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Abstract | Recently, it has been shown in [1] and [2]
that in order to verify the correct timing of a manufactured
circuit not all of its paths need to be considered for delay
testing. In this paper, a theory is developed which puts
the work of these papers into a common framework, thus
allowing for a better understanding of their relation. In
addition, we consider the computational problem of identi-
fying large sets of such not-necessary-to-test paths. Since
the approach of [1] can only be applied for small scale cir-
cuits, we develop a new algorithm which trades quality of
the result against computation time, and allows handling of
large circuits with tens of millions of paths. Experimental
results show that enormous improvements in running time
are only paid for by a small decrease in quality.

I. Introduction

The purpose of delay testing is to ascertain that a manu-
factured digital circuit meets its timing speci�cations. Two
fault models have been proposed in this context, namely gate
delay [3] and path delay faults [4]. In this paper we will fo-
cus on path delay faults, which are more powerful since they
also model distributed defects. Test generation and fault sim-
ulation methods with respect to this fault model have been
studied considerably in the literature. (See for example [4],
[5], [6], [7], [8], [9], [10], [11], [12].)
A major problem in path delay fault testing is that the num-

ber of paths in a circuit is often extremely large. Thus, the
question of whether all of these paths must be tested in order
to verify the temporal correctness of a manufactured circuit is
of great interest. Two important results with respect to this
question have been reported recently. In [1] ([2]) the class of
robust dependent (functionally unsensitizable) paths has been
introduced, and it has been shown that these paths need not
be considered for the purpose of delay testing.
The contribution of this paper with respect to the above

work is twofold. First, a theory is developed that enables us
to put the results of [1] and [2] into a common framework,
and thus, helps for a better understanding of their relation.
Our approach is based on the idea of choosing for each input
vector v to circuit C a `stabilizing system', i.e. a subcircuit
Sv of C which can stabilize the primary outputs of C on their
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�nal (stable) values under v independent of the circuitry of
C not included in Sv. For a complete delay test of C, it can
be shown that it is su�cient to only check the logical paths
included in these stabilizing systems robustly. The remaining
paths which need not be tested form a robust dependent path
set (RD-set) as computed by the approach of [1]. They include
the functionally unsensitizable paths of [2] as a subset.

Usually, there is a huge number of di�erent possibilities for
choosing the stabilizing system Sv for a given input v. Thus,
we arrive at the optimization problem of selecting Sv for ev-
ery input v such that the overall set of logical paths which
need to be tested is minimized (the corresponding RD-set is
maximized). The second major contribution of this paper is
motivated by the fact that the procedure of [1] for identifying
a near maximum RD-set is very time and space consuming,
and thus, can only be applied for small scale circuits. (As an
example, for circuit c499 of the ISCAS85 benchmarks [13] this
algorithm was not able to complete in a running time of 69
hours on a SUN SPARC 10 workstation.) We will show that
the approach of [2] can be generalized leading to a much faster
algorithm for identifying large RD-sets. (For circuit c499 our
new algorithm runs less than 4 minutes, which corresponds
to a speed-up factor of over 1000 compared to the method of
[1].) This speed-up is achieved by considering only a restricted
search space for selection of the RD-set, and applying an ap-
proximation method for computing the elements of this set.
As a consequence, the savings in computation time are paid
by a decrease in quality of the result, i.e. size of the identi�ed
RD-set. Experimental results show that this loss in quality is
only small.

The paper is organized as follows: In Section II some basic
de�nitions concerning delay testing are reviewed. The theoret-
ical framework allowing for an easy comparison of the results
presented in [1] and [2] is developed in Section III. Section IV
shows how to generalize the methodology of [2] for fast RD-
set identi�cation. Heuristics for improving the quality of this
approach are discussed in Section V. Section VI gives experi-
mental results and compares them to the approach of [1].

II. Basic Definitions

We will restrict to single output combinational circuits in
the following. For multi output circuits the theory is applied
for each output cone separately. In our model a combinational
circuit C consists of leads and gates. As gate types we will
consider simple gates (And, Or, Nand, Nor, and Not), as
well as primary inputs (Pis) and primary outputs (Pos). A
lead is a wire connecting two gate pins with each other.

