
Optimal ILP-based Approach for Throughput Optimization Using

Simultaneous Algorithm/Architecture Matching and Retiming

Y.G. DeCastelo-Vide-e-Souza� M. Potkonjak and Alice C. Parker

Dept. EE-Systems C&C Res. Labs Dept. EE-Systems

Univ. Southern California NEC USA Univ. Southern California

Abstract { System level design and behavior trans-

formations have been rapidly establishing themselves

as design steps with the most in
uential impact on �-

nal performance metrics, throughput and latency, of

a design. In this paper we develop a formal ILP-

based approach for throughput and latency optimiza-

tion when algorithm-architecture matching, retiming,

and pipelining are considered simultaneously. The ef-

fectiveness of the approach is demonstrated on several

real-life examples.

1 Introduction

Throughput and latency are consistently among the most
important keys for di�erentiation among electronics products.

The design techniques (r)evolution is that the emphasis in the

design process is inevitably shifting toward higher levels of
abstraction. Interestingly, recent case studies and experience

indicate that the higher-level design decisions impact on opti-

mization is more signi�cant than lower-level decisions.
It is important to note that the selection of the best ar-

chitecture for a given application is a non-trivial problem. An

ample con�rmation of strong dependence between architecture
and algorithms is presented for numerous computers (architec-

tures) and many algorithms in [1].

Our goal in the research presented in this paper is to develop
an approach which, in an integrated and formally sound way,

combines the e�ectiveness of transformations and system-level

design tasks for throughput optimization. In particular, we ad-
dress the problem of throughput optimization using matching

between algorithm, architecture, and retiming.

The types of system speci�cation we are considering de-
scribes systems where there is repeated computation on a se-

quence (stream) of data sets. Initially, each data set is usually

processed during a single iteration, or major cycle (within that

major cycle there can be many minor, or clock cycles). We can

transform the computation, so that some of the processing oc-

curs during an earlier or later data cycle. In order to di�er-

�
also known as J. C. DeSouza-Batista.

entiate the tasks which are delayed one or more cycles, delays

are inserted in the
ow graph to indicate that the task follow-

ing the delay is postponed. We call such delays hierarchical
delays. The problem we solve is to position delays so that the

throughput of the system is maximized. We simultaneously

select the algorithm which implements each task or block as
well as the processor(architecture) to which each task or block

will be allocated, so that the combination of simultaneous al-

gorithm/processor selection and hierarchical delay positioning
is used to �nd an optimal throughput.

The problem of throughput optimization using algorithm

selection was recently addressed in [15]. However, our scope
of the problem is signi�cantly broadened: we consider both

algorithm selection and architecture selection, and more im-

portantly, we simultaneously consider two important transfor-
mations with algorithm/architecture matching: retiming and

pipelining. Also, our ILP-based algorithm is capable of achiev-

ing provably optimal solutions on all practically sized examples
in relatively short run times.

2 Problem Formulation

2.1 Assumptions, Basic De�nitions, and No-
tation

We use a hierarchical synchronous data
ow model of com-

putation, which is suitable for describing a periodic compu-

tation on a semi-in�nite stream of data. The selected model

of computation assumes that the target design is described

by a computation which is composed of building (functional)

blocks and hierarchical delays. Building blocks themselves
can possess sequential behavior and are recursively de�ned,

so that at the lowest level of hierarchy only standard control

structures (procedures, conditionals, and loops), algebraic op-
erations, and internal delays are present. Hierarchical delays

(states) are used to denote the boundary between successive

iterations and can be repositioned using retiming only to the
edges of the highest level of hierarchy.

This computational model is a slight modi�cation of the

standard synchronous data
ow model. It is commonly used
to specify many designs in video, image, DSP, communica-

tion, control, and information theory-related applications at

the behavioral level. We allow an arbitrarily high sharing of
hardware resources, but only to the extent that it does not in-

uence critical paths in the control data
ow graph (CDFG).

In the rest of the paper we will interchangeably use both CDFG

32nd ACM/IEEE Design Automation Conference 
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.  1995 ACM 0-89791-756-1/95/0006 $3.50

and signal
ow graph (SFG) to refer to computations repre-

sented using the hierarchical synchronous data-
ow model of
computation.

The sampling period of the computation is equal to the

maximum rate at which it can accept and process the data
samples of the input data streams. In the common control-

data
ow graph (CDFG) representation, the sampling period
is the longest distance between any two delays, or between any

primary input and any delay, or between any delay and any

primary output, or between any primary input and any pri-
mary output in the CDFG. Throughput (sampling rate) is the

inverse of sampling period.

