imposed on
them. A Communication Graph is a directed graph
G = (V;E). V is the set of modules (functional units)
as given by the allocation and operation binding. An
edge e = (v; w) 2 E has one source v and one target
w. Each edge e is labeled with a pair (fat ; lat). e rep-
resents a value, which is produced in functional unit
v at time fat and is consumed at functional units w
at time lat . In essence, a communication graph is a
folded data-
ow graph , where the operations of the
data-
ow are merged to one node, representing the
functional unit executing these operations.

Figure 2.1 shows an instance of a scheduled data-

ow graph and a resulting communication graph,
given by a module allocation using one adder ADD
and one subtracter SUB. Two possible schedules are
given in Figure 2.2, the �rst resulting in an allocation
of two buses and three registers, the second resulting
in two buses and four registers. The only di�erence is
in the scheduling time for the value c2, which, in the
second case is scheduled as late as possible, resulting
in a register increase in the functional unit SUB at
time step 3.
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Figure 2.1: Input to our problem: a) Scheduled data-


ow graph with �ve operations b) Communication

graph with allocation of two functional units.

De�nition 2.1 Given communications e1; : : : ; en

with scheduling times �1; : : : ; �n.

An edge ei is alive at time t in functional unit vj,

i� fati � t � �i and ei = (vj ; vl) or �i � t � lat i and

ei = (vl; vj).
De�ne the live set Lj;t of functional unit fuj at time

t as

Lj;t = feijei is alive in vj at time tg: (1)

We de�ne the density Dj;t of vj 2 V at time t as

Dj;t = jLj;tj (2)

Dj;t is equivalent to the number of registers needed in

vj at time t.

Dj = max
1�t�T

Dj;t (3)

de�nes the size of the memory (e.g. the number of stor-

age locations) needed in functional unit vj for the given

schedule.
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Figure 2.2: Two di�erent schedules for the communi-

cation graph resulting in 2 buses and 3 registers in the

�rst case and in 2 buses and 4 registers in the second

case. The input to the problem is the communication

graph in Figure 2.1.



Problem Formulation:

Given a communication graph G = (V;E) and a
set of integers R1; : : : ; RjV j, �nd a schedule for the
communications of E, i.e. for each edge ei = (vs; vt)
an integer �i, such that Dj � Rj for 1 � j � jV j.

Example: In the example of Figure 2.2a) the schedul-
ing times are �1 = 4, �2 = 2, �3 = 3, and �4 = 4. Edge
c2 is alive in SUB at time 2 and alive in ADD at 2 and
3. The live set LADD;4 = fc1; c4g, DADD;4 = 2 and
DADD = 2 as well.

3 Commodity Constrained Network

Flow

We transform the problem of scheduling commu-
nications to a special case of a network 
ow problem,
which we call a Commodity Constrained Network Flow
Problem. The traditional network 
ow problems do
not su�ce our purpose since in these there is no dis-
tinction between edges and commodities of di�erent
types could 
ow along any edge as long as they satisfy
the capacity constraints. In a commodity constrained
network 
ow problem not every commodity may 
ow
over every edge. There are two types of edges, com-
modity constrained edges with label e (CCe-edges)
and commodity unconstrained edges (CU-edges). CU-
edges can take any type of commodity, whereas CCe-
edges can only take a commodity with label e. In our
application the capacity of CCe-edges is �xed to 1.

3.1 Constructing the Network

The construction of the network 
ow graph is as
follows:

For each memory j and each time step t =
1; : : : ; T + 1 there is a node rj;t and commodity con-
strained edges ej;t between rj;t and rj;t+1 for t =
1; : : : ; T . These edges ej;t have capacity Rj and intu-
itively the 
ow fj;t over edge ej;t is equivalent to the
value of Dj;t. By satisfying the capacity constraint
fj;t � cj;t for all j and all t, we automatically satisfy
Dj � Rj for all j.

The network has one source node s and one target
node t. For each communication edge e with source vi
and target vj , and earliest and latest times of commu-
nication (fat; lat) construct a set of nodes ve;i;t and
ve;j;t for fat � t � lat + 1. Furthermore construct a
set of CCe-edges (ve;i;t; ri;t) and (ri;t; ve;i;t+1) as well
as (ve;j;t; rj;t) and (ri;t; ve;i;t+1) for fat � t � lat + 1.
Finally three more CCe-edges are constructed from s

to ve;i;fat, from ve;i;lat+1 to t and from ve;j;lat+1 to t.

For each possible communication time t 2 [fat; lat]
there exists a bus edge (ve;i;t+1; ve;j;t). A bus edge
from ve;i;t+1 to ve;j;t will let the 
ow switch from the
source register �le to the target register �le, therefore
a 
ow on one of these edges corresponds to scheduling
the value of e at time t. Note that a 
ow on one of
these edges will result in a 
ow on the register edge
(ri;t; ri;t+1) as well as on the edge (rj;t; rj;t+1). There-
fore two registers are allocated for this value at this
time step, as our architecture imposes. When regard-
ing constraints on the buses as well, these bus edges
will be replaced by a more complex edge structure.

Figure 3.1 shows a snapshot of the commodity con-
strained network 
ow graph constructed for the com-
munication edge c1 in Figure 2.1. All edges with label
c1 are CCc1-edges.