A physical path P = (g0; l0; g1; : : : ; lm�1; gm) in C is an alter-
nating sequence of gates and leads (lead li connects the output
pin of gate gi to some input pin of gate gi+1) leading from a
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Pi g0 to a Po gm of C. The primary input g0 of P is denoted
by PI(P ). As usual in delay fault test generation we will asso-
ciate two logical paths with each physical path. A logical path
is given as a tuple (P; t) with t = x!x; x 2 B = f0; 1g, being
a transition at the primary input PI(P ).
A manufactured implementation of circuit C is denoted by

Cm. We assume that Cm has the gate level structure of C,
but the delays of its gates and lines may take arbitrary values
due to variations of the fabrication process or manufacturing
defects. Let � be the required operation time (clock period)
for Cm. Cm is said to have a delay fault > � on logical path
(P; t) i� its delay for propagating t over P exceeds � . A robust
test for (P; t) [14] is a two pattern sequence which can be used
to measure the delay of (P; t) in any implementation Cm of
C. From the fact that Cm does (does not) operate correctly
for this test sequence under clock period � it can be concluded
that the delay of Cm for propagating t over P is � � (> �).
In [1], [2] it has been shown that in order to guarantee that

the delay of a manufactured circuit meets its speci�cation not
all logical paths need to be checked robustly.

De�nition 1 ([1]) Let LP(C) be the set of all logical paths
in a circuit C and R a subset of LP(C).

R is said to be a robust dependent set (RD-set) if and only
if for all implementations Cm of C and all clock periods � the
following holds: The absence of delay faults > � on the logical
paths from LP(C) n R implies the delay of Cm is � � .

From De�nition 1 and the above stated property of robust
tests it follows directly: For verifying that the delay of Cm does
not exceed the clock period it is su�cient to check all non-RD
paths (LP(C) n R) with robust tests. (The notion `robust
dependent' has been introduced in [1] to emphasize the fact
that the paths from R need not be checked if all paths from
LP(C) n R are tested robustly.)
In [1] the authors reduce the problem of identifying a (max-

imum) RD-set R to the problem of �nding (maximum) redun-
dant multiple stuck-at-0 (stuck-at-1) faults in the leaf-dag of
C. Since the leaf-dag is the `unfolded' version of C with fan-
out only allowed at the Pis, its size is exponential in the size
of C for circuits with large amount of internal fan-out.

To cope with this problem, a heuristic is developed in [1]
which gradually unfolds the circuit, searches for redundant sin-
gle stuck-at faults, and removes them to reduce the size of the
unfolded circuit. But even this heuristic algorithm has very
large running times and may result in a circuit of exponential
size. Thus, it can only be applied for small scale circuits.
The purpose of this paper is to develop an algorithm for

the computation of large RD-sets which is based on [2], and
does not rely on unfolding the circuit. As will be seen, this
approach is much faster than the heuristic of [1]. In order to
develop our new algorithm for RD-set identi�cation, we �rst
have to introduce the notions of stabilizing system and complete
stabilizing assignment. These notions will also be helpful for a
better understanding of the results in [1], [2] and their relation.

III. Stabilizing Systems

Consider a circuit C realizing function f . For a given in-
put vector v 2 Bn we ask for a subcircuit S of C which can
stabilize the Po on its �nal (stable) value f(v) independent of
the circuitry of C not included in S. Such a subcircuit will

be called a stabilizing system of C for input v. (Note, that a
stabilizing system normally only constitutes a small portion of
the overall circuit. For example to stabilize the output of an
Or gate to logic 1 it is su�cient to stabilize one of its inputs
to 1.) There can exist many di�erent stabilizing systems for v.
Such a system can be computed as follows:

Algorithm 1

/� computes stabilizing system S for v 2 Bn �/
Include the Po of C and the lead connecting to it
in S.
While there exists a gate g of C which is not included
in S and drives a lead already belonging to S:
(1) If g is a Not gate:

Include g and its input lead in S.
(2) If g is a And, Or, Nand, Nor gate:

(a) If the stable (�nal) input values of g under v are
all non-controlling 1, then include g and all of its
input leads in S.