Latency is the time interval between the arrival of the set
of inputs corresponding to one iteration of computation and

the delivery of all corresponding outputs as de�ned by the

speci�cation. In the common CDFG domain, latency is the
longest distance between any pair of delays or between any

primary input and any of the corresponding outputs.

2.2 Illustrative Example and Graph Theo-
retic Problem Formulation

In this subsection we present an illustrative, real life ex-
ample of simultaneous algorithm/architecture matching and

retiming for throughput optimization. We also pose the opti-

mization problem at the graph level of abstraction.

Figure 1 shows the CDFG of the transform domain adaptive

LMS �lter [5]. Sigma denotes vector sum, DCT is the direct
discrete cosine transform. D denotes a hierarchical delay. KD

indicates k hierarchical delays. If each input edge of a block

has k hierarchical delays, the functionality of the design is not
altered if those delays are deleted and replaced by k hierar-

chical delays on each output of the block or vice versa. This

delay manipulation technique is retiming [12]. The problem
we pose here is where to insert the delays so that throughput

is maximized while selecting an implementation for each block.

This example is solved later in the paper.

DDDDDDD

* * * * * * * *

+

KD

LMS

D C T

Σ

Out

In

+

Figure 1: Throughput Optimization using Simultaneous
Algorithm/Architecture Matching and Retiming

Each block in Figure 1 can be implemented using a variety

of algorithms (CDFGs) and architectures; e.g. commonly used

DCT algorithms include Lee's, Wang's, planar rotation, DIF

(decimation in frequency), DIT (decimation in time) and FFT-

based algorithms [5]. The architecture choices include various
DSP, video, microcontroller, and microprocessor chips from

many vendors.

Equations (2.1) and (2.2) show the distances (propagation
time delays) between each pair of nodes for two among several

other DCT algorithm/architecture matchings. The matrices

are formed in a such way that element ai;j represents the dis-
tance between input i and output j.

DCTi =

0
BBBBBBBB@

4 5 6 6 8 8 8 8

4 5 6 6 8 8 8 8
4 5 6 6 8 8 8 8

4 5 6 6 8 8 8 8

4 5 6 6 8 8 8 8
4 5 6 6 8 8 8 8

4 5 6 6 8 8 8 8

4 5 6 6 8 8 8 8

1
CCCCCCCCA

(2:1)

DCTii =

0
BBBBBBBB@

4 5 5 4 5 8 5 8

4 5 5 4 6 8 5 5

4 5 6 4 4 8 5 5
4 5 7 4 4 8 5 5

4 5 5 4 6 8 5 5

4 5 5 4 6 8 5 5
4 5 6 4 7 8 5 5

4 5 7 4 6 8 5 5

1
CCCCCCCCA

(2:2)

The goal is to select an algorithm/architecture pair for each

building block of the hierarchical CDFG so that after the appli-
cation of retiming, throughput is maximized. It is important

to note that there is a strong dependence between retiming and

algorithm selection, and that successive resolution of the two
optimization steps may result in an inferior solution. Figure 3

illustrates this point.

The design in Figure 3a has three functional blocks. Only
block B has more than one choice for its algorithm. If the

throughput is optimized �rst, the best choice is obviously al-

gorithm A1 which results in a sampling rate of 30 cycles. How-
ever, if retiming is considered simultaneously, the best choice is

A2. This is because, after the application of retiming, the crit-

ical path can be reduced to 15 cycles, as shown in Figure 3b.
Note that initially (before retiming) this algorithm selection

makes the critical path 35 cycles long.

2.3 Complexity

It is well known that retiming is a polynomial complexity

problem [12]. It has been demonstrated that throughput op-

timization using algorithm selection belongs to the class of
NP-complete problems [15]. Since the problem presented in

[15] is a special case of the problem discussed in this paper, we

can conclude that the new problem is also of high complexity,
at least NP-complete. Interestingly, the proof in [15] is built

on the assumption that all potential algorithms have states

(delays).
Numerous real life applications do not have delays in their

speci�cations. We derived a new proof, using a transforma-

tion from the equal-subset problem which shows that through-
put (latency) optimization using algorithm selection is an NP-

complete problem, even when only algorithms with no delays

are considered [5]. The new proof is also more general in the

sense that it covers variants of the problem when pipelining

is used in conjunction with retiming and the target is latency
optimization instead of throughput maximization.

3 Related Work

3.1 Algorithm and Architecture Matching

Although the interaction between the computation and ar-
chitecture has been sporadically addressed for a long time,

only recently it has attracted complete attention in the CAD

optimization-intensive framework of hardware/software code-
sign [11] [2], [8].

