
Register Minimization beyond Sharing among Variables�

Tsung-Yi Wu Youn-Long Lin

Department of Computer Science

Tsing Hua University, Hsin-Chu, Taiwan 30043, R.O.C.

E-mail: fdr818304, yling@cs.nthu.edu.tw

Abstract
Traditionally, it is assumed that every variable in

the input HDL (Hardware Description Language) be-

havioral description needs to be held in a register; A

register can be shared by multiple variables if they

have mutually disjoint lifetime intervals. This ap-

proach is e�ective for signal-ow-like computations

such as various DSP algorithms. However, it is not

the best for the synthesis of control-dominated cir-

cuits, which usually have variables/signals of di�er-

ent bit-width as well as very long lifetime. To go be-

yond register minimization by lifetime-analysis-based

sharing, we propose holding some variables in the s-

tate registers, some signal nets, or some unclocked

sequential networks. We have implemented the pro-

posed method in a software program called VReg.

Experimental results have demonstrated that VReg

minimizes the number of registers more e�ectively

than the lifetime-analysis-based approach does. Bet-

ter register minimization also leads to both smaller

area and faster designs.

Key Words: High-Level Synthesis; Control-Dominated
Circuit; Storage Synthesis.

1 Introduction
The ultimate goal of high level synthesis research and

development is to enable the designer specifying what he
wants via a behavioral description in an HDL (Hardware
Description Language). Despite all the potential advan-
tages (e.g., higher productivity, correct-by-construction,
. . . etc) promised by the HLS (High Level Synthesis) com-
munity, the acceptance of HLS by the mainstream design-
ers lies on whether the quality (i.e., performance, area,
power consumption, and testability) of the synthesized
results is competitive compared with that of manual de-
signs. Therefore, it is important to make every e�ort to
optimize every aspect of the synthesis process.

�
Supported in part by a grant from the National ScienceCouncil

of R.O.C. under contract no. NSC84-2215-E-007-045.

Storage elements such as registers and memory usually
occupy a signi�cant portion of the chip area. Therefore, it
is important to maximize their utilization. All high level
synthesis systems found in the open literature employ one
technique or another for storage synthesis.

Traditionally, register allocation and variable-to-
register binding are done based on the lifetime analysis
of variables [3]. The lifetime of a variable is the time
interval between the �rst de�nition and the last use of
the variable. Multiple variables can share the same reg-
ister if their lifetimes do not overlap with one another.
Many techniques [6][7][8][9] have been developed for allo-
cating as few registers as possible for all variables taking
advantage of the sharing opportunity.

The lifetime-analysis-based approach is e�ective for
certain application domains (e.g., DSP) where many tem-
porary variables are used to hold intermediate computa-
tion results. Recently, HLS for control-dominated cir-
cuits [11] has attracted more and more attention because
of their widely use in control, communication, and em-
bedded systems. While some techniques for some sub-
tasks in the HLS of computation-intensive circuits are
still applicable to HLS of control-dominated circuits, we
realize that the lifetime-analysis-based register allocation
technique is inadequate because most control-dominated
circuits have drastically di�erent characteristics from a
computation-intensive one in terms of their variables in
the HDL program.

In a control-dominated circuit, variables are mostly
used to hold commands or control signals. Their word-
lengths vary greatly from a single bit to multiple bytes.
Because very little computation is performed, temporary
variables are seldom used. Hence, most variables have
very long lifetime. Therefore, a lifetime-analysis-based
approach usually performs poorly because not much shar-
ing opportunity is there.

In this contribution, we try to minimize the register
cost for a control-dominated circuit using a di�erent ap-
proach. Because a variable might be a function of some
other variables, the controller state, some signal nets, or
a mixture of above, we can replace the register and its as-
sociated combinational circuit with some simple circuit.

