
Asynchronous, Distributed Event Driven Simulation Algorithm for

Execution of VHDL on Parallel Processors

Peter A. Walker & Sumit Ghosh

Division of Engineering, Brown University, Providence,Rhode Island 02912

fpaw,sgg@lems.brown.edu

Abstract

This paper describes a new Asynchronous, Parallel,
Event Driven Simulation algorithm with inconsistent
event Preemption, P 2EDAS. P 2EDAS represents a
signi�cant advancement in distributed conservative dig-
ital circuit simulation algorithms in that it permits the
use of any number of non-zero propagation delays for
every path between the input and output of every hard-
ware entity. P 2EDAS permits, accurate, concurrent,
asynchronous, and e�cient, i.e. deadlock free and null-
message free, execution of sequential and combinatorial
digital designs on parallel processors. It is a conserva-
tive algorithm in that only those output transitions, if
any, are asserted at the output of a model following its
execution, that are guaranteed correct. In addition, pre-
emption of inconsistent events are allowed. P 2EDAS

extends to any simulator based on high-level hardware
description language. This paper presents a detailed
description of the algorithm.

1 Introduction

Debenedictis, Ghosh, and Yu successfully introduced
a novel algorithm for asynchronous, distributed discrete
event simulation, YADDES [4] that is mathematically
proved to be deadlock-free and accurate. In discrete
event simulation, a behavior model C1, referred to as
component or entity, executes when stimulated by an in-
put event or cause. Upon execution, C1 may generate
an output event which is then propagated to subsequent
components, Ci,...,Cj, connected to the output of C1.
Subsequently, one or more of the components, Ci,...,Cj,
may be executed. The process continues until the num-
ber of outstanding events is nil. In general, execution of
the components, Ci,...,Cj, connected to the output of
C1, are initiated by output events generated from the
execution of C1 ; the execution of components proceed
concurrently as conditions allow. To increase concur-
rency in the simulation and thereby improve e�ciency,

YADDES utilizes a scheme referred to as the data-ow
network, that quickly generates the \earliest time of
next event" at the output of C1 prior to the generation
of the output event of C1. The \earliest time of next
event," also referred to as the predicted event time, rep-
resents a conservative estimate on the time of the sub-
sequent event at the output of C1. Thus, components
Ci,...,Cj may concurrently execute, without violating
any data dependency, input events with times less than
earliest time of next event to arrive at its inputs. The
underlying assumption is that the computation cost of
predicting the earliest time when an event Ej may be
generated as a result of the execution of C1, correspond-
ing to an input event Ei, is less than the computation
cost of executing C1. For simulations with complex
VHDL models [1], this assumption is, in general, true.
An added problem when simulating digital designs with
feedback loops, utilizing the traditional distributed dis-
crete event simulation algorithm, is that, often, an out-
put event may not be generated following the execution
of a component,C1. Thus, other components connected
to its output, cannot execute. If the output of one of
these components is, in turn, connected to the input of
C1, then deadlock occurs [3]. The data-ow network
of YADDES successfully addresses this problem. The
need for null messages [2] is also eliminated.

In YADDES , corresponding to every simulated com-
ponent the data-ow network consists of pseudo-primed
and pseudo-unprimed components. These pseudo com-
ponents are purely mathematical entities that execute
speci�c functions to generate W (or W 0) values at their
outputs. They are interconnected in an acyclic man-
ner that is detailed subsequently in this paper. The
data-ow network executes concurrently with the ac-
tual simulation. The W (or W 0) value asserted at the
input of a pseudo component reects an estimate of the
earliest time that an event may be propagated along
the input. For complete de�nitions of W (or W 0), the
reader is referred to [4].

Consider a behavior modelCn with inputs, f1,2,...,ig.
The window of temporal independence, tnwin, is de�ned
as the minimum over all the W (or W 0) values over in-
puts i 2 f1 : : :Ig of the pseudo-unprimed component(s)
corresponding to a component Cn. Input events with
time t, on an input of Cn may be executed, without vio-
lation of data dependency, provided, t is less than tnwin.