(b) If a set L = fl1; : : : ; lkg, k � 1, of the input leads
of g has controlling stable values under v, then
include g and an arbitrary lead from L in S.

(3) If g is a Pi: Include g in S.
2

De�nition 2 A stabilizing system S of circuit C for input v
is a subcircuit of C computed by Algorithm 1.

The set of logical paths of stabilizing system S for input v is
given by:

LP(v; S) := f(P; x!x)j(P path from Pi to Po in S)

and (x value of PI(P ) under v)g

Note, that a stabilizing system S computed by Algorithm 1
is minimum in the following sense: If any lead is removed from
S then the property of stabilizing the output of C independent
of the values on leads not included in S is not guaranteed any
more. This is due to the fact that only one input of set L is
picked in Step 2(b) of Algorithm 1.
Usually, there are many possible stabilizing systems for v

depending on which input of set L is selected in Step 2(b).
This fact is illustrated by the following example.

Example 1 Figure 1 shows three possible stabilizing systems
(indicated by the lines drawn in bold) for input v = 111 in an
example circuit taken from [1].
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Fig. 1. Stabilizing systems for input 111

De�nition 3 A complete stabilizing assignment � is a map-
ping which assigns to each input vector v 2 Bn a stabilizing
system for v, denoted by �(v).

1The non-controlling value for an And, Nand (Or, Nor) gate is 1 (0).
The controlling value is the complement of the non-controlling one.



AND

1

1

* **

OR

OR

AND

0 1

1

OR

OR

AND

0

0 0

1 0

OR

OR

AND

0 0 0

OR

OR

Fig. 2. Complete stabilizing assignment

The set of all logical paths corresponding to the stabilizing
systems selected by � is given by:

LP(�) :=
[

v2Bn

LP(v; �(v))

From Example 1 it becomes clear that there is usually a
huge number of possible complete stabilizing assignments for a
given circuit, depending on which stabilizing system is selected
for each input vector.

The following theorem shows that it is su�cient to only test
the logical paths from LP(�) robustly.

Theorem 1 Let LP(C) denote the set of all logical paths in
C, and consider an arbitrary complete stabilizing assigment �
for C. Then:

Every subset from RD(�) := LP(C) n LP(�) is an
RD-set.

Proof:
It follows directly from De�nition 1 that any subset of an RD-
set is again an RD-set. Thus, it su�ces to show that RD(�)
is an RD-set, i.e. we must prove that for all implementations
Cm of C and all clock periods � it holds that: The absence of
delay faults > � on the logical paths from LP(�) implies the
delay of Cm is � � .

Let v be an arbitrary input vector to Cm. Consider the
stabilizing system �(v) which is assigned to v by �. From
the de�nition of stabilizing system it directly follows that it
is su�cient to switch the lines included in �(v) in order to
stabilize the output of Cm on f(v) for input vector v. The
delay for switching �(v) is bounded by the maximum of the
delays of all logical paths in LP(v; �(v)). Since by assumption
the delay of all these logical paths is � � in Cm, it follows that
the output of Cm stabilizes in time � � for input v.

Example 2 Figure 2 gives a possible choice of � for the cir-
cuit of Example 1. The circuit leads belonging to a stabilizing
system are drawn in bold. The two leftmost stabilizing systems
are assigned to more than one input combination, i.e. all input
combinations which set the leftmost Pi to 1 (resp. the leftmost
Pi to 0 and the rightmost Pi to 1).

From Theorem 1 it follows that it is not necessary to test all
8 logical paths of the example circuit. Instead it is su�cient
to only test the 6 logical paths from LP(�) robustly in order
to verify the temporal correctness of the circuit. (Note, that
the logical path indicated by the dashed line in the rightmost
stabilizing system is the only element from LP(�) which can
not be tested robustly.)