An example is the tra�c light controller [10]. In its
Verilog HDL description (Figure 1(a)), a variable, red,
represents the status of the red light which will stay ON
(logic one) for 350 clock periods before the green light is
turned on. A traditional synthesizer will allocate for red a

32nd ACM/IEEE Design Automation Conference
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission. 1995 ACM 0-89791-756-1/95/0006 $3.50

register due to the existence of the procedural assignment
statements \red = 0" and \red = 1" in the HDL code.
However, we observe that the allocation is unnecessary
because the value of red is a function of the controller
state. Variable red is ON if, and only if, the controller
is in state STOP (Figure 1(b)). Therefore, red can be
controlled by, instead of a dedicated register, a simple
combinational circuit decoding the state register of the
controller.

(a) (b)

start

STOP

WALK

−/red=1,
 amber=0,
 green=0,cnt=350

cnt==1/
 red=1,
 amber=0,
 green=0,
 cnt=350

WATCH
 _OUT

cnt!=1/
cnt=cnt−1

cnt!=1/
cnt=cnt−1

cnt==1/red=0
,green=1,cnt=200

cnt==1/green=0
,amber=1,cnt=30

cnt!=1/
cnt=cnt−1

module TLC_Vg(clock,red,amber,green);
input clock;
output red,amber,green;
reg red,amber,green;

always
begin
 red = 1;
 amber = 0;
 green = 0;
 // wait 350 clock period; state STOP
 repeat (350) @(posedge clock);
 red = 0;
 green = 1;
 // wait 200 clock period; state WALK
 repeat (200) @(posedge clock);
 green = 0;
 amber = 1;
 // wait 30 clock period; state WATCH_OUT
 repeat (30) @(posedge clock);
end
endmodule

Figure 1: A Tra�c Light Controller Example: (a) its
behavioral description in Verilog HDL, (b) its state tran-
sition graph.

In the next section, we will de�ne the state transition
graph (STG) that describes a circuit input to our regis-
ter minimization algorithm. The basic idea behind our
proposed approach is presented in Section 3. An algo-
rithm implementing the proposed approach is described
in Section 4. In Section 5, we illustrate how the algorithm
works using a walk-through example. Comparison with
three synthesizers on a set of benchmarks is presented in
Section 6. Finally, we conclude this paper in Section 7.

2 State Transition Graph
We use a state transition graph (STG) to capture the

behavior of a circuit described in HDL. The STG is es-
sentially a synchronous Mealy machine [4]. In the graph,
each vertex represents a state derived from a synchro-
nization statement such as \@(posedge clock)" in Verilog
or \wait until clock'event and clock='1' " in VHDL. Each
directed edge represents a state transition and is labeled
with a condition/action pair.

To satisfy the timing speci�cation, the machine rep-
resented by the STG will transit itself from one state to
the next upon the occurrence of the positive edge of the
system clock, and all actions will be performed only dur-
ing the transition. Hence, the content of a register in a
synchronous Mealy machine can only be updated during
a state transition.

For instance, the Verilog description shown in Fig-
ure 1(a) is compiled into the STG depicted in Fig-
ure 1(b). In the graph, variable cnt is created for state-
ment repeat as a counter, and states STOP, WALK, and

WATCH OUT are generated for statements \repeat(350)
@(posedge clock)", \repeat(200) @(posedge clock)", and
\repeat(30) @(posedge clock)", respectively.

3 Basic Idea
The execution of a Verilog procedural assignment state-

ment [10] (equivalent to a VHDL sequential assignment s-
tatement [5]), a = f(b1; b2; . . . ; bl), at time t will give vari-
able a the value f(bt1; b

t
2; . . . ; b

t
l), where b

t
j (j = 1; 2; . . . ; l)

is the value of variable bj at time t. Because the val-
ue of f(bt1; b

t
2; . . . ; b

t
l) may be di�erent from the value

of f(bt+�t
1 ; bt+�t

2 ; . . . ; bt+�t
l), it is necessary to allocate

a register for variable a.
However, a Verilog continuous assignment statemen-

t [10] (equivalent to a VHDL concurrent signal assign-
ment statement [5]), assign a = f(b1; b2; . . . ; bl), will al-
ways assign f(bt1; b

t
2; . . . ; b

t
l) (where t is the current time)

to variable a. In this case, variable a can be directly
implemented with a combinational logic that performs
f(b1; b2; :::; bl) without any register.

