
A General Method for Compiling Event-Driven Simulations

Robert S. French, Monica S. Lam, Jeremy R. Levitt, Kunle Olukotun
Computer Systems Laboratory

Stanford University, CA 94305-4055

Abstract—We present a new approach to event-driven simu-
lation that does not use a centralized run-time event queue, yet
is capable of handling arbitrary models, including those with
unclocked feedback and nonunit delay. The elimination of the
event queue significantly reduces run-time overhead, resulting in
faster simulation. We have implemented our algorithm in a pro-
totype Verilog simulator called VeriSUIF. Using this simulator we
demonstrate improved performance vs. a commercial simulator
on a small set of programs.

I. Introduction

Modern digital system design relies heavily on simulation to reduce
the number of design errors and to improve system efficiency. In
large system designs so much time is spent in simulation that it has
become a design bottleneck. Event-driven simulation and levelized
compiled simulation are two well-known simulation techniques that
are currently used in digital system design.

In event-driven simulation, events are managed dynamically by
an event scheduler. The main advantage of event-driven scheduling is
flexibility; event-driven simulators can simulate both synchronous and
asynchronous models with arbitrary timing delays. The disadvantage
of event-driven simulation is low simulation performance.

Levelized compiled code logic simulators have the potential to pro-
vide much higher simulation performance than event-driven simulators
because they eliminate much of the run-time overhead associated with
ordering and propagating events [1, 2]. This is done by evaluating all
components once each clock cycle in an order that ensures all inputs
to a component have their latest value by the time the component is
executed. The main disadvantage of levelized compiled simulation
techniques is that they are not general. Most levelized compiled logic
simulators cannot simulate models with arbitrary delays (RAVEL [3]
is a notable exception). Furthermore, these techniques will not work
on asynchronousmodels or models with unclocked feedback. In prac-
tice, even though most digital systems are synchronous, asynchronous
chip interfaces are common.

In this paper we present a general method for compiling event-
driven models called static simulation that combines the generality
of event-driven simulations and the efficiency of the levelized simu-
lation approach. Like event-driven simulation, our technique applies
to all general models, including both synchronous and asynchronous
designs. The only restriction is that any specified delays in the sim-
ulation must be known constants at compile time. For efficiency, our
technique schedules the events at compile time, thus eliminating the

This research was supported in part by ARPA contract DABT63-94-C-0054.

need for a run-time event queue and its associated overhead. We re-
place the event queue with inexpensive run-time tests where necessary.
For the models we have tested, these run-time tests incur significantly
less overhead than a run-time event queue.

We represent the event-driven behavior with an event graph, whose
vertices represent events in the simulation and whose edges represent
the causal relationships between the events. We apply the general
technique of partial evaluation to schedule the events as well as pos-
sible using statically available information. Specifically, the compiler
tries to approximate the dynamic simulation process by keeping track
of all the available static information that affects the contents of the
run-time event queue in a dynamic simulation. This general method
can be applied uniformly to all models, unlike previous approaches
such as LECSIM [4], TORTLE [5] and [6].

To test our algorithm, we have implemented a prototype simulator,
called VeriSUIF, using the SUIF (Stanford University Intermediate
Format) compiler system [7]. We chose Verilog mainly because it is
a relatively simple language to implement. The VeriSUIF simulator
is particularly useful for long-running regression tests because it pro-
duces a faster simulation than other techniques. However, our current
implementation is unsuitable for other phases of the design process
because it does not support interactive debugging.

The remainder of the paper is organized as follows. First we give
a brief overview of Verilog and describe the features of Verilog that
we support. Then we describe the event graph representation which
underlies our method. Next we describe our mathematical model of
traditional event-driven simulation and our static simulation technique.
Finally, we discuss some optimizations, experimental results, and our
conclusions.