For those edges with only one possible scheduling
time, i.e. fat == lat the scheduling time is �xed to
�e = lat. These communications are only alive in the
source functional unit for one unit of time and it is suf-
�cient to decrease the capacity of edge ri;fat by one,
where vi is the source functional unit of this commu-
nication edge.
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Figure 3.1: There are three possible paths for the

one unit 
ow of this value, corresponding to possible

scheduling times 1,2 or 3. Note, that if c1 is sched-

uled at lat, no register will be allocated in the target

functional unit, whereas in the other two cases two

registers each are needed at the scheduling times

3.2 Finding Augmenting Paths

De�nition 3.1 A 
ow for a commodity e is a path

from the source s to the target t, which only uses CU-

edges and CCe-edges.

It is easy to see, that such a 
ow can use exactly one
of the bus edges (ve;i;t+1; ve;j;t) for fat � t � lat�1 or
it uses the edge (ve;i;lat+1; t). In the �rst case this 
ow
is equivalent to scheduling e at time t, after which it
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Figure 3.2: The network for the example in Figure 2.1.

with resource constraints of 2 for the adder and 1 for

the subtracter.

needs to be stored in the memory of functional unit vj .
In the latter case this 
ow is equivalent to scheduling
e at lat in which case it does not have to be stored in
the memory of vj (it will be directly fed into the port
of the ALU).

An algorithm for this commodity constrained net-
work 
ow problem uses a modi�ed version of the Ford
Fulkerson method, by successively �nding an aug-
menting path for each commodity e.

The basic outline of the algorithm is the following.
We schedule all commodities sequentially, but in any
order. In the simplest case, scheduling a commodity
with label e necessitates �nding a path in our net-
work, which only uses commodity constrained edges
of label e and commodity unconstrained edges. In
general, when looking for an augmenting path for a
commodity e, we might �nd a saturated commod-
ity unconstrained edge CU, because some other com-
modities already 
ow through this edge, and the re-
maining capacity is zero (the register �le is full). We
start a rescheduling search here. For any commod-
ity e0, which 
ows over the edge CU = (a; a0), we try
and reschedule the commodity e0, by �nding a path,
which 
ows from a to a0, using only commodity un-
constrained edges or commodity constrained edges of
label e0. In the path�nding algorithm there are four
cases to be regarded. For each commodity e the search
is invoked by �nding a path for a commodity e. As we
go along, the residual network is updated dynamically.
This dynamic updating allows us, to backtrack along
paths, if the search does not lead to a success. If the
edge is a CCc-edge, then the path can be continued
along this edge. If the edge is a CU-edge with free
capacity, then the path again can be continued. If the

edge is a CU-edge (a; a0) with no free capacity, then
we can try to push the 
ow over a residual constrained
edge of some other commodity e0 and �nd an interme-
diate path (an augmenting cycle) which leads to a0,
from then on continuing with the original commodity
e. This augmenting cycle for the commodity corre-
sponds to �nding a reschedule for the communication
e0 as in Figure 3.3.

e e

e’ e’e’e’

e’ e’
e’ e’ e’ e’

a a’0

new schedule 
time for e’

former schedule 
time for e’

saturated
CU edge

Figure 3.3: A commodity constrained path of label e

may also 
ow along one or several subpaths of some

other label e0. This corresponds to scheduling e
0 some

time later, thereby vacating the register �le for e.

Theorem 1 Given a communication graph and con-

straints on the size of the register �les associated with

each of the functional units, our algorithm for the

equivalent commodity constrained network 
ow prob-

lem obtains a solution if there exists one and gives the

schedule for the communications of the data values.

Theorem 2 The complexity of the path �nding algo-

rithm is O((m=n)T ), where n is the number of func-

tional units, m is the number of edges of the com-

munication graph and T the number of time steps.

The path�nding algorithm has to be invoked exactly

m times.

We do not detail the proof of the correctness and
the complexity analysis of the algorithm, as it is rather
tedious, but leave the reader with the intuitive ideas
outlined above.

This analysis is based on a worst case analysis. In
practical examples the number of paths will be much
less. This is because the mobility of most communica-
tions only stretches over a few time steps and not over
the complete range of T . Another practical observa-
tion is, that most of the communications can be sched-
uled at their lat times. This is because otherwise one



more register is needed at communication time. This
observation can improve the practical performance of
the algorithm, in that the augmenting path �nding
algorithm is tailored to �rst try and take the last pos-
sible path to the target functional unit.

4 Extensions

Above method can be extended to incorporate sev-
eral other cost measures, such as constraints on the
number of buses or the number of ports in each mem-
ory.

We sketch the idea for incorporating bus constraints
in Figure 4. The idea is simple. Just as the memory
edges have capacity constraints, we make sure that all
possible communications, which might use a bus at a
time step t all 
ow through a common CC-edge bt.
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c1 c1

c2
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Figure 4: Incorporating bus constraints into the

CC-network. All commodity constrained edges 
ow

through one common CU-edge. The capacity is equiv-

alent to the bus constraint, which is 1 here.

Similarly, port constraints for each memory can be

incorporated by introducing port edges between the
memory edges and the bus edges. Each commodity
which can leave the memory at a time t has to 
ow
through the outport edge, the bus edge and through
the input port edge of its target memory.

5 Conclusions

We have modeled a general problem in the area
of High Level Synthesis, which has been solved by
others heuristically or by enumeration techniques, as
a special network 
ow problem. This problem is a
Commodity Constrained Network Flow problem. An
important graph theoretic formulation is thus pre-
sented which could lead to faster algorithms. An al-
gorithm that delivers an exact solution is also shown.

All known approaches prior to this work resulted in
heuristic algorithms only.

Due to the intelligent enumeration of all possible
augmenting paths, we can state an upper complexity
bound, which is better than a trivial exhaustive search
technique. The model can be extended to incorporate
other constraints, e.g. constraints on the number of
buses or constraints on the number of input or output
ports of the local memory.
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