
On Synthesis-for-Testability of Combinational Logic Circuits

Irith Pomeranz and Sudhakar M. Reddy +

Electrical and Computer Engineering Department
University of Iowa

Iowa City, IA 52242

Abstract
We propose a synthesis method that modifies a given circuit to
reduce the number of gates and the number of paths in the cir-
cuit. The synthesis procedure is based on replacing subcircuits
of the given circuit by structures called comparison units. Com-
parison units are fully testable for stuck-at faults and for path
delay faults. In addition, they have small numbers of paths and
gates. These properties make them effective building blocks for
synthesis of testable circuits. Experimental results demonstrate
reductions in the number of gates and paths and increased path
delay fault testability. The random pattern testability for stuck-at
faults remains unchanged.

1. Introduction
In this work, we define a special class of functions, called com-
parison functions. Informally stated, a comparison function is a
function that can be specified by providing a permutation X of its
inputs and two bounds, L and U. Under the permutation X, every
minterm where the function assumes the value 1 has a decimal
value between L and U. Comparison functions have the property
that they can be implemented by circuits referred to here as com-
parison units, which are efficient in terms of the number of gates
they require, have a small number of paths going through them,
and all the path delay faults in them are robustly testable. Hence
the usefulness of comparison functions in synthesizing area
efficient circuits which are highly testable.

Comparison functions are utilized in this work to reduce
the gate count and the path count of combinational circuits
through local circuit modifications. Subcircuits realizing com-
parison functions are identified and replaced by comparison units
whenever such a replacement reduces the number of paths or the
number of gates in the circuit. Area reduction by local circuit
modifications was considered in [1-3]. Local modifications to
enhance testability for path delay faults were considered in [4-6].
The advantage of comparison functions in this respect is that
they provide a simple and uniform method of selecting which
subcircuits should be modified and what their new structure is.
In addition, significant reductions in the number of paths are
achieved, which are larger than any reductions reported else-
where. Experimental results demonstrate that the reduction in the
number of paths results mainly in reducing the number of unte-
stable path delay faults. Thus, the path delay fault testability is
enhanced. In addition, the random pattern testability of the cir-
cuit does not deteriorate.

+ Research supported in part by NSF Grant No. MIP-9220549, and in part

by NSF Grant No. MIP-9357581

The motivation for the reduction of gate count or area is
straightforward. Next, we consider the motivation for reducing
the number of paths. The path delay fault model was proposed
to model defects that change the timing behavior of a circuit [7].
It is the most general of all delay fault models, since it models
distributed as well as localized excessive delays. However, three
problems are associated with this fault model, that prevent test
generation procedures from achieving complete or close-to-
complete fault coverage. (1) The number of paths (and therefore
the number of path delay faults) in practical circuits may be very
large [8]. (2) The number of tests to detect all path delay faults
may be very large [5]. (3) Many path delay faults in practical
circuits are not testable [9].

The problem of handling large numbers of paths was
alleviated in part by the non-enumerative methods of [8,10],
however, even using these techniques, the fault coverage for
large circuits is very low. This is due in part to the large number
of tests to detect all faults, and in part to the fact that many of the
faults are untestable. In [11,12] it was shown that some path
delay faults do not have to be tested, as correct speed of opera-
tion can be guaranteed by testing other faults. However, even
when using this approach, the fault coverage obtained is some-
times low. In [13], a test-point insertion method to increase the
testability of a circuit to path delay faults was presented. How-
ever, test-point insertion has the disadvantages of area and test
application overheads, especially if a large number of test-points
is needed to achieve the desired fault coverage. All the methods
above, as well as test generation and fault simulation methods,
can benefit from a reduction in the number of paths in the circuit
under consideration. This is achieved by the proposed circuit
modification procedure based on comparison functions. More-
over, experimental results show that a significant reduction in the
number of untestable paths is achieved, whereas the number of
testable paths increases. Thus, the fault coverage of path delay
faults is significantly increased. The random pattern testability
for stuck-at faults remains unchanged. This is important since
resynthesis could cause the random pattern testability to
deteriorate [16].

The paper is organized as follows. The required back-
ground is presented in Section 2. Comparison functions, circuits
to implement them and their relationship to threshold functions
are described in Section 3. In Section 4 we describe resynthesis
procedures based on comparison functions. Experimental results
are presented in Section 5. Section 6 concludes the paper.

2. Preliminaries
To compute the number of paths in a given circuit, we use the
following procedure [8]. The procedure attaches a label Np(g) to
each line g, equal to the number of paths from the primary inputs
to line g. The procedure starts by assigning to every primary
input the label 1. It then proceeds from inputs to outputs. The

32nd ACM/IEEE Design Automation Conference
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission. 1995 ACM 0-89791-756-1/95/0006 $3.50

output of a gate is labeled by the sum of its input labels. This is
because for every path from a primary input to any of the gate
inputs there is also a path from the same primary input to the
gate output, and no other paths to the gate output exist. A fanout
branch is labeled by the same label assigned to its stem. The total
number of paths is equal to the sum of the primary output labels.
The complete procedure is given next. We assume that the
number of lines in the circuit is NL , and that they are indexed
1,2, . . . ,NL in BFS order from inputs to outputs.
Procedure 1: Computing the number of paths
(1) Assign all the primary inputs the label Np = 1. Set g = 1
(2) If line g is the output of a gate with inputs {gi:1≤i≤k}

labeled {Np(gi):1≤i≤k}, then label line g by
i =1
Σ
k

Np(gi).