II. A Brief Overview of Verilog

All Verilog programs are composed of modules. These modules
may be instantiated inside of other modules to create a hierarchy that
represents the structure of the hardware system. Modules contain three
types of concurrent process statements: initial blocks, always blocks,
and continuous assignments. Initial blocks are executed once at the
beginning of the simulation, while always blocks are executed repeat-
edly. Initial and always blocks consist of statements that are executed
sequentially, and each can wait on a signal to change value usingwait
or @ statements. A continuous assignment is an assignment to a wire
whose left hand side continuously reflects the current state of the vari-
ables on the right hand side. A Verilog simulator simulates a model
sequentially by removing events from an event queue, executing the
events, and placing new events on the queue as they become activated.

VeriSUIF supports a subset of Verilog. We do not support tasks,
functions, fork/join, or the disable statement. However, we do not
foresee any difficulty in extending our system to handle these features.

32nd ACM/IEEE Design Automation Conference 
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.  1995 ACM 0-89791-756-1/95/0006 $3.50

III. Event Graph Representation

We represent a model using an event graph. Event graphs provide
a representation for the static simulation algorithm to work on, and
transformations on event graphs can be used to improve simulation
performance.

An event graph partitions the model into events, represented by
vertices, and uses directed edges to represent relationships between
events. We define an event to be the largest unit of a program that will
execute atomically during simulation, which corresponds to the code
that would be executed during one step of an event-driven simulation.
The semantics of the original language determines precisely how the
boundaries between events are determined from the original source.
In Verilog, events have boundaries at the start and finish of always and
initial blocks, at explicit delays, and at statements that wait on signals
(such as @ and wait). Each vertex has associated with it executable
code from the Verilog program.

An edge represents a causal relationship between one event and
another. Edges can take two forms: sensitizing and triggering. Event
v1 sensitizes a following event v2 whenever they are separated by an
@ or wait statement. The execution of event v1 makes v2 sensitive;
v2 can then be triggered by other events.

Triggering actions cause events to be scheduled for execution.
There are three kinds of trigger actions: control flow, data flow, and
delays. v1 can trigger v2:

� if program control flows from v1 to v2 whenever a boolean ex-
pression b evaluates to true after executing v1,

� if the execution of v1 changes the value of an expression x,
awaited by v2,

� or if the delay statement #d separates v1 and v2.

Note that not all control flow is represented by control flow edges.
Only control flow that crosses an event boundary is represented in this
way. All other control flow is contained within a single event.

A Verilog program is represented by an event graph G =
hV; v0;N0; En; Eb; Ex; Edi, where

� V is the set of events,

� v0 2 V is the start event,

� N0 � V is the set of initially sensitive events,

� En � V � V represents the sensitizing edges,

� Eb � V � V � B, where B is the set of boolean expressions,
represents possible triggering actions due to control flow,

� Ex � V �V �X , whereX is the set of expressions, represents
possible triggering actions due to change of expression values,
and

� Ed � V � V � W , where W is the set of whole numbers,
represents possible triggering actions due to delay statements.

An example of an event graph for a small Verilog program is shown
in Figure 1.

IV. Dynamic Simulation

Before we describe our compiler algorithm, we first formally de-
scribe how we model the traditional dynamic simulation process. Dur-
ing simulation, the state of the computation is captured by a quadruple
s = hN;R;D;Mi, where

(a)
module example();
reg clk;

E1 initial clk=0;
E2 always begin clk = ˜clk; #1; end
E3 always @(clk) $display("clk");

endmodule

(b)

AAAAA
AAAAA
AAAAA

CLK=~CLK

$display

@clk

1CLK=0

E1 E2

E3

Figure 1: (a) a Verilog program and (b) its event graph. Trigger edges
are solid, sensitizing edges are dashed. The start event is shaded, and
the initially sensitive events have thick edges.

� N � V is the set of sensitive events,

� R � V is the set of events ready to be executed,

� D � V �W is the set of all hv; di such that event v has d time
steps left before it can execute,

� M is the memory store that maps each variable to its current
value.

We assume the existence of the following operations:

� OneOf(R) deterministically chooses an event from the set of
ready eventsR.

� Exec(v;M) applies the code associatedwith eventv to the mem-
ory storeM and returns a new memory store. It may also produce
side effects such as generating output.