Under certain conditions, a procedural assignment s-
tatement for a variable can be converted into a continu-
ous assignment statement. For instance, the procedural
assignment \a = b & d" associated with edge e0;1 in
Figure 2(a) propagates its assignment value \b & d" to
both state s1 and state s2 as the function of variable a as
shown in Figure 2(b). With this result, the procedural
assignment \a = b & d" a�ecting state s1 and state s2
can be represented by the continuous assignment state-
ment \assign a = (current state == s1) & (b & d) j
(current state == s2) & (b & d)".

s0

s1

s2

−/−

....

....

s0

s1

s2

−/−

....

....

(a) (b)

−/−

the function
of variable a

−/a=b&d

{b&d}

{b&d}

Figure 2: Propagation of a procedural assignment state-
ment: (a) The original STG, (b) The modi�ed STG after
propagation.

After each procedural assignment statement for each
variable has been translated into an assignment action of
the STG, the value that will be latched by a:reg[m], the
m-th bit of register a:reg, can be formally described by
the following Boolean expression:

X

i;j2state space

b(si) � ci;j � fai;j[m]; (1)

where si is the i-th state, b(si) is 1(0) if the current s-
tate is (is not) si, ci;j is the condition controlling the
transition along the edge ei;j from si to sj , and fai;j[m]

is the function that would be assigned to a:reg[m] when
the transition does indeed take place. Note that fai;j[m]

is equivalent to a:reg[m] if there is not assignment state-
ment for a:reg[m] alone ei;j . Upon every positive edge of
the system clock, a:reg[m] latches

P
b(si) � ci;j � fai;j[m]

be it new or unchanged.
For example, the Boolean expression of the value

latched by register red.reg of variable red in Figure 1(b)
is

b(s0) � (cnt 6= 1) � red:reg + b(s0) � (cnt == 1) � 0+
b(s1) � (cnt 6= 1) � red:reg + b(s1) � (cnt == 1) � red:reg+
b(s2) � (cnt 6= 1) � red:reg + b(s2) � (cnt == 1) � 1

if states STOP, WALK, and WATCH OUT are denoted
by s0, s1, and s2, respectively.

A register a:reg can be minimized if the value of each
of its bit, a:reg[m], can be described by the following
Boolean expression:
X

i2state space

b(si) � f
a
i [m]; (2)

where fai [m] is the function of a:reg[m] during state si.
The value of variable a[m] (associated with a:reg[m]) can
be represented by a continuous assignment \assign a[m]
= (b(s0) & fa0 [m]) j (b(s1) & fa1 [m]) j ... j (b(sj) & faj [m])"

if the state space is fs0,s1,...,sjg; Therefore, the register
can be eliminated.

For instance, after assignment propagation of variable
red (Figure 3), the value of red.reg is represented by the
Boolean expression

b(s0) � 1 + b(s1) � 0 + b(s2) � 0

if states STOP, WALK, and WATCH OUT are denoted
by s0, s1, and s2, respectively. Therefore, red.reg can be
eliminated and, thus, variable red is represented by

assign red = b(s0) & 1 j b(s1) & 0 j b(s2) & 0

or, after logic minimization, assign red = b(s0).

start

STOP

WALK .../...

.../...

.../...

.../...

... / red= 0 ,...

WATCH
 _OUT

... / red= 1 ,...

− / red= 1 ,...

Figure 3: The process of function Find Func for red.