(3) If line g is a fanout branch of a stem g′ labeled Np(g′),
label line g by Np(g′).

(4) Set g = g +1. If g ≤ NL , go to Step 2.
(5) The total number of paths is Σ{Np(i): i is a primary out-

put}.
One of the goals of this work is to reduce the number of

paths in a circuit by performing local modifications. To demon-
strate the effect that such modifications can have on the number
of paths, consider a k-input single-output subcircuit C′ with
inputs {gi:1≤i≤k} and output g. Suppose that inside C′, there are
Kp(gi) paths from gi to g. Then the number of paths from the pri-

mary inputs to g can be expressed as Np(g) =
i =1
Σ
k

Np(gi).Kp(gi). If

we change the structure of C′ (without changing the rest of the
circuit) such that smaller values of Kp(gi) would correspond to
larger values of Np(gi), then we reduce the number of paths to g,
and consequently, the total number of paths in the circuit. The
following example demonstrates this point.
Example : Consider the 4-input, single-output function f 1 that
has the following two (equivalent) minimal sum-of-products
expressions.

f 1,1 = x
h

1x 2x 4+x 1x
h

2x
h

3+x 2x
h

3x 4

f 1,2 = x
h

1x 2x 4+x 1x
h

2x
h

3+x 1x
h

3x 4.
Kp(xi) is equal to the number of times xi or x

h
i appear in the

expression for f 1. Thus, for the first implementation f 1,1 ,
Kp, 1(x 1) = 2, Kp, 1(x 2) = 3, Kp, 1(x 3) = 2 and Kp, 1(x 4) = 2. For
the second implementation f 1,2 we have Kp, 2(x 1) = 3, Kp, 2(x 2) =
2, Kp, 2(x 3) = 2 and Kp, 2(x 4) = 2. Suppose that f 1 is imple-
mented by a subcircuit C′ embedded in a circuit C. Let Np(x 1) =
10, Np(x 2) = 100, Np(x 3) = 20 and Np(x 4) = 20. Since
Kp, 1(x 1) < Kp, 2(x 1), Kp, 1(x 2) > Kp, 2(x 2), Kp, 1(x 3) = Kp, 2(x 3),
Kp, 1(x 4) = Kp, 2(x 4) and Np(x 1) < Np(x 2), the second implemen-
tation will result in a smaller number of paths. Specifically,
under the first implementation, Np(f 1,1) = 2.10 + 3.100 + 2.20 +
2.20 = 400, and under the second implementation Np(f 1,2) = 3.10
+ 2.100 + 2.20 + 2.20 = 310. `

The problem of reducing the number of gates (paths) by
local circuit modifications is the following. Given a circuit C,
find a set of subcircuits C′1,C′1, . . . ,C′k of C and a set of subcir-
cuits D′1,D′1, . . . ,D′k , such that if C′i is replaced by D′i ,
1 ≤ i ≤ k, then the function implemented by the circuit C does
not change and the number of gates (paths) in C is minimized.

To simplify the problem, we impose the following con-
straints.
(1) We require that C′i and D′i would implement the same

function. This ensures that the subcircuits can be selected

independently.
(2) We set an upper limit on the number of inputs to a subcir-

cuit C′i that would be considered for replacement. This
restricts the complexity of the search for C′i and its
replacement D′i .

(3) We restrict the structure of the replacement subcircuit D′i ,
as explained below. This reduces the complexity of the
search for D′i .
In selecting the structure of D′i , our main objective is to

obtain a structure that is fully testable, and has a small number of
gates and a small number of paths through it. The structure is
introduced in the following section.

3. Comparison functions
In this section, we introduce the class of comparison functions.
We consider their implementation by a comparison unit that has
at most two paths from any one of its inputs to its output. We
also consider special cases where the number of paths from cer-
tain inputs of a comparison unit to its output is lower than two.
We demonstrate that comparison units are fully robust-testable
for path delay faults. Finally, we consider the identification of
comparison functions.

3.1 Definition and implementation
Comparison functions are defined as follows.
Definition 1: Let (x 1,x 2, . . . ,xn) be a permutation of the input
variables {y 1,y 2, . . . ,yn} of a function f (y 1,y 2, . . . ,yn). Let
the minterms where f (x 1,x 2, . . . ,xn) = 1 be M =
{m 1,m 2, . . . ,mk}, where mi is given in decimal form (e.g., the
minterm 00110 of a 5-input function has the decimal value 6).
Then the function f (y 1,y 2, . . . ,yn) is said to be a comparison
function if there exists a permutation (x 1,x 2, . . . ,xn) and two
integers L and U, such that m ∈ M if and only if L ≤ m ≤ U. `