� Eval(b;M) evaluates the boolean expression using the memory
store M and returns TRUE or FALSE.

� Chgd(v;x;M) indicates if the execution of event v with initial
memory store M changes the value of expression x.

We define s0 = Next(hN;R;D;Mi;G) by hN 0;R0;D0;M 0
i,

where

(Type I Transition) This represents the execution of an event in the
current simulation time step:

if R 6= ;, then
Let v = OneOf(R) in

M
0 = Exec(v;M)

N
0 = N � fvg [fv

0
jhv; v

0
i 2 Eng

R
0 = R� fvg

[fv
0
jhv; v

0
; bi 2 Eb ^ Eval(b;M 0)g

[fv
0
j hv; v0; xi 2 Ex

^ v0 2 N

^Chgd(v; x;M)g

D
0 = D [fhv

0
; dijhv;v

0
; di 2 Edg

(Type II Transition) This represents incrementing the simulation
time to the next time during which an event can occur.

if R = ; and D 6= ;, then
Let

d0 = min
hv;di2D

d;

A = fhv; dijhv;di 2 D ^ d = d0g

in

M
0 = M

N
0 = N

R
0 = fvjhv; di 2 Ag

D
0 = fhv; dijhv; d+ d0i 2 (D� A)g

(Type III Transition) This represents the end of simulation:

if R = ; and D = ;, then
s0 = ?, denoting no next state.

The dynamic simulation of an event graphG is a sequence of states
s0; s1; : : : ;?, where

� s0 = hN0; fv0g; fg;M0i, whereM0 represents the initial mem-
ory store that maps every variable to an appropriate initial value
(for Verilog, all variables are initially x).

� si+1 = Next(si;G):

V. Static Simulation

Manipulating the event queue is a considerable source of run-time
overhead. Our approach to reducing this overhead is to have the
compiler perform as much of the simulation as possible at compile
time and completely eliminate the run-time event queue. We do this
by collecting information about which events could be executed at any
given point during the simulation and generating code for those events
guarded by run-time tests. When possible, we track variable values
during compilation so that more decisions about whether an event will
execute can be made at compile time instead of run time.

As an example, consider Figure 1. At the start of simulation,
the compiler finds the initial event E1 in the event graph and emits
the corresponding code. On analyzing the code itself, the compiler
determines that the value of clk is set to 0. Following the trigger
edge from the start event to E2, the compiler emits code for E2 and
similarly notes that the value of clk is changed to 1. The change of
clk triggers E3, so the compiler emits the code for E3, and notes that
E3 remains sensitive. At this point, the only possible transition to take
corresponds to the delay edge from E2 back to itself. The compiler
generates code to increment the time. It then repeats this same series
with the clk value initially set to 1, and arrives at the same state it
was in after E1 executed: E2 is ready to execute and clk is 0. The
compiler simply wraps a loop around that section of code. As there are
no other events waiting to be executed, the compilation is complete.
The final code is:

E1 clk = 0
forever

E2 clk = ˜clk
E3 $display("clk")

time = time+1
E2 clk = ˜clk
E3 $display("clk")

time = time+1
end

In an event-driven simulator this example would cause two events to
be scheduled for each time step. Our approach completely eliminates
all of the overhead; there is no run-time event queue and no conditional
tests are performed at run time. The generated code is what one expects
of a cycle-based compiled-code simulator[2]; however, our technique
does not require special treatment of clock signals and is thus more
general.

The above example shows how variable values can be tracked at
compile time. In general, not all variables have known values at
compile time, and even if they do, the compiler cannot afford to track
all of them. For example, it is intractable to record all the values
generated by an increment to an initially known value within a loop.
Our compiler only tracks values due to assignments of constants and
simple boolean expressions. Without knowing the exact values, the
compiler may not be able to determine if an event will definitely
execute. For these cases, the compiler generates run-time tests to
ensure that the simulation is correct.

We now discuss our static simulation technique in more detail.