Before considering how to compute a complete stabilizing
assignment � and its associated RD-set RD(�), let us �rst
compare the above theory with the results of [2], [1].
In [2] the notion of functionally sensitizable paths has been

introduced. It has been shown, that functionally unsensitizable
paths are redundant, and need not be considered for delay
testing.

De�nition 4 ([2]) A logical path (P; x!x) is called function-
ally sensitizable. () There exists an input vector v such that:

(FU1) v sets PI(P ) to x, and

(FU2) for each gate g on P with its on-path input having a
non-controlling stable value under v, all the side-inputs
of g have non-controlling stable values for v.

It is interesting to compare the above de�ntion to the crite-
rion for non-robust testability given in [6].

De�nition 5 ([6]) A logical path (P; x!x) is non-robustly
testable. () There exists an input vector v such that:

(NR1) v sets PI(P ) to x, and

(NR2) for each gate g on P all the side-inputs of g have non-
controlling stable values for v.

Remark 1 For the original criterion of [6] the existence of a
two pattern sequence < v1; v2 > is claimed. v1 sets the primary
input of P to x and v2 ful�lls the conditions (NR1) and (NR2)
given above. Since the existence of v1 is always guaranteed for
a circuit without input space restrictions, this condition has
been omitted here and we only claim the existence of v = v2.

De�nition 6 Let C be a combinational circuit.

(a) The set of logical paths from LP(C) which are functionally
sensitizable is denoted by FS(C).

(b) The set of logical paths from LP(C) which are non-robustly
testable is denoted by T (C).

Since the conditions for non-robust testability are more re-
strictive than those for functional sensitizability, it follows that
T (C) � FS(C). The following lemma classi�es the logical
path sets selected by choosing a complete stabilizing assign-
ment with respect to this hierarchy.

Lemma 1 Let � be an arbitrary complete stabilizing assign-
ment for circuit C. Then:

T (C) � LP(�) � FS(C)

Proof:
T (C) � LP(�):



Let (P; x!x) be a non-robustly testable logical path in circuit
C. By De�nition 5 there exists an input vector v for C ful�lling
conditions (NR1) and (NR2). We will show that P is included
in any stabilizing system S for v computed by Algorithm 1.
The proof is done inductively: Clearly, the Po of P is included
in S. Let g be the next gate of P , and l its on-path input.
If g is a Not then g and l will be included in S. If g 2
fAnd;Or;Nand;Norg two cases must distinguished: If the
stable value of l under v is non-controlling, then by condition
(NR2) all side-inputs of l have non-controlling stable values
too, and thus, in Step 2(a) of Algorithm 1 all input leads of
g will be included in S. If the stable value of l under v is
controlling, it follows from condition (NR2) that l is the only
element of set L in Step 2(b) of Algorithm 1, and thus, will be
selected for S.

LP(�) � FS(C):
Consider an arbitrary logical path (P; x!x) 2 LP(v; �(v)).
We will show that (P; x!x) is functionally sensitized by v.
From the de�nition of LP(v; �(v)) it follows that v sets PI(P )
to x, i.e. condition (FU1) is ful�lled. For a gate g, Algorithm 1
only includes an input lead of g with non-controlling stable
value in �(v), if all other input leads of g have non-controlling
stable values under v (see Step 2(a)). Thus, all paths from �(v)
also ful�ll condition (FU2) from the de�nition of functional
sensitizability for input v.

Thus, by choosing a complete stabilizing assignment � we
are selecting a subset LP(�) of the functionally sensitizable
logical paths FS(C) which includes all robustly and non-
robustly testable logical paths T (C). The corresponding situ-
ation is illustrated in Figure 3.

LP (C)

FS(C) T (C)LP σ( )

Fig. 3. Hierarchy of logical path sets

Comparing Theorem 1 to the methodology developed in [1]
for identifying RD-sets, it can be shown that both approaches
are equivalent. More exactly:

The RD-sets characterized by Theorem 1 are the
same as those which can be obtained by applying
Theorems 2.1 and 2.2 of [1].