32nd ACM/IEEE Design Automation Conference
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission. 1995 ACM 0-89791-756-1/95/0006 $3.50

Correctness is guaranteed through accurate values for
W (or W 0). Formally,

tnwin = minimum(Wi or W 0

i) 8i (1)

While successful as an asynchronous, distributed dis-
crete event simulation algorithm, YADDES is inappro-
priate for simulating behavior model such as VHDL
models since it is limited to a single, input-independent,
propagation delay between the input and output of a
component. Further, for correctness in the simulation,
preemption or descheduling of inconsistent events [1][5]
is necessitated. The YADDES algorithms lacks any
mechanism to achieve inconsistent event descheduling.

2 The Role of Event Prediction Net-

work in P 2EDAS

A key concept in P 2EDAS is the event prediction
network. It is analogous to the data-ow network in
YADDES and is responsible for asynchronous and con-
current yet accurate simulation of the behavior models.
The proceeding discussions provides motivation for, and
explanation of the function, of this network along with
theory of its synthesis.

2.1 Challenges to Parallel/distributed cir-
cuit simulation

In uniprocessor-based simulation, the centralized
scheduler maintains a queue of all events in the system.
For accuracy, the event with the smallest time is �rst ex-
ecuted. Correctness and accuracy are preserved by the
strict chronological execution of the events. A well doc-
umented limitation of the uniprocessor approach is that
it precludes the concurrent execution of two or more
events that lack any data dependency.

To address this problem, the asynchronous dis-
tributed discrete event simulation algorithm, P 2EDAS

partitions each component of a system under simulation
to a unique processor. Components may be executed in-
dependently and concurrently by processors as soon as
events are available at their input ports. Given the ab-
sence of the global event queue, to ensure correctness
of simulation P 2EDAS requires the following. A sim-
ulation clock, clockN , is computed for every component
N , and is de�ned as the time up to which the model
has been simulated. Thus, the simulation clock value is
identical to the minimumof all input events at all input
ports. A di�culty in the simulation of digital systems is
that, often events are not generated at an output port
of a component following its execution. Under such cir-
cumstance, events are not propagated over to the in-
puts of subsequent components that are connected to
the output and the simulation clock value stagnates pe-
riodically.

A more serious problem occurs with sequential sub-
circuits. Often, an output event may not be gener-
ated following the execution of a component, C1. Thus,
other components connected to its output, cannot ex-
ecute. If the output of one of these components is, in

turn, transitively connected to the input of C1, then
deadlock may occur.

2.2 Event Prediction

P 2EDAS addresses both problems through the use
of the event prediction network. The network is syn-
thesized for the digital system under simulation and
executes concurrently with the simulation of the be-
havior descriptions. It consists of mathematical enti-
ties, termed pseudo components, that generate predicted
event time values. A predicted event time, de�ned at
an output port of a pseudo component and associated
with the corresponding output of the component, is the
time at which an event is expected to be generated at
that output and it is guaranteed that no events with as-
sertion times less than the predicted event time will be
generated. The predicted event time is computed sep-
arately, yet concurrently, from the actual simulation of
the behavior descriptions. The simulation utilizes the
predicted event times, generated by the event predic-
tion network, to e�ciently, yet correctly, schedule exe-
cutions of the models for appropriate events. Figure

i1

i2

i3

iN

o1

o2

o3

oM

EPNt

po1
t

po2
t

po3
t

poM
t

pi1
t
;

pi2
t

pi3
t

piN
t

Figure 1: Event Prediction Network

1 presents a simple event prediction network for the be-
havior description of a circuit component. Although
it is constituted by pseudo component(s), the network
is conceptually represented through a single black box,
EPNt with inputs i1, ... iN and outputs o1, ... oN

that correspond to the inputs and outputs of the simu-
lation model. The black box EPNt receives predicted
event times, represented by pi1t , ... piNt , at its input
ports from the corresponding output ports of the pre-
ceding EPNts. EPNt generates two quantities { (1) the
predicted event times at its outputs that are, in turn,
propagated to the inputs of subsequent EPNts, and (2)
twin that de�nes which input events may trigger the
execution of the corresponding behavior model. EPNt

does not require detailed knowledge of the behavior ex-
pressed in the model from which it is constructed. The
behavior of EPNt is detailed subsequently.