The basic building blocks for implementing a comparison
function are referred to as comparison blocks. There are two
types of comparison blocks, the ≥L block and the ≤U block. A
≥L block produces the output 1 when supplied with an input
combination whose decimal value is larger than or equal to L. A
≤U block produces the output 1 when supplied with an input
combination whose decimal value is smaller than or equal to U.
The implementation of ≥L and ≤U blocks is considered below.
The following example shows how these blocks can be used to
implement a comparison function using a structure called a com-
parison unit. Note that we use x 1 as the most significant bit and
xn as the least significant bit.
Example : Consider the 4-input, single-output function
f 2(y 1,y 2,y 3,y 4) which is 1 for minterms {0001, 0101, 0110,
1001, 1010, 1110} or in decimal form, {1, 5, 6, 9, 10, 14}. Con-
sider the permutation (x 1,x 2,x 3,x 4), where x 1 = y 4, x 2 = y 3,
x 3 = y 2 and x 4 = y 1. The function f (x 1,x 2,x 3,x 4) is 1 for the
minterms {0101,0110,0111,1000,1001,1010}. In decimal form
we have {5,6,7,8,9,10}, i.e., all the minterms between 5 and 10
(inclusive). The function can be implemented by the structure
shown in Figure 1. In this implementation, f 2 = 1 if and only if
an input combination m is applied, such that 5 ≤ m ≤ 10. In this
case, L = 5 = (0101) and U = 10 = (1010). `

The structure shown in Figure 1 is referred to as a com-
parison unit. An implementation of a ≥L block is shown in Fig-
ure 2(a) for L = (l 1l 2

. . . ln). The gate types in Figure 2(a) are
determined as follows.

Gi =
I
K
LOR

AND

if li = 0

if li = 1

≥5

x 1 x 2 x 3 x 4

≤10

x 1 x 2 x 3 x 4

f 2

Figure 1: The implementation of f 2
The gate Gn is replaced by a direct connection to xn when ln = 1,
and replaced by the constant 1 when ln = 0. In both cases, Gn is
omitted. Additional gates may then be omitted. For illustration,
the implementation of a ≥L block is shown in Figure 3(a) for
L = 3 = (0011). It can be seen that if x 1 = 1 or x 2 = 1, then the
input combination represents a number larger than 3 and the out-
put is 1, as required. If x 1 = x 2 = 0, then the output is 1 only if
x 3 = x 4 = 1. The implementation of a ≥L block for
L = 12 = (1100) is shown in Figure 3(b). This block demon-
strates how the rightmost gates are omitted when the lower
bound ends with 0s. Any input combination where x 1 = x 2 = 1
is larger than or equal to 12 and produces a 1 output.

G 1
. . . Gn −1 Gn

x 1 xn −1 xn

1

≥L

(a) The ≥L block

G 1
. . . Gn −1 Gn

x 1 xn −1 xn

1

≤U

(b) The ≤U block
Figure 2: Implementations of the ≥L and ≤U blocks

An implementation of a ≤U block is shown in Figure 2(b)
for U = (u 1u 2

. . . un). The gate types in Figure 2(b) are deter-
mined as follows.

Gi =
I
K
LOR

AND

if ui = 1

if ui = 0

The gate Gn is replaced by an inverter driven by xn when un = 0,
and replaced by the constant 1 when un = 1. Additional gates
may then be omitted. For illustration, the implementation of a
≤U block is shown in Figure 3(c) for U = 12 = (1100). It can be
seen that if x 1 = 0 or x 2 = 0, then the output value is 1, as
required. If x 1 = x 2 = 1, then the output is 1 only if x 3 = x 4 = 0.
The implementation of a ≤U block for U = 3 = (0011) is shown
in Figure 3(d). This block demonstrates how the rightmost gates
are omitted when the lower bound ends with 1s.

Next, we consider the number of paths through the com-
parison blocks. From Figure 2 it can be seen that there is at most
one path from an input xi to the output of a comparison block.

x 4x 3x 2x 1

≥3
(a) The ≥3 block

x 2x 1

≥12
(b) The ≥12 block

x 4x 3x 2x 1

≤12
(c) The ≤12 block

x 2x 1

≤3
(d) The ≤3 block

Figure 3: Implementations of the ≥3, ≥12, ≤12 and ≤3 blocks
Comparison units have the structure shown in Figure 1. In a
comparison unit there are at most two paths from any input to
the output of the unit. Thus, a comparison unit can be used to
reduce the number of paths for subcircuits that have larger
numbers of paths through them. Depending on L and U, an input
may be omitted altogether from the corresponding comparison
block, as shown in Figure 3(b,d). Thus, there may be only one
path, or no paths at all from an input of a comparison unit to its
output. Additional special cases exist, where the number of
paths for some of the inputs is lower than two. These cases are
considered in the following subsection.