For brevity we omit the proof of the above fact which can
be found in [15].
After having compared our approach to previous results

from the literature, let us now concentrate on the question
of how to choose a complete stabilizing assignment �. Here,
we arrive at the following optimization goal: \Choose � such
that the size of LP(�) is minimum." Choosing LP(�) as small
as possible, minimizes the number of paths which need to be
considered for test generation. In addition, it maximizes the
fault coverage, which by Theorem 1 is given as the number of
testable logical paths divided by jLP(�)j. Finally, it helps to

reduce design for testability overhead, since the logical paths
from LP(�) which are not testable must be considered for de-
sign for testability modi�cations. The following example illus-
trates the above facts.

Example 3 In Example 2 a possible complete stabilizing as-
signment � has been given for our example circuit (see Fig-
ure 2). LP(�) consists of 6 logical paths from which only 5
are robustly testable. The 6-th logical path (indicated by the
dashed line in Figure 2) is neither robustly nor non-robustly
testable. Thus, the fault coverage for this example would only
be 5

6
� 100%, and the dashed path would have to be considered

for design for testability modi�cations.

Figure 4 shows a di�erent choice of the stabilizing system for
input (0; 0; 0). The set of logical paths for the resulting com-
plete stabilizing assignment �0 consists only of the �ve logical
paths of C which are robustly testable. Thus, the actual fault
coverage when testing these �ve paths is 100%, and no design
for testability modi�cations are necessary.
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Fig. 4. Stabilizing system for input 000

IV. RD-set identification without circuit unfolding

As already mentioned, the heuristic of [1] for computing a
minimum RD-set gradually unfolds the circuit and searches
for stuck-at redundancies (corresponding to sets of RD-paths).
In this section a new methodology is developed which avoids
unfolding of the circuit.

De�nition 7 An input sort � of a circuit C is a mapping
which orders the inputs of each gate g of C completely, i.e. for
each gate g its input leads are numbered from 1 to fan-in(g).
For an input lead l of gate g, �(g; l) denotes the position of l
with respect to the input sort of g.

Given an input sort � we can �x a complete stabilizing as-
signment �� as follows:

For an input vector v the corresponding stabilizing
system �

�(v) is obtained by applying Algorithm 1
with the following restriction: In Step 2(b) always
choose the input lead l 2 L with minimum �(g; l).

Now instead of considering all possible choices for com-
plete stabilizing assignments only the assignments from
f��j� arbitrary input sortg will be considered. This restricts
the search space but will allow us to work more e�ciently.

Example 4 Figure 5 gives a possible input sort � for our ex-
ample circuit. The corresponding complete stabilizing assign-
ment �� is the optimum assignment of Example 3. Thus, for
this circuit the restricted search space still contains the opti-
mum solution.
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Fig. 5. Optimum input sort

Let us assume that a good input sort � is given. (The prob-
lem of how to best choose such a sort will be discussed later.)
The logical path set to �� (the corresponding RD-setRD(��))
can be computed based on the following lemma:

Lemma 2 For a circuit C, let � be an input sort, and
(P; x!x) a logical path in C.

(P; x!x) 2 LP(��) () There exists an input vector v 2 Bn

such that:

(�1) v sets PI(P ) to x,

(�2) for each gate g of P such that its on-path input has a
non-controlling stable value under v, all the side-inputs
of g have non-controlling stable values under v,

(�3) for each gate g of P such that its on-path input l has
a controlling stable value under v, all low-order 2 side-
inputs of l have non-controlling stable values under v.

Proof:
It su�ces to show that: v satis�es conditions (�1)-(�3) for
path P () (P; x! x) 2 LP(v; ��(v)).

\)": Let v be an input vector ful�lling conditions (�1)-(�3)
for path P . We inductively show that P will be included in
�
�(v):

Clearly, the Po of P is included in �
�(v). Let g be the next

gate of P , and l its on-path input. If g is a Not then g and
l will be included in �

�(v). If g 2 fAnd;Or;Nand;Norg two
cases must be distinguished: If the stable value of l under v is
non-controlling, then by condition (�2) all side-inputs of l have
non-controlling stable values too, and thus, all input leads of
g are included in �

�(v) by Algorithm 1. If the stable value of
l under v is controlling, then by condition (�3) all low-order
side-inputs of l have non-controlling stable values. Thus, in
Step 2(b) of Algorithm 1 l is the element of set L with lowest
sort number and will be selected for ��(v).