Unclocked sequential networks can also be used to re-
place certain registers. We illustrate it with an example.
If variable a has value f(b1; b2; . . . ; bl) during the current
state, si, and will not change its value during the next
state, sj , then it can be represented by f(b1; b2; . . . ; bl)
during state si. However, we cannot do so during state

sj if any of b1, b2, . . . , or bl is updated during state sj.
Using a lifetime-analysis-based method, it would be im-
possible to implement the circuit for variable a without
using any register for holding the old value. However,
via an unclocked feedback network, variable a can hold
its original value during state sj . Hence, variable a can
be described by

assign a = b(si) & f(b1; b2; :::; bl) j b(sj) & a j . . .

which corresponds to the unclocked feedback network de-
picted in Figure 4.

state
D.net

C.net

hazard−free
 MUX

...

f(b ,b ,...,b)1 2 l state

C.net
D.net

output of a

: :

output
 of a. . .

. . .

Figure 4: The implementation of \assign a =
b(si) & f(b1; b2; :::; bl) j b(sj) & a j . . ." as an un-
clocked feedback network.

The drawback of using an unclocked feedback network
is the di�culty in initializing the output to an arbitrary
value.

In summary, a register allocated for variable a can
be eliminated if all procedural assignment statements for
variable a can be transformed into and described by a sin-
gle continuous assignment. However, one must be aware
of that the cost of the combinational circuit for imple-
menting formula (1) may be more expensive than that
for formula (2).

4 Algorithm
In this section, we propose an algorithm that imple-

ments the approach described in the previous section.
We assume that register allocation has been done before-
hand. Our objective is to improve its quality.

Figure 5 shows a pseudo-code description of the
proposed algorithm. First, the algorithm �nds al-
l functions of each register bit during each state us-
ing subroutine Find Func. Each assignment action,
rm = f(b1; b2; . . . ; bl), of edge ej;k will propagate
f(b1; b2; . . . ; bl) to all states reachable from state sk till
the value of any of rm, b1, b2, . . . , or bl is updated. If
this termination is not due to the updating to the value
of rm, then rm is propagated to all reachable states till
the value of rm is updated.

A function can be used to replace a register. If f(b1,
b2, . . . , bl) is a function of a register rm during state
sj , then b1 6= rm, b2 6= rm, . . . , and bl 6= rm. If either
b1 == rm, b2 == rm, . . . , or bl == rm, the function f(b1,
b2, . . . , bl) cannot be implemented without register rm.
We term rm irreducible if either b1 == rm, b2 == rm,
. . . , or bl == rm.

Register rm is also irreducible if any of b1, b2, . . . , or
bl is updated and the assignment rm = f(b1; b2; . . . ; bl)
takes place along the same edge.

A register assigned by a function of any asynchronous
signals is irreducible because an asynchronous signal can

change its value any time while a register can only be
updated during state transitions.

Furthermore, if a register ri assumes multiple func-
tions during a state sj and these functions are directly
propagated from the assignment action along an incom-
ing edge of sj, then ri cannot be reduced (this special
case can only be caused by multiple fan-ins of state sj)
because the machine cannot determine which function to
use. The problem is solved by splitting a state into mul-
tiple states such that each state can determine its own
function. The task of state splitting is done by subroutine
State Split shown in Figure 6.

Figure 7 depicts a state-splitting example. Because
the functions of register a during state s2 are \fb + d,
x + yg", it is necessary to split s2 into two states. One
state (s50) will give b + d to register a, while the other
state (s60) will give x+ y to register a.

The innermost for-loop of the algorithm chooses prop-
er resources to replace a register ri during each state sj .
The resources include registers other than ri, nets, states
and unclocked sequential networks.

Each register ri that can be eliminated is marked
and implemented with a virtual register by subroutine
Replace Register by V irtual Register. A virtual regis-
ter is either a combinational circuit or an unclocked se-
quential network and will be implemented by a multiplex-
er with the input signals from array in. The multiplexer
steers signal in[j] to the output if sj is the current s-
tate. If in[j] of register ri is ri itself, then the output is
fedback to the input. Obviously, the data-path of a vir-
tual register can be described using a Verilog continuous
assignment statement.