The longest path through a comparison block has at most
n two-input gates, where n is the number of inputs of the com-
parison function. Special cases exist as demonstrated in Figures
3(b,d) and as discussed in Subsection 3.2 below. In addition,
when k consecutive gates have the same type, they can be com-
bined into a k +1 input gate. For example, a ≥7 comparison unit
is shown in Figure 4, where the two rightmost AND gates are
combined into a single three-input gate. During the synthesis
process, the number of logic levels can be kept low by consider-
ing comparison functions with small numbers of inputs. Experi-
mental results presented in Section 5 show that the resynthesized
circuits have similar delays to the original circuits.

x 1 x 2 x 3 x 4

≥7

Figure 4: A comparison block for L = 7.
It is possible to implement any given function f as

f = f 1+ f 2+ . . . + fk , where fi is a comparison function for every
1 ≤ i ≤ k. This can be accomplished by partitioning the set of
minterms of f into subsets, each covered by a different function
fi . The function f can then be implemented using k comparison
units driving an OR gate. In this work, we consider only com-

parison functions, that can be implemented by a single com-
parison unit.

Finally, we consider the relationship between comparison
functions and threshold functions [14]. Consider a comparison
function with input permutation (x 1,x 2, . . . ,xn) and bounds L
and U. The ≥L comparison block can be implemented by a
threshold function with a weight 2n −i assigned to xi and with a
threshold value T = L. This function would produce an output 1
iff the corresponding input combination is larger than or equal to

L (i.e.,
i =1
Σ
n

xi2
n −i ≥ L), as required. Instead of the ≤U block it is

possible to use a ≥U +1 block implemented by a threshold func-
tion with the same weights as above and with T = U +1. The
complemented output of the ≥U +1 block is then equivalent to
the output of a ≤U block. This output and the output of the ≥L
block can be ANDed to obtain the required function.

3.2 Special cases
In this section, we consider several special cases that simplify
the comparison units.

3.2.1 Free variables
Let f (x 1,x 2, . . . ,xn) be a comparison function with a lower
bound L = (l 1l 2

. . . ln) and an upper bound U = (u 1u 2
. . . un).

We define the set of free variables as follows.
Definition 2: XF = {x 1,x 2, . . . ,xF} is a set of free variables if
li = ui for every 1 ≤ i ≤ F.

For example, consider a four-input comparison function
with L = 5 = (0101) and U = 7 = (0111). Then XF = {x 1,x 2}.
The values of the free variables of a function f are the same for
every minterm that sets f to 1. As a result, f can be implemented
using the structure shown in Figure 5. The ≥LF and the ≤UF
blocks have n −F inputs, with LF = (lF +1lF +2

. . . ln) and
UF = (uF +1uF +2

. . . un). The F free variables drive the output
AND gate directly (if their value is 1 in L and U) or through an
inverter (if their value in L and U is 0). The number of paths
from a free variable to the output of a comparison unit is one.

≥LF

. . .

xF +1 xF +2 xn

≤UF

. . .

xF +1 xF +2 xn

f
...

x 1 or x
h

1

xF or x
h

F

Figure 5: A function with free variables

3.2.2 Trivial lower or upper bounds
Let f (x 1,x 2, . . . ,xn) be a comparison function with a lower
bound L = (l 1l 2

. . . ln) and an upper bound U = (u 1u 2
. . . un).

Let XF = {x 1,x 2, . . . ,xF} be free variables. Let mF be the min-
term m restricted to the non-free variables, i.e., mF is defined
over variables xF +1, . . . ,xn .

Suppose that LF = (lF +1lF +2
. . . ln) = (00 . . . 0). Then any

minterm mF is larger than or equal to the lower bound LF . In

this case, the ≥LF block can be omitted. The number of paths
from every input of the comparison unit to its output is at most
one in this case.

Suppose that UF = (uF +1uF +2
. . . un) = (11 . . . 1). Then

any minterm mF is smaller than or equal to the upper bound UF .
In this case, the ≤UF block can be omitted. The number of paths
from every input of the comparison unit to its output is at most
one in this case.

If LF = (00 . . . 0) and UF = (11 . . . 1), then the function f
can be implemented by a single AND gate driven by the free
variables. This case occurs when f has a single prime implicant.
For example, if f (y 1y 2y 3) = y 1y 3, then we use the permutation
x 1 = y 1, x 2 = y 3 and x 3 = y 2. Under this permutation, L = 6 and
U = 7. We obtain the set of free variables XF = {x 1,x 2}, with
LF = (0) and LU = (1). Every minterm mF is between 0 and 1,
therefore, the function is implemented by a single AND gate
driven by x 1 and x 2 (or y 1 and y 3).

3.3 Testability of comparison units
In this subsection, we demonstrate that comparison units imple-
mented according to Figure 5 (i.e., where the free variables drive
the output AND gate) are fully robustly testable for path delay
faults. The complete proof is omitted for space considerations.
Let f be a comparison function with inputs {x 1,x 2, . . . ,xn},
L = (l 1l 2