\(": Since this direction is proven analogously, it is omitted
here for brevity.

Remark 2 If condition (�3) of Lemma 2 is omitted, we ob-
tain the conditions of De�nition 4 for functionally sensitizable
paths.

In [2] an algorithm has been given to determine which logi-
cal paths are functionally sensitizable. In order to save running
time, this algorithm does not compute the actual set FS(C)
but a small superset FSsup(C)which gives a very good ap-
proximation of FS(C). Based on the similarity of their char-
acterizations, the same methodology can also be applied for
approximating LP(��) for a given input sort �:

2Let g be a gate and l an input to g. The low-order side-inputs of l

are all inputs l0 to g with �(g; l0) < �(g; l).

Algorithm 2 All logical paths of the circuit are implicitly3

enumerated. For each logical path (P; x!x) we check whether
there exists an input vector v satisfying conditions (�1)-(�3).
If such an input vector exists, then (P; x!x) 2 LP(��). In
order to speed-up the computation process, the above check is
not performed exactly. As suggested in [2], only the local im-
plications induced by conditions (�1)-(�3) are performed to see
whether they result in a contradiction. If there is no contradic-
tion, the logical path is assumed to be an element of LP(��).
Thus, the algorithm actually computes a superset LPsup(��)
of LP(��) (subset RDsub(��) := LP(C) n LPsup(��) of
RD(��)). As will be seen in the experimental results of Sec-
tion VI, the quality of the approximation LPsup(��) is very
good.
Since the generalizations of the procedure given in [2] are

straight forward, we omit details here for brevity. 2

Remark 3 The procedure of [2] can also be applied to com-
pute a superset T sup(C) approximating the set T (C) of all
non-robustly testable logical paths. This is done by (implicitly)
enumerating all logical paths, and checking for each logical path
whether there exists an input vector v ful�lling the conditions
of De�nition 5.

V. How to choose the input sort?

Let us now turn to the optimization problem of choosing the
input sort � such that LP(��) is minimized. Since solving this
problem exactly is too time consuming, we will focus on fast
heuristics computing a near optimum solution.

De�nition 8 Let l be an input lead to a gate g in circuit C.

(a) The set of all physical (logical) paths of C going through l

is denoted by P(l) (LP(l)).

(b) The set of logical paths from LP(l) such that the transition
at l has as �nal value the controlling value of g is denoted
by LPc(l).

Remark 4 Clearly, jLPc(l)j =
1

2
jLP(l)j = jP(l)j.

Consider a gate g with two inputs l1 and l2 as an example.
By chosing the input sort for g we can guide Algorithm 1 which
input to select in Step (2)(b) if both inputs have controlling
stable values. As a consequence, we can control whether paths
from LPc(l1) or LPc(l2) are prefered for inclusion in LP(��).
Now let us assume that jLPc(l1)j < jLPc(l2)j. Since we want
to minimize the size of LP(��), it is a good idea to preferably
include paths from LPc(l1) in LP(�

�). Our �rst heuristic for
choosing the input sort is based on this observation.

Heuristic 1 Choose � such that for any two input leads l and
l
0 of a gate g in C:

jLPc(l)j < jLPc(l
0)j =) �(g; l) < �(g; l0)

If jLPc(l)j = jLPc(l
0)j, the corresponding inputs can be ordered

arbitrarily.

Since jLPc(l)j = jP(l)j, computation of such an input sort
simply corresponds to path counting and thus, can be done in
linear time with respect to circuit size.

3By applying the concept of `prime segments' [2] the number of paths
which must be considered can be reduced drastically, i.e. we take advan-
tage of the fact that all extensions of a logical path segment which does
not ful�ll the conditions of Lemma 2 are elements of RD(��).