2.3 Synthesis of Event Prediction Network

In constructing the event prediction network for a
digital system under simulation, �rst the combinational
and sequential subcircuits are identi�ed. Next, for a
subcircuit containing feedback loops, a feedback arc set

S given by S = fE1; E2; � � �Eng of a directed graph cor-
responding to the subcircuit is identi�ed such that the
graph may be rendered acyclic following the removal
of all of the edges in S. The correctness is not af-
fected by the identi�cation of the minimal feedback arc
set which is di�cult and time consuming. For each
Ei 8i 2 f1; 2; : : :; ng, in the original directed graph,
a new acyclic directed graph is constructed by replac-
ing Ei with two unconnected edges Ein

i and Eout
i as

illustrated through Figure 2.
Assume that the feedback arc set for the circuit is

given by S = fE1g. The graph is rendered acyclic in
Figure 2b through the removal of E1 and replacing it
by Ein

1
and Eout

1
associated with the input of A and

the output of B respectively.
The event prediction network for the circuit, is syn-

thesized from connecting two identical copies of the
acyclic circuit through a crossbar switch. The two
acyclic circuits to the left and right of the crossbar
switch are referred to as the tail network and head net-
work respectively. The entities in the event prediction
network are termed pseudo components and identi�ed
individually as Xt and Xh respectively, where X refers
to the corresponding simulation model. Pseudo com-
ponents in the tail network are identi�ed through Xt

while those in the head network are expressed through
Xh. Every input port of a pseudo component Xt that
has a label of the form Ein

i is permanently held at an
in�nitely large number represented by the symbol 1.
Since inputs to pseudo components are times of events,
the symbol 1 represents the fact that no �nite time
values will be propagate through such inputs. An out-
put port of every Xt that has a label of the form Eout

j

is linked to the input port of any pseudo component Yh
in the head network that has a label of the form Ein

j .
For the cyclic graph in Figure 2a, the corresponding

event prediction network is shown in Figure 3.

3 The P 2
EDAS Algorithm

In P 2EDAS, the behavior models and event predic-
tions network execute asynchronously and concurrently.
The dependence between them is explained as follows.
When external events are asserted at the primary input
ports of the models, the event times are made available
to the corresponding inputs of the pseudo components.
In general, a model is permitted to execute appropriate
events, limited by the value of the twin. Pseudo compo-
nents use the Ti values at its primary inputs, the pre-
dicted event times at all other inputs, the event times
associated with the input ports of the behavior models,
and the propagation delay values, in their computation.
The head pseudo components, generate twin values for
the corresponding behavior models which are used by
the simulation system to initiate execution of appropri-
ate events. Upon execution of a behavior model, events
may be generated at the output port(s). However, the
events are not immediately asserted at the output ports.
Only those output events are asserted at the respective

outputs at appropriate times that are not preempted
based on the rules established in [1][5]. To preserve
causality and thereby guarantee correct simulation of
the digital system, events must be executed in their
causal order. This implies that, at every head pseudo
component, the twin value must increase monotonically.

Corresponding to every behavior model Cn is a
clockn. Cn has access to the tnwin value associated with
the corresponding head pseudo component. De�ne Sno
as the logical value of the most recent event asserted
at the output o of Cn. Given that P 2EDAS employs
preemption, events generated as a consequence of ex-
ecution of Cn are stored in an output queue and not
immediately asserted at the output port of the behav-
ior model. De�ne tneo as the time of the earliest event in
the output event queue of output o. Where the output
event queue is empty, tneo is set to 1. If one or more
input ports of Cn are primary, Ti de�nes the assertion
time of next earliest event at that input. Assume also
that tei represents the time of the earliest event at non-
primary inputs, i, of Cn. P 2EDAS is explained for
cyclic subcircuits since their simulation is most com-
plex. Thus, assuming that Cn is included in a feedback
loop, the event prediction network will consist of Cn