A. Static Simulation State

The compiler runs through a static simulation of the program at
compile time. A static simulation state s = hN;R;D;M i captures a
conservative approximation of the corresponding dynamic simulation
state s = hN;R;D;Mi as follows:

� N � V � fMAY;MUSTg contains all events that may or must
be sensitized (v 2 N) hv;mi 2 N and hv;MUSTi 2 N)

v 2 N). An event can not be paired with MAY and MUST
simultaneously.

� R � V � fMAY;MUSTg contains all events that may or must
be ready to be executed currently (v 2 R) hv;mi 2 R and
hv;MUSTi 2 R) v 2 R). An event can not be paired with
MAY and MUST simultaneously.

� D � V �W�fMAY;MUSTg contains all events that may or must
be waiting to be executed in a future simulation time (hv; di 2
D) hv; d;mi 2 D and hv; d;MUSTi 2 D) hv; di 2 D). An
event can not be paired with MAY and MUST simultaneously.

� M is the memory store that maps each variable to its current
value. If we do not know the value of a variable at compile time,
it maps to ?. (For each mapping var 7! val in M such that val
6= ?, var 7! val is in M .)

We modify the functions from the dynamic simulation as follows:

� OneOf(R) deterministically chooses a tuple hv;mi from the set
of ready events R.

� Exec(v;m;M) applies the code associated with event v to the
memory storeM and returns a new memory store. Ifm = MUST,
any variable written by v can be stored in M if it is known to
be a constant at the end of v, subject to the restrictions outlined
earlier. Otherwise, any variable written by v must map to ? in
M .

� Eval(b;M) evaluates the boolean expression using the memory
storeM and returns MUST (TRUE), MAY (some variable in b maps
to ? in M), or MUST NOT (FALSE).

� Chgd(v; x;M) indicates if the execution of event v with initial
memory store M changes the value of expression x and returns
MUST (TRUE), MAY (some variable in x maps to ? in M) or
MUST NOT (FALSE).

We define the ^ operator for MAY, MUST, and MUST NOT as follows:

MUST NOT MAY MUST

MUST NOT MUST NOT MUST NOT MUST NOT

MAY MUST NOT MAY MAY

MUST MUST NOT MAY MUST

We define a function Merge(S1; S2), where S1 and S2 are sets of
tuples hv;mi. We assume the existence of a similar function for
hv; d;mi.

Merge(S1; S2) = S1 [S2

�fhv;mij hv;mi 2 S1 [S2

^ (m = MUST NOT

_ m = MAY

^hv;MUSTi 2 S1 [S2)g

Finally, we extend the state transition function Next to static
states. The definition of Next ensures that the set of sensitized
events, currently waiting events and delayed events are a superset
of the corresponding event sets in dynamic simulation. We define
s0 = Next(hN;R;D;Mi;G) by hN

0
;R

0
;D

0
;M

0
i, where

(Type I Transition) This represents the execution of an event in the
current simulation time step:

if R 6= ;, then
Let hv;mi = OneOf(R) in

M
0

= Exec(v;m;M)

N
0

= Merge(N � fhv;mi if m = MUSTg;

fhv0;mijhv; v0i 2 Eng)

R
0

= Merge(R� fhv;mig;

fhv
0
;m

0
ij hv; v0; bi 2 Eb

^m0 = (m ^ Eval(b;M
0
))g

[fhv
0
;m

00
ij hv; v0; xi 2 Ex

^hv0; m0
i 2 N

^m00 = (m ^m0

^Chgd(v; x;M))g)

D
0

= Merge(D; fhv0; d;mijhv; v0; di 2 Edg)

(Type II Transition) This represents incrementing the simulation
time to the next time during which an event can occur.

if R = ; and D 6= ;, then
Let

d0 = min
hv;d;mi2D

d;

A = fhv; d;mijhv;d;mi 2 D ^ d = d0g

in

M
0

= M

N
0

= N

R
0

= fhv;mijhv;d;mi 2 Ag

D
0

= fhv; d;mijhv;d + d0;mi 2 (D �A)g

(Type III Transition) This represents the end of simulation:

if R = ; andD = ;, then
s0 = ?