. . . ln) and U = (u 1u 2
. . . un), and let the set of free

variables be XF = {x 1,x 2, . . . ,xF}. To describe two-pattern tests
for path delay faults, we use the values 000 and 111 to denote
stable 0 and 1 values, respectively, and we use 0x 1 and 1x 0 to
denote rising transitions and falling transitions, respectively. We
demonstrate the construction of a complete test set in the follow-
ing example.
Example : Consider the comparison unit shown in Figure 6. In
this case, L = 11, U = 12, XF = {x 1}, LF = 3 and UF = 4.
To test the path delay faults starting from x 1, we set x 1 = 1x 0 or
x 1 = 0x 1 (depending on the fault). To set the other two inputs of
the AND gate to 111, we apply to (x 2x 3x 4) an input combination
between 3 and 4. In this example, we apply 3, or (000,111,111).
To test the path delay faults starting from x 2 and going through
the ≥LF block, we set x 2 = 0x 1 or x 2 = 1x 0. To propagate the
fault, we set x 3 = x 4 = 000. This corresponds to the smallest pos-
sible decimal value that propagates the transition on x 2 to the
output and it results in the output of the ≥UF block being 111
(larger decimal values may not yield 111 on the output of the
≥UF block). In addition, we set x 1 = 111.
To test the path delay faults starting from x 3 and going through
the ≥LF block, we set x 3 = 0x 1 or x 3 = 1x 0. To propagate the
fault, we set x 2 = 000 and x 4 = 111. This results in the output of
the ≥UF unit being 111. In addition, we set x 1 = 111.
The remaining tests are derived in a similar way. The complete
test set is shown in Table 1. `

Table 1: An example of a test set

fault x 1 x 2 x 3 x 4iii
x 1 0x 1,1x 0 000 111 111iii

x 2,≥LF 111 0x 1,1x 0 000 000
x 3,≥LF 111 000 0x 1,1x 0 111
x 4,≥LF 111 000 111 0x 1,1x 0iii
x 2,≤UF 111 0x 1,1x 0 111 111
x 3,≤UF 111 111 0x 1,1x 0 000
x 4,≤UF 111 111 000 0x 1,1x 0cc

c
c
c
c
c
c
c
c

x 2 x 3 x 4 x 2 x 3 x 4

x 1

Figure 6: An example of testing a comparison unit
3.4 Identifying comparison functions
The following procedure is a straightforward method to deter-
mine whether a function f is a comparison function. For every
permutation (x 1,x 2, . . . ,xn) of the variables of f, obtain the min-
terms where f (x 1,x 2, . . . ,xn) = 1. If all these minterms have
consecutive decimal numbers, then f is a comparison function.
The complexity of this procedure is O (n!.2n), where n is the
number of variables of f. The term n ! results from the worst case
where all n ! permutations of the variables of f have to be con-
sidered. The term 2n results from considering the minterms
where f = 1. For functions with small numbers of inputs, this
procedure accurately determines whether the function is a com-
parison function. It is possible to remove the n ! complexity term
and obtain a procedure applicable to functions with larger
numbers of inputs by formulating the problem as a Hamiltonian
path problem and using heuristics to find an appropriate solution.
Since the comparison functions we consider in our experiments
are small we omit the details of this procedure.

4. Circuit optimization
In this section we consider the problem of reducing the number
of gates and the problem of reducing the number of paths in a
given gate-level circuit by using comparison functions.

4.1 Reducing the number of gates
The general form of the procedure is as follows. The procedure
traces the circuit from the primary outputs towards the primary
inputs. Every gate-output g in the circuit is considered, except
for gate-outputs that become internal to comparison units already
selected. For every gate-output g considered, we derive several
subcircuits with output g as explained below. For each subcircuit
C′ with inputs I′, we check whether the function f ′(I′) that C′
implements on g is a comparison function. If f ′ is not a com-
parison function, then C′ is discarded. Otherwise, we compute
the number of gates in a comparison unit implementing f ′,
denoted N′. We compare this number to the number of gates
currently implementing f ′, denoted N. In computing N, we take
into account the fact that some of the gates may fan out, and thus
may be common to f ′ and to other subfunctions. Such common
gates are not included in the count N, since they cannot be
removed even if C′ is replaced by a comparison unit. We then
select the comparison unit that results in the largest reduction in
the number of gates and replace C′ by it. If a choice exists, we
select the comparison unit that results in the smallest number of
paths on g. To ensure that a comparison function always exists
and that the number of gates is never increased, the set of subcir-
cuits considered for line g always contains a subcircuit
comprised of the single gate with output g. The procedure is
summarized next.

Procedure 2: Reducing the number of gates
(1) Mark all the primary outputs and unmark all other lines.

Set g = NL , where NL is the number of circuit lines.
(2) If line g is a marked gate-output:

(a) Find all candidate subcircuits with output g. For
every candidate subcircuit C′:

If C′ does not implement a comparison func-
tion, then eliminate C′. Otherwise, compute
the reduction in the number of gates if C′ is
replaced by a comparison unit, N−N′.

(b) For every subcircuit C′ that results in the max-
imum reduction in the number of gates, compute
the number of paths on g if C′ is replaced by a
comparison unit.

(c) Select the subcircuit C′ that results in the max-
imum reduction in the number of gates and the
minimum number of paths on g.

(d) Mark that C′ is selected and mark all the inputs of
C′ which are not primary inputs (such lines will
be considered in Step 2).

(3) Set g = g −1. If g >0 go to Step 2.
Next, we describe the computation of all the candidate

subcircuits with a given output g. The computation starts with
the subcircuit C 0 containing the gate that line g is its output. Let
the i-th subcircuit obtained be Ci . Let Ii be the set of inputs of
Ci . For every line h ∈ Ii such that h is the output of gate H, we
define a subcircuit Ck = Ci∪{H}. If the number of inputs of Ck

does not exceed a predetermined limit K, Ck is also used to gen-
erate new subcircuits. The process ends when no new subcircuits
can be generated. Values of K = 5,6 were found to be useful in
our experiments.