t

and Cn
h , representing the tail and head pseudo compo-

nents respectively. Corresponding to every head and
tail pseudo component of Cn, the quantities Wn

i and
Wn
o are associated with every input port i and output

port o respectively. While Wn
i signi�es the predicted

event time at the input, Wn
o represents the predicted

event time at the output.
Initialization consists of the following steps:
� For each behavior model de�ne, Cn, clockn (at the
model) and tnwin (at the corresponding head pseudo
component) are set to 0.

� For every pseudo component Cn
t and Cn

h , the pre-
dicted event times at all output ports are set to
zero. Thus,

Wn
o = 0 8n; 8o: (2)

� Input ports of the tail pseudo components, Cn
t ,

that are associated with the feedback arc set, the
Wn
i values are set to1. TheWn

i values at all other
input ports of pseudo components are initialized to
zero.

� Fourth, the Sno values at every output of Cn, and
its head and tail pseudo component, are user ini-
tialized.

Simulation Process: The simulation system ensures
the correct execution of the models triggered by appro-
priate events, using the following steps.
� Model execution: For a given component,Cn, iden-
tify input events with time tei , such that tei < tnwin.
The behavior model is executed for all such events,
starting with the earliest event. For every event
executed, the clockn is advanced, wherever possi-
ble. The value of clockn will always be less than
tnwin. The newly generated output events, if any,
are included in the output event queue.

(a)
(b)

E3

A
B

A
B

E2

E1

E
in

1

E3 E2 E
out

1

Figure 2: Reducing a Cyclic Directed Graph to an Acyclic Directed Graph

At

Bt

E3

A
h

B
h

E
in

1

crossbar switch
tail copy

head copy

E2

E
in

1

E3 E2 E
out

1
E
out

1

Figure 3: Event Prediction Network for a Cyclic Circuit in Figure 2a

� Identi�cation of Inconsistent Output Events: Due
to the nature of the timing semantics of event
driven simulation, one or more output events gen-
erated as a result of model execution, may turn
out to be inconsistent. Such inconsistent events
are �rst identi�ed and then preempted.

� Propagation of Correct Output Events: For each
output o of Cn, mark the event with time tneo, in the
event queue, if the following relationship is true.

tneo � clockn (3)

The marked event is noted as correct and is as-
serted at the output port of Cn. Sno is immediately
updated. These events are no longer subject to pre-
emption. Whenever an input or output event queue
is observed to become empty, a dummy event with
assertion time1 is inserted in the queue.

� Updating Event Prediction Network: Whenever a
new event is asserted at an input port of Cn, the
assertion time is propagated to the pseudo com-
ponents. In addition, whenever the output event
queue for an output of Cn is updated, the asser-
tion time of the earliest event is propagated to the
head and tail pseudo components. The new logical
value, Sno , and tneo, at the output of the behavior
model is propagated to the pseudo components.

� The above three steps are continually executed un-
til either all outstanding events are processed or
clockn exceeds the maximumsimulation time of in-
terest.

Event Prediction Network operation: Upon
execution, a pseudo component generates a predicted
event time, Wn

o , at the outputs. Where the output dif-
fers from its previous value, it is propagated right to
trigger the execution of subsequent pseudo components

in a form of a chain reaction. Whenever any of the in-
put arguments of a pseudo components' change value,
the pseudo component is executed. Corresponding to
every head or tail pseudo component, a lookup table,
Ln[i; o; s], is constructed. The dimensions of the table
are determined by the number of input ports, i, output
ports, o, and number of logical values, s, that can be
realized at o. For an event at i, and with output o at
current logical value s, entry Ln[i; o; s] is the minimum
transition time to other logical values at o by the event
at i. P 2EDAS de�nes a function, min inertial delay()
which accepts three arguments and performs the re-
quired lookup operation. Although VHDL [1] proposes
the use of inertial and transport delays in hardware de-
scriptions, in this paper we focus on inertial delays only.
Execution of Pseudo Components:
� First, a pseudo component read the input the pre-
dicted event times, Wn

i , from preceding pseudo
components and assertion times of earliest input
events tnei at the corresponding behavior model. It
also receives the new logical values Sno at the output
ports of the behavior model and the new assertion
times tneo of the earliest events in each output event
queue.