The static simulation of an event graph G is a sequence of states,
s0; s1; : : : ;?, where

� s0 = hN0; fv0g; fg;M0i, and

� si+1 = Next(si;G):

B. Code Generation

When an event v is chosen via the OneOf function during a type I
transition, the compiler emits the code corresponding to that event. To
ensure that the code associatedwith a MAY event is executed only when
the dynamic conditions are right, the code is predicated by a condition
that is evaluated at run time. The compiler introduces a run-time
boolean variable for each vertex in the event graph that is maintained
throughout the program execution such that it reflects whether the
corresponding event is sensitized. Likewise, for each static simulation
state a trigger variable is introduced to indicate if the event to be
executed during that state has been triggered. Code is generated to set
or reset these variables after each event. When a type II transition is
taken, code can be emitted to increment the global simulation clock.

We observe that the naive static simulation described above may
generate an infinite list of states on some event graphs. This may
happen under two circumstances:

1. The static simulation may never reach a state whose set of ready
events R is empty. The algorithm described so far could keep
taking type I transitions forever. This will occur, for example,
when simulating circuits with unclocked feedback.

2. Similarly, the static simulation may never reach a state whose
delayed events D is empty. This occurs in synchronous designs
as the clock signals change continuously until some dynamic
condition occurs (see Figure 1).

We use the general method of finding fixed points to solve both of
these problems. The technique is based on the observation that the set
of possible static simulation states is finite.

Theorem 1 The number of possible static simulation states for any
event graphG is finite.

Proof: For a given G = hV; v0;N0; En; Eb; Ex; Edi, the sets V
and Ed are finite. The following relations must hold: jN j � jV j,
jRj � jV j, and jDj � jEdj � dm where dm = maxhv;v0;di2Ed

d.
The latter equation is derived by observing that for all delayed events
hv0; d0;m0

i 2 D triggered by edge hv; v0; di, d0 � d. (That is, the
remaining time to wait cannot be greater than the original delay in
the program.) Thus there are only a finite number of possibleN , R,
and D sets. As discussed earlier, we limit the possible values in M
to constants that appear in the program and unary operators on these

constants. Thus there are a finite number of possible M sets, and a
finite number of possible static simulation states.

Our compiler algorithm is as follows. Whenever the compiler gen-
erates a new state si, it compares si with all the previously generated
states. We are guaranteed by Theorem 1 that either the simulation will
eventually terminate or we will find two matching states. If there is no
match, the static simulation proceeds as discussed above. Otherwise,
let sj be the matched state. The sequence of static simulation states
following si must be exactly the same sequence that follows sj . Thus,
it is not necessary to continue to simulate statically, since the com-
piler can produce the equivalent code sequence by inserting a branch
operation from si�1 to sj , thus creating a loop consisting of events
sj; : : : ; si�1.

Once a loop has been found, it is necessary to remove elements
from the current R and D so that static simulation may continue.
We remove the elements corresponding to events executed during the
loop. This set of events also allows us to construct the exit condition
for the loop, since it is only when none of these events are ready to be
triggered that the loop may exit.

After finding a loop we continue simulation until we find another
loop or until simulation is complete (a type III transition is taken). In
general, loops consisting only of type I transitions will be generated
first (unclocked feedback) and enclosed by loops consisting type I and
II transitions (clocked feedback).

VI. Optimizations

While the algorithm presented in the previous section generates
working code, we have found a number of optimizations that are
useful to produce a more efficient simulation.

� Continuous assignmentoptimizations – Continuous assignments
represent assignments to wires where the left hand side continu-
ously reflects the current state of the variables on the right hand
side. Rather than treating them as separate events we can inline
them directly into the code, thus drastically reducing the number
of events we need to schedule. Such inlining must be done in
moderation, however, to limit the increase in code size. This
optimization is performed on the event graph before scheduling
takes place.