The strategy of Heuristic 1 can be improved based on the
following observation:
From Lemma 1 it follows that logical paths which are non-
robustly testable (not functionally sensitizable) will always
(never) be included in LP(��). Thus, LPc(l)\(FS(C)nT (C))
gives a better measure for input sorting than LPc(l).

Heuristic 2 Let Tc(l) (FSc(l)) denote the set of all logical
paths from LPc(l) which are non-robustly testable (functionally
sensitizable). Choose � such that for any two input leads l and
l
0 of a gate g in C:

jFSc(l) n Tc(l)j < jFSc(l
0) n Tc(l

0)j

=) �(g; l) < �(g; l0)
Again, if jFSc(l)nTc(l)j = jFSc(l

0) nTc(l
0)j, the corresponding

inputs are ordered randomly.

An exact computation of the cost measure jFSc(l) n Tc(l)j,
applied in Heuristic 2 for input sorting, would be too time
consuming. Based on the algorithm of [2] and Remark 3, the
following method can be used for approximating the cost mea-
sure:

Algorithm 3

/� approximate computation of cost measure for
Heuristic 2 �/

(1) Run the algorithm of [2] for the criterion
of De�nition 4 to determine the approximation
FSsupc (l) � FSc(l) for all lines l of C.

(2) Run the algorithm of [2] for the criterion
of De�nition 5 to determine the approximation
T sup
c (l) � Tc(l) for all lines l of C.

(3) Choose the input sort � such that:
jFSsupc (l) n T sup

c (l)j < jFSsupc (l0) n T sup
c (l0)j

=) �(g; l) < �(g; l0) 2

Clearly, the above method for input sorting is much more
time consuming than Heuristic 1. But, as will be seen in the
experimental results, it also increases the quality of the sort
function (i.e. the size of the computed RD-set) considerably.

VI. Experimental Results

This section evaluates the e�ectiveness of the proposed ap-
proach with respect to quality of the result, i.e. size of the iden-
ti�ed RD-set, and CPU-time (measured on a SUN SPARC10
workstation).
Table I shows results for the ISCAS85 benchmark set. The

run for c6288 could not be completed in reasonable time, since
this circuit has more than 1:9 � 1020 logical paths [16]. The
percentage of logical paths which can be identi�ed as function-
ally unsensitizable [2] is given in column FUS. From Lemma 1
it follows that any RD-set obtained by applying Theorem 1
contains these paths as a subset. Columns Heu1 (Heu2) give
the percentage of logical paths which were identi�ed RD by
Heuristic 1 (resp. Heuristic 2). For most circuits these num-
bers are considerably larger than the percentage of functionally
unsensitizable paths. The increase varies from 2:26% for cir-
cuit c880 up to 42:3% for circuit c1908. Comparing the results
of columns Heu1 and Heu2, it can be seen that Heuristic 2
gives always better results than Heuristic 1. The average im-
provement in percentage of RD-paths is 2:51%. Column Heu2
of Table I gives RD-set sizes obtained by choosing the input
sort inversely to Heuristic 2. The fact that the percentage of

paths which can be classi�ed RD reduces dramatically indi-
cates that our heuristics for choosing the input sort aim in the
right direction.

TABLE I

Results for ISCAS85 benchmarks

circuit FUS Heu1 Heu2 Heu2

c432 64.25 % 90.12 % 91.12 % 84.29 %
c499 30.05 % 39.50 % 53.79 % 30.05 %
c880 0.94 % 1.81 % 3.20 % 0.94 %
c1355 81.19 % 83.27 % 86.70 % 81.19 %
c1908 32.79 % 74.95 % 75.09 % 33.34 %
c2670 77.26 % 81.27 % 82.42 % 77.79 %
c3540 72.16 % 94.89 % 94.99 % 83.33 %
c5315 78.05 % 83.79 % 83.80 % 81.74 %
c7552 68.78 % 75.63 % 76.70 % 72.18 %