After Procedure 2 is applied, a new gate-level circuit is
generated and Procedure 2 is applied to the new circuit. This is
repeated until no additional reduction in the number of gates is
possible.

4.2. Reducing the number of paths
The general form of the procedure for reducing the number of
paths is similar to Procedure 2. The procedure is referred to as
Procedure 3. In Procedure 3, C′ is selected as the subcircuit that
yields the smallest number of paths to g. We do not use the
number of gates as a secondary objective in Procedure 3, since
our experimental results indicate that it does not improve the
results obtained. Procedure 3 is applied repeatedly until no more
improvements in the number of paths are possible.

4.3 Combined measures
The circuit optimization problem considered here has two
dimensions, the number of gates and the number of paths. Every
circuit equivalent to the given circuit corresponds to a point in
the solution space. Procedures 2 and 3 search for the extreme
points in this space, corresponding to the minimum number of
gates and the minimum number of paths, respectively. It is also
possible to search for points in between by minimizing the
number gates and the number of paths simultaneously. This can
be accomplished by selecting subcircuits that yield the maximum
improvement in a measure that is based both on the number of
paths and on the reduction in the number of gates. Our goal in
this work is to exhibit the extreme points that can be achieved
and we do not pursue the possibility of optimizing both parame-
ters at the same time.

5. Experimental results
We applied Procedures 2 and 3 to irredundant, fully-scanned
ISCAS89 benchmark circuits that have more than 10,000 paths.
Irredundant circuits were obtained using the procedure of [15].
Comparison functions were identified by trying up to 200 permu-
tations of the inputs and checking whether either the minterms
where the function is 1 or the minterms where the function is 0
are consecutive. In the latter case, f ′ was implemented as a com-
parison function and f was obtained by complementing the com-
parison unit output.

To measure the change in the number of gates due to Pro-
cedure 2, we count the number of equivalent two-input gates. A
k-input gate can be implemented as an interconnection of k −1
2-input gates, and therefore adds k −1 to the gate count. We used
equivalent 2-input gates to ensure that the way in which gates
with large numbers of inputs are implemented does not affect the
gate count. In addition, Procedure 2 uses the number of
equivalent two-input gates as its minimization criterion. For all
circuits, we considered subcircuits with up to K = 5 and up to
K = 6 inputs (in two separate experiments). We also considered
some of the smaller circuits with K = 7, but in the majority of
cases the results obtained were inferior to the results obtained
with K = 5 and K = 6. Low values of K have the advantage that
they have a small number of logic levels, thus, the total circuit
delay does not increase.

Several circuits turned out to contain redundant stuck-at
faults after applying Procedure 2. This is in spite of the fact that
the original circuits are irredundant and that comparison units are
fully testable for stuck-at faults when their inputs are indepen-
dently controlled. The reason for the existence of redundant
faults is as follows. Consider a subcircuit C with a set of inputs
I, replaced by a comparison unit D with the same set of inputs I.
Suppose that a stuck-at fault f in D requires a combination α on
I. Suppose in addition that α is not required on I for any fault in
C. If α cannot be obtained on I due to the logic driving it, then f
is redundant in the modified circuit even if the original circuit
was irredundant. Consequently, the redundancy removal pro-
cedure from [15] was applied after Procedure 2 whenever redun-
dant faults were found.

The results of Procedure 2 followed by redundancy remo-
val are reported in Table 2 in the following format. After circuit
name, we give the value of K for which the best modified circuit
was obtained. The numbers of two-input gates in the original
circuit, in the best modified circuit and in the modified circuit
after redundancy removal are given next. In the last column, we
give the number of paths in the original circuit, in the circuit
after modification and in the modified circuit after redundancy
removal. The results after redundancy removal are omitted if no
redundant stuck-at faults were found. It can be seen that the pro-
posed procedure consistently reduces the number of gates as well
as the number of paths. The reduction in the number of paths is
often very large. Redundancy removal has a minor effect on the
size of the resulting circuit, however, it is important to ensure
complete stuck-at fault testability.

For comparison purposes, we give in Table 3 under the
"RAMBO_C [1]" header the number of equivalent 2-input gates
and the number of paths in the circuits obtained after applying
the procedure of [1] to some of the circuits considered in Table
2. The procedure of [1] yields better gate reductions than the
procedure proposed here. However, the number of paths in the
circuits of [1] are higher in most cases, even higher than the ori-
ginal number of paths in three out of the four circuits used in this

Table 2: Results of Procedure 2

2-inp. gates paths
circuit(K) orig modif red.rem orig modif red.remiii
irs1423 (6) 491 490 488 42,089 37,293 37,278
irs5378 (6) 1394 1388 10,976 10,581
irs9234 (6) 1929 1784 1783 109,283 20,333 20,330
irs13207(6) 2737 2537 261,312 85,174
irs15850(6) 3361 3115 3107 23,003,369 3,635,532 3,584,511
irs35932(5) 9900 8497 58,645 20,898
irs38417(5) 9698 9344 9316 1,192,971 674,081 672,121
irs38584(5) 12037 11773 565,433 157,979cc

c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

experiment. We also applied Procedure 2 after the procedure of
[1] has been applied to further reduce the number of gates and at
the same time reduce the number of paths. The results are given
in Table 3 under the header "RAMBO_C+Proc.2". Here again
Procedure 2 consistently reduces the numbers of gates and paths.