� The pseudo component uses the accessed values to
compute the predicted event timeWn

o at every out-
put o, using the following equation.

Wo = min(teo ; (min(Wi; tei) +

min inertial delay(i; o; So))) 8i: (4)

Note there are nil events at an input port of the
behavior model, tei is 1. Also, where there are
nil events in the output event queue of a speci�c
output, teo is also1. The head pseudo component
of each component computes tnwin values as,

tnwin = minimum(Wi) 8i: (5)

Where a given input port, i, is primary, Wi is re-
placed by Tmax in the computation of tnwin. Tmax
represents the maximumsimulation time of interest
and its default value is in�nity.

� The newly computed Wo and t
n
win values are prop-

agated to the subsequent pseudo components and
behavior model, respectively when the values di�er
from their previous values.

� The above three steps are repeated until the simu-
lation process terminates.

3.1 An Example to Illustrate P 2EDAS

To illustrate the working of P 2EDAS, consider a
cyclic subcircuit In Figure 4(a), each of the two NAND
gates, A and B, have two inertial delay values given
by TpLH = 10ns and TpHL = 5ns that correspond
to low to high and high to low switching at the out-
put. The function min inertial delay(i; o; So) (repre-
sented as delay(i; o; so) in �gures) returns the value
for TpLH corresponding to s0 = 0 and the value of
TpHL corresponding to s0 = 1. Initially, the window
of temporal independence and the local clock are set:
tAwin = tBwin = clockA = clockB = 0. In addition, the
event queues associated with the output ports of mod-
els A and B are empty, i.e. tAo = tBo = 1. For the
circuit in Figure 4(a), the corresponding event predic-
tion network is shown in Figure 4(b). For the pseudo
components, the predicted event time values are set to
0, i.e. WA

to
=WB

to
=WA

ho
= WB

ho
= 0. Corresponding to

a change in a predicted event time value in Figure 4(b),
the value is propagated towards other pseudo compo-
nents to the right, and a chain reaction is initiated. In
this section, the symbol \!" represents the propaga-
tion of a predicted event time value. The event with
the earliest assertion time at an input i of a model C is
represented through tCi . Thus, for the event prediction
network in Figure 4(b),

1!WA
t2

tA
1
!WA

t1
WA
to
!WB

t2
tB
1
!WB

t1

WB
to
!WA

h2
tA
1
!WA

h1 WA

ho
!WB

h2
tB
1
!WB

h1

The execution of P 2EDAS is organized through the
following steps:
Step 1: Following the assertion of the external tran-

sitions at the primary inputs E1 and E2, the pseudo
components in the event prediction network are initi-
ated. New predicted event times (W values) are com-
puted, utilizing equation (4), and are shown on Figure 5;
the window of temporal independence values for models
A and B are computed utilizing equation (5).
Step 2: The Input events to models A and B

with assertion times less than 9ns and 10ns, respec-
tively, may be executed. A and B may execute
concurrently. Figure 6 describes the state of the sub-
circuit prior to execution. First, the high to low
transition at time 0ns at the input of model A is
executed. The execution of A generates an output
event: Ao = (0 NAND 1) =) 10 " : Since the cur-
rent logical value at A is 0, the output event queue

of A will contain a low to high transition for time
tAo = 10. Simultaneous with the execution of A,
the high to low transition at the input of B is exe-
cuted. The execution of B generates an output event:
Bo = (0 NAND 0) =) 14 " : Thus, the newly gen-
erated event is a low to high transition at tBo = 14.
Since the current logical value at the output of model
B is already high, the generated event is deleted. The
output event queue of B is empty and tBo is reset to1.