5 A Walk-Through Example

In this section, we use the tra�c light controller exam-
ple of Figure 1 to illustrate how the proposed algorithm
works. Initially, for the STG shown in Figure 1(b) four
registers (red.reg, amber.reg, green.reg, and cnt.reg) are
allocated to variables red, amber, green and cnt, respec-
tively. If states STOP, WALK, and WATCH OUT are
denoted as s0, s1, and s2, respectively, the data path
(before logic minimization) for red.reg would be like that
in Figure 8(a).

By function Find Func, logic 1 in statement \red =
1" is propagated to state STOP (s0), and logic 0 in s-
tatement \red = 0" is propagated to both state WALK
(s1) and state WATCH OUT (s2) as the function of
register red.reg (Figure 3). Figure 8(b) depicts this re-
sult. Via the innermost loop of the algorithm, the array
in is obtained as depicted in Figure 8(c). Finally, the
function Replace Register by V irtual Register can im-
plement the description for variable red with the circuit
(before logic minimization) depicted in Figure 8(d). The
circuit shown in Figure 8(d) implements the same be-
havior (including the timing and function) as the circuit
depicted in Figure 8(a). However, the circuit shown in
Figure 8(d) does not use any register.

Algorithm Register Minimization(STG)

Find Func(STG);
for each reducible register ri /* eliminate register ri */

for each state sj
if (all functions of ri at sj are equal)
then begin

if (8 fan-in edges of sj, there is no assignment to ri

and the function of ri isn't constant)
then set in[j] to ri;

/* minimize by unclocked sequential network */

else set in[j] to the function of ri;
/* minimize by registers, nets or states*/

end

else if (8 fan-in edges of sj, there is no assignment to ri)
then set in[j] to ri;

/* minimize by unclocked sequential networks */

else begin

State Split(STG,ri,sj);

exit and then redo Register Minimization(STG);

end

endfor

Replace Register by V irtual Register(array in);

endfor

end Register Minimization

Figure 5: The pseudo-code description of the
Register Minimization algorithm.

Subroutine State Split(STG,ri ,sj)
for each function fk0 assigning value to ri along any edge

entering sj

create a new state sk0 ;
for each edge ex;j that has the action: ri=fk0

replace ex;j with ex;k0 ;
endfor

endfor

if (9 an edge entering sj and there is no assignment to ri
along the edge)

then begin

create a new state sq0 ;
for each edge ex;j that has no assignment to ri

replace ex;j with ex;q0 ;

endfor

end

for each edge ej;y
for each newly created state sr0

create a new edge er0;y with the same label as ej;y;

endfor

endfor

eliminate sj;

end State Split

Figure 6: The pseudo-code description of the State Split
subroutine.

split s into
s and s
 5’ 6’

2

s0

s3

s5’

.../...
.../...

{b+d}

s1

s4

.../...
s6’ {x+y}

s0

s2

s1

s3 s4

.../...

{b+d,x+y}

.../...

.../a=b+d .../a=x+y .../a=b+d .../a=x+y

Figure 7: A state-splitting example.

(a)

clock

A.net

C.net
B.net

D Q

red.reg

0

1

state

0
A.net

B.net

C.net

2
2

0
1

1

cond.

cnt!=1
cnt==1
cnt!=1

cnt==1

cnt!=1
cnt==1

red.reg

red.reg

red.reg

red.reg

(b)

state

state

0
1
2

1
0
0

 function
of red.reg

(c)

0

in[0]

in[1]

in[2]

1

0

(d)
1

A.net

B.net
virtual
register:
red.net

0 state

0
1
2

red.net

B.net
A.net
A.net

state,cnt

Figure 8: (a) A straightforward implementation for regis-
ter red.reg, (b) functions for red.reg during each state, (c)
array in, (d) the implementation for the virtual register
of red.reg.