Table II gives the number of logical paths and the running
times of Heuristics 1 and 2 for each of the ISCAS85 bench-
marks. As can be seen, our approach even handles circuit
c3540 which has over 57 million logical paths in less than 15
hours. The enormous improvements in running time compared
to the approach of [1] are illustrated by the fact that for circuit
c499 this algorithm had not �nished after a running time of 69
hours, i.e. even Heuristic 2 is more than 1000 times faster for
this circuit. Comparing the CPU-times of Heuristics 1 and 2,
an increase by factor 3 or more can be observed for most of
the circuits. This is due to the fact that the procedure of [2]
has to be executed three times for Heuristic 2, two times for
computing the priority function (see Algorithm 3) and once for
the actual RD-set computation.

TABLE II

Running times for Heuristics 1 and 2

circuit total no. of CPU-time CPU-time
logical paths for Heu1 for Heu2

c432 583,652 0:25 1:27
c499 795,776 1:12 3:22
c880 17,284 0:07 0:14
c1355 8,346,432 3:03 9:17
c1908 1,458,114 2:22 12:10
c2670 1,359,920 3:01 9:53
c3540 57,353,342 2:24:06 14:29:38
c5315 2,682,610 3:13 10:31
c7552 1,452,988 4:37 15:07

Our improvements in running time compared to the ap-
proach of [1] come from two facts: First, we consider a re-
stricted search space (complete stabilizing assignments �

�

which are given by an input sort �), and second, LP(��) is
not computed exactly but approximated by an upper bound.
To estimate the average loss in quality due to the above re-
strictions we did the following experiment:
We synthesized multi-level implementations for all of the two-
level MCNC benchmarks4. We then ran the algorithm of [1]

4Each circuit was synthesized by applying script.rugged in the SIS
system [17].



TABLE III

Comparison of Heuristic 2 to the approach of [LSBSV93]

circuit no. of logical approach of [1] new approach (Heuristic 2)
paths % of RD-paths CPU-time % of RD-paths CPU-time

apex1 13,756 8.52 % 46:39 7.89 % 0:30
Z5xp1 20,102 94.75 % 3:44 94.14 % 0:05
apex5 23,836 60.63 % 16:15 59.43 % 0:18
bw 24,380 91.37 % 8:01 89.68 % 0:09

apex3 35,270 71.53 % 1:02:54 70.95 % 0:38
misex3 40,578 67.25 % 1:39:40 63.78 % 0:31
seq 52,886 63.35 % 3:59:35 57.81 % 0:42

misex3c 1,856,452 99.53 % 7:54:22 99.29 % 4:13

and Heuristic 2 for all circuits which could be handled by the
approach of [1] and which have a non-empty RD-set. On the
average the percentage of RD-paths which were identi�ed by
our approach was only 2:05% less than for the solution of [1].
Table III gives the exact results for the largest of these bench-
marks. It shows that, while the quality of our approximation
is very good for most of the circuits, there are still few designs
(misex3 and seq) with a considerable di�erence.

For circuits with huge path numbers, like for example c3540
of the ISCAS85 benchmark set, even after RD identi�cation
the number of non-RD paths might be too large in order to
test all of them. In this situation strategies for selecting only
a subset of paths for testing purposes [18], [19] must be ap-
plied. As already noted in [2], these strategies can be easily
adapted to take advantage of RD-set identi�cation. As an
example, if we restrict to only checking paths with expected
delay greater than a given threshold, then among these paths
only those which are non-RD should be considered for testing.
Analogously, if for each line of the circuit we choose to only
test a limited number of logical paths going through it, then
it is su�cient to only consider non-RD paths for this selection
process.

VII. Conclusion

In this paper we have studied the problem of which paths
actually need to be tested in order to check that a manufac-
tured circuit meets its timing speci�catons. A theory has been
developed which puts previous results [1], [2] in a common
framework, thus allowing for a better understanding of their
relation. Since the approach of [1] is too time consuming to be
run on large circuits, we have proposed a new methodology for
RD-set computation which trades running time against quality
of the result. Experimental results have shown that with only
a small loss in accuracy huge improvements in running time
can be achieved.
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