Table 3: Comparison with [1]

orig RAMBO_C[1] RAMBO_C+Proc.2
circuit 2-inp paths 2-inp paths K 2-inp pathsiii
irs1423 491 42,089 448 54,596 6 448 50,000
irs5378 1394 10,976 1248 12,235 6 1242 11,552
irs9234 1929 109,283 1539 32,376 6 1497 23,133
irs13207 2737 261,312 2266 577,911 6 2171 163,525c

c
c
c
c
c
c

c
c
c
c
c
c
c

c
c
c
c
c
c
c

The reduction in the number of gates is not a direct meas-
ure of circuit size. To obtain a better estimate of the effect of the
proposed procedure on circuit size, we applied the technology
mapping procedure included in SIS to the original benchmark
circuits before and after Procedure 2 (cf. Table 2) and to the cir-
cuits after applying the procedure of [1] before and after apply-
ing Procedure 2 (cf. Table 3). Circuit parameters are shown in
Table 4. For each set of circuits considered we show the number
of literals and the number of gates on the longest path (indicating
the circuit delay). It can be seen that reductions in circuit size
are consistent with those of Tables 2 and 3, although the contents
of the technology library was not directly considered by the pro-
posed modification procedure. In addition, the length of the
longest path through the circuit does not increase with the appli-
cation of the procedure proposed here.

Table 4: Technology mapping
(a) Original circuits

original Proc.2
circuit literals longest literals longestii
irs1423 1035 72 1031 70
irs5378 2607 17 2610 16
irs9234 3817 30 3577 30
irs13207 5443 31 5004 31c

c
c
c
c
c
c

c
c
c
c
c
c
c

(b) Circuits after the procedure of [1]

RAMBO_C RAMBO_C+Proc.2
circuit literals longest literals longestiii
irs1423 959 68 956 66
irs5378 2413 20 2428 20
irs9234 3140 30 3090 30
irs13207 4591 35 4487 35c

c
c
c
c
c
c

c
c
c
c
c
c
c

The results of applying Procedure 3 that targets reduction
of the path count are shown in Table 5. It can be seen that the
number of paths is reduced more than in Table 2, however,
sometimes at the cost of increasing the number of gates.

Next, we report the effect of the proposed modifications
on the testability of the resulting circuits. Due to space con-
siderations, we consider only circuits synthesized by Procedure 2

Table 5: Results of Procedure 3

2-inp. gates paths
circuit(K) inp out orig modif orig modifiii
irs1423 (6) 91 79 491 503 42,089 35,810
irs5378 (6) 214 224 1394 1476 10,976 9,746
irs9234 (6) 247 248 1929 1981 109,283 19,842
irs13207(6) 699 788 2737 2606 261,312 85,151
irs15850(6) 611 680 3361 3690 23,003,369 2,875,815
irs35932(5) 1763 2048 9900 10850 58,645 20,898
irs38417(6) 1664 1742 9698 10825 1,192,971 624,779
irs38584(6) 1455 1700 12139 11953 565,433 156,201cc

c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

followed by redundancy removal using the procedure from [15].
We report only their random pattern testability for stuck-at faults
and for path delay faults.

To determine the stuck-at fault testability, we applied up
to 30,000,000 random patterns to the circuits under considera-
tion. We used the fault simulator FSIM [17] to obtain the fault
coverage. The results are reported in Table 6, as follows. After
circuit name, we give the number of stuck-at faults, the number
of faults that remained undetected after applying 30,000,000 ran-
dom patterns, and the last pattern that was effective in detecting
any fault in the original circuit. Then, we give the same informa-
tion for the modified circuit after redundancy removal. It can be
seen that the random pattern testability for stuck-at faults
remained unchanged after the modifications.

Table 6: Results for stuck-at faults

original modified
circuit faults remain eff.patt faults remain eff.pattiii
irs1423 1468 0 34656 1439 0 34656
irs5378 4500 0 114848 3515 0 114848
irs9234 5768 0 15606336 4672 0 15606336
irs13207 8813 0 333120 7452 0 333120
irs15850 10510 18 27884608 8795 16 27884608
irs35932 33174 0 256 26595 0 256
irs38417 30472 0 9485440 26002 0 9485440
irs38584 33536 9 25454368 30802 9 25454368cc

c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

Next we considered the robust path delay fault testability
of the circuits. The results of applying random patterns until no
change in fault coverage was obtained for 100,000 consecutive
random patterns are reported in Table 7 for the four versions of
irs 13207 considered in Tables 2 and 3. The last effective pat-
tern (i.e., the last pattern that detected any fault) is given under
column "eff". It occurred after the same number of patterns for
each pair of circuits, before and after modification. The number
of faults detected and the total number of faults are given in this
order under column "det/faults". We conclude that when the
number of path delay faults was reduced by ∆, the number of
undetected path delay faults was reduced by more than ∆. Thus,
the fault coverage increased significantly.