The processed input transitions are deleted. For the
input event queue of A, E1 = 5 " de�nes the sub-
sequent transition. For the input event queue of B,
E2 = 7 " de�nes the subsequent transition. Both of
these transitions may be executed, concurrently, since
their times are de�ned within the respective twin val-
ues. The execution of A generates an output event:
Ao = (1 NAND 0) =) 10 # : The previously gener-
ated event, stored in the output event queue of A, is
thus rendered inconsistent. The newly generated out-
put event of A is also discarded since its logical value
is indistinguishable from the current logical value at the
output of A. Therefore, the output event queue of A

is empty and tAo is set to1. The execution of B gener-
ates an output event: Bo = (1 NAND 0) =) 17 "
which is also indistinguishable from the current logical
value at the output of B. This event is deleted and tBo
remains at 1.
Step 3: The processed input transitions are deleted.

For the input event queue of A, E1 = 15 " de�nes the
subsequent transition. For the input event queue of B,
E2 = 16 " de�nes the subsequent transition. Neither
of these transitions may be executed since they exceed
the respective twin values. For further execution of the
models, the event prediction network must execute and
update the twin values. The state of the subcircuit is
shown in Figure 7.
Step 4: The event prediction network is initiated

which utilizes the fact that the transitions E1 = 15 "
and E2 = 16 " are asserted at the respective input ports
of the models, i.e., tA

1
= 15! WA

t1
;WA

h1
tB
1
= 16!

WB
t1
;WB

h1
: The execution of the event prediction net-

work is shown in Figure 8.
In the event prediction network, the predicted event

times, WA
to
, WB

to
, WA

ho
, and WB

ho
are recomputed, as

shown on Figure 8. As a result, the window of temporal
independence values for models A and B are computed
utilizing equation (5) and also shown on Figure 8. Thus,
tAwin = 21! A and tBwin = 25! B.

Owing to space constraints were unable to show all
steps of execution. It is easy however, to follow the al-
gorithm discussed and eventually show that the output
waveforms of the circuit will be as shown in �gure 9.

4 Conclusions

This paper has presented an asynchronous, dis-
tributed discrete event simulation algorithm for behav-
ior simulation, P 2EDAS, that permits the use of any
number of non-zero propagation delays for every path

At

Bt
A
h

B
h1

2

1

2
1

2

1

2

1

W
B

to

W
B

to

t
E1

t
E2

t
E2

t
E1

W
A

toW
A

t2

W
A

hoW
A

h2

W
B

h1
W
A

h1

W
B

h2
W
B

t2

W
B

t1
W
A

t1

T
pLH

= 10

T
pHL

= 5

Gate Inertial delays

T
pLH

= 10

T
pHL

= 5

Gate Inertial delays

A

B
5 15

74

0

16

'0'

'1'

E2

E1

t
B

win
= 0

t
A

win
= 0

A

B
5 15

74

0

16

'0'

'1'

E2

E1

t
B

win
= 0

t
A

win
= 0

(a)

(b)

Figure 4: Example Circuit and Event Prediction Network

= min(4 + 5;5 + 10;1)

= 9(changed) ! W
A

h2

W
B

to
= min(4 + delay(1; o; "1");W

B

t2
+ delay(2; o;"1"); t

B

o
)

At

Bt1

2

1

2

1

W
B

to

4

0

= min(4 + 5; 5 + 10;1)

= 9(changed) !W
A

h2

A
h

B
h

1

2

1

2

W
A

h2

0

4

W
B

ho

W
A

to
W
B

t2W
A

t2

W
A

ho

W
B

to
= min(4 + delay(1; o;"1");W

B

t2
+ delay(2; o;"1"); t

B

o
)

W
A

to
= min(0 + delay(1; o;"0");1 + delay(2; o;"0"); t

A

o
)

W
B

h2

W
B

h1W
A

h1W
A

t1

W
B

t1

W
A

ho
= min(0 + delay(1; o; "0");W

A

h2
+ delay(2; o;"0"); t

A

o
)