6 Results
We have implemented the proposed method in a soft-

ware program called VReg. Several control-dominated
circuits have been used to test the e�ectiveness of the
proposed approach. They include a prefetch subcircuit
(PREFETCH [1]), a counter (COUNT [1]), three ver-
sions of tra�c light controllers (TLC [1], TLC M [4] and
TLC Vg [10]), two versions of greatest common divisors
(GCD [1] and GCD M [4]), the FANCY chip (Fancy [1]),
an LED display (LED Dp [4]), a synchronous mealy ma-
chine(Smealy [4]), a \01" Pattern Detector (01PD), and
a 3-phase generator (3-phase). Note that only bench-
mark PREFETCH, GCD series and Fancy make use of
unclocked sequential networks.

Among the benchmarks, PREFETCH, COUNT, TLC
and GCD have been synthesized by the CALLAS syn-
thesizer [2]. VReg minimizes the register resource better
than CALLAS did as shown in Table 1. Columns 2 and
3 give the number of register bits of the data-paths gen-
erated by CALLAS and VReg, respectively, for the four
test cases. Column 4 shows the percentage of register bit
reduction achieved by VReg over CALLAS.

In the next experiment, we compare VReg and MEB-
S [4] in terms of their e�ectiveness in register minimiza-
tion and circuit performance. The measurement is done
by a MEBS subroutine based upon MEBS's cell library.
MEBS converts a behavioral VHDL description into a
gate level netlist. The results are summarized in Table 2.
Columns 2-5 give MEBS's synthesized results including
the number of states, the maximum rising and falling de-
lays of the critical path, the number of register bits of the
data-paths, and the total cell area. Columns 6-9 gives the

Table 1: Experiment results I.

#Register bits

Design Reduction
CALLAS VReg

PREFETCH 162 96 41%

COUNT 10 8 20%

TLC 13 7 46%

GCD 49 33 33%

results when VReg is used as a preprocessor before MEBS
is invoked. In all cases except COUNT not only the total
cell area but also the critical path delay have been im-
proved. The reductions of the register bits and the total
cell area are shown in columns 10 and 11, respective-
ly. For PREFETCH, TLC M, GCD M, and Fancy, no
measurement was reported because MEBS does not ac-
cept the description style after VReg's preprocessing for
those particular cases. For LED Dp, Smealy, and 01DP,
the critical path delays are signi�cantly shorten because
VReg has simpli�ed their respective output port circuits.

In the �nal experiment, we compare VReg against a
commercial logic synthesis tool, the Design AnalyzerTM

(Version v3.1a) from Synopsys. The cell library used is
Synopsys's class library, and all benchmarks are rewrit-
ten in Verilog HDL. Some circuits were left out of this
experiment because of the Design Analyzer's constraints
on description style. The experimental results are shown
in Table 3. Like previous experiment, both the number
of register bits and total cell area have been signi�cant-
ly reduced when the circuit is �rst preprocessed before
feeding to the Design Analyzer.

Finally, we show the schematic drawing of one of the
synthesized results, LED Dp. Figure 9(a) shows the re-
sult of directly applying the Design Analyzer, while Fig-
ure 9(b) depicts the results due to the combined e�ort
of VReg and the Design Analyzer. Simulated by the
Verilog-XL simulator from Cadence, both circuits exhibit
the same timing behavior.

7 Conclusions

We have proposed a new method to minimize the num-
ber of register bits for the synthesis of control-dominated
circuits described in behavioral HDL. The method is
based on the relationships between variables and vari-
ables, between variables and states, and between vari-
ables and signal nets. A register holding a variable can
be minimized if the variable can be derived, with a simple
logic, from other resources.

We have realized the proposed approach in a software
called VReg. We have conducted a series of experiments
to evaluate its e�ectiveness. The experimental results
demonstrated that VReg is indeed a valuable preproces-
sor to a behavioral synthesizer. Minimizing the number
of register bits also lead to both reduction in the total
circuit size and improvement in critical path delay.