� Sensitization optimization – If an event immediately sensitizes
itself after execution, and is sensitive at the beginning of simu-
lation, it will always be sensitive. Thus it is not necessary to test
for sensitivity in the generated code. In many models, this is the
case for the majority of events.

� Levelization – During the course of event-driven simulation, it
is possible to execute events multiple times as values propagate
through the model. These multiple executions are not required
for the correct answer and adversely impact simulation perfor-
mance. Through proper ordering of event execution unnecessary
events can be eliminated. This process is generally called lev-
elization and is used in levelized compiled code simulators [1, 2].

One can add a form of levelization to an event-driven simulator
by being intelligent about which events are retrieved from the
event queue. We implement this in our compiler by assigning a
level to each event in the graph basedon its maximum length path
from the start event. Then, when the OneOf function chooses
events fromR, it chooses the event with the lowest level number.

VII. Preliminary Experimental Results

We used six benchmarks to test our implementation. Five of these
are from Coumeri and Thomas [8]. This suite consists of small bench-
marks that vary in hierarchy depth, partitioning, and operators used.
The benchmarks include a series of test vectors and the vectors are
run up to 1,000,000 times to produce measurable run times. The
arms counter benchmark is particularly interesting because it contains
unclocked feedback. This suite also contains five other benchmarks
that we are not using. They are all variations on a 64-bit bit-wise adder,
and our prototype does not yet support efficient 64-bit operations. The
final benchmark, MIPS-Lite, is a simple behavioral description of a
MIPS-compatible processor.

We compared the performance of our simulator with VCS 2.3
from Chronologic Simulation, a state-of-the-art commercial simulator.
Both VCS and VeriSUIF generate C code. In all cases, the generated
code was compiled with the MIPS C compiler v3.19 with –O2. The
simulations were executed on a Silicon Graphics Indigo with 64MB
of memory and a 100 MHz R4000 processor. Scheduling overhead
was measured using the pixie tool. The results are shown in Table 1.

The overhead we show for VCS indicates the amount of time spent
in the run-time library manipulating the event queue. VCS does some
optimizations to reduce run-time overhead by bypassing the event
queue in some cases, such as simple signal propagation. In these cases
it uses function calls to activate events. The time spent performing
these function calls is not included in our measurements. The overhead
for VeriSUIF shows the amount of time spent in the code that sets and
tests triggers.

The absolute run time is shown as well as the time spent performing
scheduling tasks. When looking at the absolute times, it is important
to realize that VCS has a highly tuned code generator, and in some
cases generates better code than VeriSUIF. This is apparent on the gcd
benchmarks where our poorer computational code is the sole reason
for the reduced performance. However, even with this disadvantage,
we still run almost two times faster on average. More interesting is the
time spent performing scheduling tasks. Here we can see that the time
spent performing event queue management in VCS can be substantial.
On average, we spend only 4% as much time as VCS in scheduling
overhead.

It is also interesting to measure the benefit of tracking variable
values during static simulation. A comparison is presented in Table 2.
The percentage of scheduling states that do not require a run-time test
nearly double with variable tracking, from 40% to 76%, with several
requiring no tests for the entire simulation (the 40% of states that are
marked MUST even without variable tracking are due to unconditional
control flow and delays). As a result of eliminating these run-time
tests, variable tracking was able to reduce scheduling overhead on all
the benchmarks by an average of 1.9 times. In many cases this is
because the benchmark used a series of constant test vectors and the
compiler was able to determine which events must trigger during each
test. Also, in the arms counter and MIPS-Lite benchmarks there is a
top level clock and the compiler can eliminate run-time tests for events
that depend on the clock edges. However, there is a disadvantage
to using variable tracking: the number of static states can increase
significantly. This is because it takes longer to detect a cycle when
variable values are taken into account.