= 10(changed) ! W
B

h2

= min(0 + 10; 9 + 10;1)

By eqauation (5) : t
A

win
= min(1; 9) = 9 ! A

t
B

win
= min(1; 10) = 10 ! B

= 10(changed) ! W
B

t2

= min(0 + 10;1 + 10;1)

Figure 5: [Step 1] Execution of pseudo components

between the input and output of every hardware entity,
while allowing detection and preemption of inconsistent
events. P 2EDAS is capable of concurrently executing
VHDL models and hardware descriptions in any hard-
ware description language, on parallel processors. This
paper has presented a detailed description of the algo-
rithm. An implementation of P 2EDAS on a network
of workstations, con�gured as a loosely-coupled parallel
processors, is currently under progress.

References

[1] The Institute of Electrical and Electronic Engi-
neers, IEEE Standard VHDL Language Reference Manual,
ANSI/IEEE Std 1076-1993, IEEE, New York, NY, April 14,
1994.

[2] R. DeVries, \Reducing null messages in Misra's dis-
tributed discrete event simulation method," IEEE Trans-
actions on Software Engineering, Vol. 16, No. 1, January
1990, pp. 82-91.

[3] D. A. Reed and A. Malony, \Parallel discrete event sim-

ulation: The Chandy-Misra Approach", Proceedings of the
SCS Multiconference on Distributed Simulation, 3-5 Febru-
ary 1988, San Diego, California, pp.8-13.

[4] E. Debenedictis, S. Ghosh, and M.-L. Yu, \An Asyn-
chronous Distributed Discrete Event Simulation Algorithm
for Cyclic Circuits using Data-ow Network," IEEE Com-
puter, Vol. 24, No. 6, June 1991, pp. 21-33.

[5] S. Ghosh and M.-L. Yu, \A Preemptive Scheduling Mech-
anism for Accurate Behavioral Simulation of Digital De-
signs," IEEE Transactions on Computers, Vol. 38, No. 11,
November 1989, pp. 1595-1600.

A

B
5 15

74

0

16

'0'

'1'

E2

E1

t
A

win
= 9

t
B

win
= 10

Figure 6: [Step 2] Models A and B receives new window of temporal independence values

A

B
15

16

'0'

'1'

E2

E1

t
A

win
= 9 t

B

win
= 10

Figure 7: [Step 3] State of subcircuit following parallel execution of models A and B.

At

Bt1

2

1

2

1

16

15

= 21(changed) ! W
A

h2

= min(16 + 5;25 + 5;1)

25
A
h

B
h

1

2

1

2

21
25

21

16

15

W
B

to
= min(16 + delay(1; o; "1");W

B

t2
+ delay(2; o;"1"); t

B
o
)

W
A

to
= min(15 + delay(1; o; "0");1 + delay(2; o;"0"); t

A
o
)

= min(16 + 5;25 + 5;1)

= 21(changed)

W
A

ho

= min(15 + delay(1; o;"0");W
A

h2

+ delay(2; o;"0"); t
A

o
)

W
B

ho
= min(16 + delay(1; o;"1");W

B

t2
+ delay(2; o;"1"); t

B

o
)

= min(15 + 10;1 + 10;1)

= 25(changed) ! W
B

t2

= 25(changed) ! W
B

h2

= min(15 + 10; 21 + 10;1)

By equation (5): t
A

win
= min(1; 21) = 21! A

t
B

win
= min(1; 25) = 25 ! B

Figure 8: [Step 4] Execution of the event prediction network

T
pLH

= 10

T
pHL

= 5

Gate Inertial delays

A

B
5 15

74

0

16

E2

E1

'0'

'0'

'1'

'1'

25

0

0

input waveforms

output waveforms

t
B

win
= 1t

A

win
=1

Figure 9: Final state and input/output waveform generated by subcircuit execution

	DAC95
	Front Matter
	Table of Contents
	Session Index
	Author Index