Table 2: Experiment results II.

MEBS VReg + MEBS reduction

Benchmarks
#states MR/MF

y
(ns) #reg area

z
#states MR/MF(ns) #reg area #reg area

PREFETCH
�

3 173.8/174.5 192 2336 3 { 96 { 96 {

COUNT 1 44.9/45.6 8 110 1 44.9/45.6 8 110 0 0%

TLC M 6 85.8/89.8 13 304 6 { 7 { 6 {

GCD M 2 117.2/105.3 24 871 2 { 16 { 8 {

Fancy 6
\

72 1504 7
\

63 { 9 {

LED Dp 12 64.6/65.2 10 288 12 35.6/25.8 0 214 10 26%

Smealy 5 21.7/23.1 1 58 7 19.6/19.6 0 49 1 16%

01PD 3 20.2/17.9 1 27 3 14.9/17.2 0 16 1 41%

�
: rewritten as the acceptable style of MEBS.

z
: The area of a inverter cell is 1.

\
: MEBS failed to report it.

y
: MR and MF are the maximum rising and falling time of the critical path, respectively.

Table 3: Experiment results III.

Synopsys VReg + Synopsys reduction

Benchmarks
#states #nets #reg area #states #nets #reg area #reg area

COUNT 1 36 8 120 1 36 8 120 0 0%

Fancy 6 488 72 1344 7 468 63 1274 9 5%

LED Dp 12 60 10 171 12 27 0 69 10 60%

Smealy 5 30 1 71 7 22 0 54 1 24%

01PD 3 12 1 38 3 10 0 26 1 32%

TLC Vg 3 88 12 234 3 84 9 205 3 12%

3-phase 3 13 3 58 3 10 0 26 3 55%

(a)

(b)

Figure 9: The schematic of the synthesized LED Dp: (a)
by the Design Analyzer, (b) by VReg and the Design
Analyzer.

References
[1] \Benchmarks for the 5th & 6th International Workshop

on High-Level Synthesis," Available through electronic

mail at HLSW@ics.uci.edu.

[2] J. Biesenack, M. Koster, etc., \The Siemens High-Level

Synthesis System CALLAS," IEEE T. VLSI Systems,
Vol. 1, No. 3, pp. 244-252, September 1993.

[3] D. Gajski, N Dutt, A. Wu, and S. Lin, High Level Syn-

thesis: Introduction to Chip and System Design, Kluwer

Academic Pub., 1992.

[4] Y.C. Hsu, MEBS VHDL Reference Manual, University
of California, Riverside, 1994.

[5] IEEE Standard VHDL Language Reference Manual,

IEEE, 1989.

[6] F.J. Kurdahi, A.C. Parker, \REAL: A Program for Reg-

ister Allocation," Proc. of the DAC, pp. 210-215, 1987.

[7] D. Lanneer, M. Cornero, G. Goossens, H.D. Man, \Data

Routing : a Paradigm for E�cient Data-Path Synthesis
and Code Generation," 7th ACM/IEEE HLSS., 1994.

[8] P.G. Paulin, J.P. Knight, \Force-Directed Scheduling for

the Behavioral Synthesis of ASICs," IEEE Trans. on

CAD/ICAS, Vol. CAD-8, No. 6, pp. 661-679, June 1989.

[9] C.J. Tseng, D.P. Siewiorek, "Automated Synthesis

of Data Paths in Digital Systems," IEEE Trans. on

CAD/ICAS, Vol. CAD-5, No. 3, pp. 379-395, July 1986.

[10] Verilog-XL Reference Manual, CADENCE, Inc., version

1.6, Vol. 1, 1991.

[11] W. Wolf, A. Takach, C. Y. Huang and R. Manno,

\The Princeton University Behavioral Synthesis Sys-

tem," Proc. of the DAC, pp. 182-187, 1992.

	DAC95
	Front Matter
	Table of Contents
	Session Index
	Author Index