Table 7: Robust detection by random patterns in irs 13207

det/faults
circuit eff original modifiediii
original 131,000 7,304/522,624 8,324/170,348
RAMBO_C 132,000 7,459/1,155,822 8,096/327,050c

c
c
c
c

6. Concluding remarks
We defined a class of functions called comparison functions and
showed how they can be implemented using comparison units.
Comparison units are fully testable for stuck-at faults and for
path delay faults. In addition, comparison units have a small
number of paths through them. We proposed a method of modi-

fying a given circuit to reduce its size and enhance its path delay
fault testability by replacing subcircuits of the given circuit with
comparison units. Experimental results showed moderate reduc-
tions in the number of gates and significant reductions in the
number of paths in the circuits considered. It was shown that
most of the path delay faults removed were untestable by ran-
dom patterns. The random pattern testability properties of the
circuits to stuck-at faults remained unchanged.

Several issues remain to be investigated. (1) Combina-
tions of values that cannot be obtained due to logic dependencies
in the circuit can be used during the selection of comparison
units to ensure that all the faults in each comparison unit can be
tested. (2) Synthesis using multiple comparison units to replace
a given subcircuit can help reduce the number of gates and/or
paths even further.

References
[1] K.-T. Cheng and L. A. Entrena, "Multi-Level Logic Optimization

by Redundancy Addition and Removal", 1993 Europ. Conf. on
Design Autom., Feb. 1993.

[2] W. Kunz and P. Menon, "Multi-Level Logic Optimization by
Implication Analysis", in Proc. 1994 Intl. Conf. on Computer-
Aided Design.

[3] S. Muroga, Y. Kambayashi, H. C. Lai and J. N. Culliney, "The
Transduction Method - Design of Logic Networks Based on Per-
missible Functions", IEEE Trans. on Computers, Oct. 1989, pp.
1404-1424.

[4] K. Roy, K. De, J. A. Abraham, and S. Lusky, "Synthesis of delay
fault testable combinational logic," in Proc. Int. Conf. on
Computer-Aided Design, Nov. 1989, pp. 418-421.

[5] I. Pomeranz and S. M. Reddy, "On the Number of Tests to Detect
All Path Delay Faults in Combinational Logic Circuits", Techni-
cal Report No. 12-1-1992.

[6] H. Hengster, R. Drechsler and B. Becker, "Testability Properties
of Local Circuit Transformations with respect to the Robust
Path-Delay-Fault Model", in Proc. 7th Int. Conf. on VLSI
Design, Jan. 1994, pp. 123-126.

[7] J. D. Lesser and J. J. Schedletsky, "An experimental delay test
generator for LSI logic," IEEE Trans. Comput., vol. C-29, pp.
235-248, Mar. 1980.

[8] I. Pomeranz and S. M. Reddy, "An Efficient Non-Enumerative
Method to Estimate Path Delay Fault Coverage", Proc. Intl. Conf.
on Computer-Aided Design, 1992, pp. 560-567.

[9] C. J. Lin and S. M. Reddy, "On delay fault testing in logic cir-
cuits," IEEE Trans. CAD, pp. 694-703, Sept. 1987.

[10] I. Pomeranz, S. M. Reddy and P. Uppaluri, "NEST: A Non-
Enumerative Test Generation Method for Path Delay Faults in
Combinational Circuits", in Proc. 30th Design Autom. Conf,
1993, pp. 439-445.

[11] W. K. Lam, A. Saldanha, R. K. Brayton, A. L. Sangiovanni-
Vincentelli, "Delay Fault Coverage and Performance Tradeoffs",
in Proc. 30th Design Autom. Conf., 1993, pp. 446-451.

[12] K.-T. Cheng and H.-C. Chen, "Delay Testing for Non-Robust
Untestable Circuits", in Proc. Intl. Test Conf., Oct. 1993, pp.
954-961.

[13] I. Pomeranz and S. M. Reddy, "Design-for-Testability for Path
Delay Faults in Large Combinational Circuits Using Test-
Points", 31st Design Autom. Conf., June 1994, pp. 358-364.

[14] E. J. McCluskey, Logic Design Principles with Emphasis on
Testable Semicustom Circuits, Prentice-Hall, 1986.

[15] S. Kajihara, H. Shiba and K. Kinoshita, "Removal of Redun-
dancy in Logic Circuits under Classification of undetectable
Faults", Proc. 22nd Fault-Tolerant Computing Symp., July 1992,
pp. 263-270.

[16] C.-H. Chiang and S. K. Gupta, "Random Pattern Testable Logic
Synthesis", in Proc. 1994 Intl. Conf. on Computer-Aided Design,
Nov. 1994, pp. 125-128.

[17] H. K. Lee and D. S. Ha, "An Efficient, Forward Fault Simulation
Algorithm based on the Parallel Pattern Single Fault Propaga-
tion", in Proc. 1991 Intl. Test Conf., Oct. 1991, pp. 946-955.

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