VIII. Conclusions

In this paper, we introduce the static simulation technique as a
general method for compiling event-driven models into efficient sim-
ulation code. The method has two innovations. First, we use a general
event graph that succinctly captures the semantics of an event-driven
simulation. Second, we use the general technique of partial evaluation
to schedule the events as well as possible using statically available

Benchmark Absolute Runtime (sec) Scheduling Overhead (sec)
Name VCS VeriSUIF Speedup VCS VeriSUIF Speedup

2901/alg 124.35 67.62 1.84 43.65 4.67 9.35
2901/block 235.83 263.44 0.90 65.80 25.47 2.58
arms counter 42.60 10.77 3.96 36.68 3.37 10.88
diffeq 20.91 5.24 3.99 15.72 0.18 87.33
gcd 9.30 10.62 0.88 1.43 0.05 28.60
MIPS-Lite 16.35 10.06 1.63 4.66 2.46 1.89
Average 1.90 23.44

Table 1: Comparison of the run-time speed and scheduling overhead of VCS and VeriSUIF.

Without variable tracking With variable tracking
Benchmark Schedule % Scheduling Schedule % Scheduling Overhead

Name Size MUST Overhead Size MUST Overhead Speedup

2901/alg 2591 67% 11.28 4315 100% 4.67 2.42
2901/block 7332 24% 62.11 10321 74% 25.47 2.44
arms counter 1744 28% 5.37 2225 57% 3.37 1.59
diffeq 121 52% 0.42 237 100% 0.18 2.33
gcd 54 55% 0.08 97 100% 0.05 1.50
MIPS-Lite 103 11% 2.87 186 23% 2.46 1.17
Average 40% 76% 1.91

Table 2: Comparison of scheduling overhead with and without variable tracking. All times are in seconds.

information. This general technique can be applied uniformly to op-
timize the simulation of arbitrary models including those containing
unclocked feedback and nonunit delay.

Our prototype implementation of the simulator uses the SUIF com-
piler system. We achieve an average speedup of about two when
compared to VCS 2.3 on six benchmarks. More importantly, our av-
erage scheduling overhead amounts to only 4% of that found in the
VCS code.

Acknowledgments

We would like to thank John Sanguinetti and Randy Allen of
Chronologic for their help with VCS, and Brian Murphy for help
with this document.

References

[1] Z. Barzilai, J. L. Carter, B. K. Rosen, and J. D. Rutledge, “HSS -
a high-speed simulator,” IEEE Transactions on Computer-Aided
Design, vol. 6, pp. 601–616, July 1987.

[2] C. Hansen, “Hardware logic simulation by compilation,” in 25th
ACM/IEEE Design Automation Conference, pp. 712–715, 1988.

[3] E. J. Shriver and K. A. Sakallah, “RAVEL: assigned-delay
compiled-code logic simulation,” in Proceedings of the 1992 IEEE
International Conference on Computer-Aided Design, pp. 364–
368, Nov. 1992.

[4] Z. Wang and P. M. Maurer, “LECSIM: A levelized event driven
compiled logic simulator,” in 27th ACM/IEEE Design Automation
Conference, pp. 491–496, 1990.

[5] D. M. Lewis, “A hierarchical compiled code event-driven
logic simulator,” IEEE Transactions on Computer-Aided Design,
vol. 10, pp. 726–737, June 1991.

[6] E. G. Ulrich and D. Herbert, “Speed and accuracy in digi-
tal network simulation based on structural modeling,” in 19th
ACM/IEEE Design Automation Conference, 1982.

[7] R. Wilson, R. French, C. Wilson, S. Amarasinghe, J. Anderson,
S. Tjiang, S.-W. Liao, C.-W. Tseng, M. Hall, M. Lam, and J. Hen-
nessy, “SUIF: An infrastructure for research on parallelizing and
optimizing compilers,” ACM SIGPLAN Notices, vol. 29, pp. 31–
37, Dec. 1994.

[8] S. L. Coumeri and D. E. Thomas, “Benchmark descriptions for
comparing the performance of Verilog and VHDL simulators,” in
Proceedings of the 1994 International Verilog HDL Conference,
pp. 14–16, Mar. 1994.

	DAC95
	Front Matter
	Table of Contents
	Session Index
	Author Index