Potkonjak and Rabaey were �rst to consider a particu-

lar instance of the problem considered in this paper in the
optimization-intensive hardware/software codesign framework

[15]. Although they restricted their attention only to the algo-

rithm selection problem, assuming a �xed hardware platform,
and did not consider any transformations, their heuristic al-

gorithm demonstrated an order of magnitude improvement in

throughput and area.

3.2 Retiming

Retiming has been used under a variety of names and algo-

rithms in digital signal processing, control theory and appli-
cations for several decades, mainly to derive various canonical

forms for linear computations and to optimize throughput and

cost of fully hardwired implementations of linear �lters. Note
that retiming is just a member of a large set of more general

algorithm transformations such as ones studied by Park [13]

In the early 1980s, retiming of delays corresponding to
boundaries of control loops had been introduced as a soft-

ware compilation technique under the framework of software

pipelining.
Arguably, the greatest impact on the popularization of re-

timing was produced by a series of papers by Leiserson and

Saxe [12], who were the �rst to treat retiming as a combina-
torial optimization problem and to present polynomial algo-

rithms for minimizing the delay of the critical path and the

number of delays in the design.
The �rst application of retiming in CAD and high level syn-

thesis was proposed by Goosens et al. [7] where its application

was restricted to minimization of the number of registers of
fully hardwired designs. Retiming in high level synthesis was

recognized by the developers of Hyper, who demonstrated its

e�ectiveness for the minimization of all components of data
path (execution units, registers, and interconnect) [14], power

and fault-tolerance.

To the best of our knowledge this work represents the �rst
optimization-intensive and explicit use of retiming in system-

level synthesis.

3.3 Integer-Linear Programming

We conclude our overview of related work by brie
y survey-

ing several integer linear programming (ILP) high level syn-

thesis techniques, which are, to a limited extent, similar at the

algorithmic level to our techniques.

Since Hafer and Parker [10] �rst proposed mixed ILP as

the optimization method for datapath synthesis, numerous

authors demonstrated the e�ectiveness of this method as a

scheduling, assignment, and resource allocation tool. Notable

work includes research reported in [6]. More recently ILP was

B

1010DDD

I1

I2

O1

O2

OutIn °

°

°

°

°°°°°°°°°°

B

1010 D D

D

I1

I2

O1

O2

OutIn °

°

°

°

°°°° °° °°

°°

30 0
 0 10

15 0
 0 15

O1 O2

I1
I2

I1
I2

O1 O2

A1 =

A2 =

(a)

(b)

(c)

Figure 2: Importance of Simultaneous Consideration of
Algorithm/Architecture Selection and Retiming

also used as an optimization vehicle in system-level synthesis

[16] [4].

4 Mathematical Model

In this section we develop an e�cient ILP formulation for

simultaneous algorithm/architecture matching and retiming.
We call each of the computation nodes in the system-level syn-

chronous data
ow graph (e.g. DCT block in Figure 1) com-

putational block. We start �rst with an important special case
when all computational blocks are of type n inputs - 1 output.

This special case is used as a basis for the development of a

fully general ILP model where each of n inputs and m outputs
has independent timing. The special case model (n inputs -

1 output) is also interesting in itself, because often in design

practice the basic block sends its output data in one packet.
This organization of the computation usually results in a sim-

pler, less expensive implementation. We conclude this section

by discussing the size of the ILP model.

4.1 Case I: n inputs - 1 output computation
blocks

Given a synchronous data-
ow computation composed of

computation blocks (functional elements) and delay elements

(states), where each computation block u has nu inputs and
one output ((nu; 1) block-type). We can have two timing disci-

plines:

i) Computation blocks have only time equidistant inputs.
ii) Computation blocks have time non-equidistant inputs.

DEFINITION 1: Given a computation block u, u will have
time equidistant inputs, if for every pair of inputs i and j of

the block u , i 6= j, we have:

4(input(i; u) to output(u)) = 4(input(j;u) to output(u))

= du (4:0)

Where 4(�) = computation (propagation) delay

DEFINITION 2: A computation block is of (1,1) type if and

only if it has only one input and one output.

A synchronous data-
ow with computation blocks of type

(n; 1) with time equidistant inputs can be modeled by a di-
rected graph G =< V; E; d;w >. V is the set of vertices, E

is the set of edges, d is a function giving the computation de-

lay (measured in control steps) in each vertex (computation
block), and w is the function which denotes the number of

delay (state) elements in each edge before retiming [12]. The

following theorem was derived by Leiserson and Saxe [12] and
it is the basis for our mathematical model.

THEOREM 1. Let G =< V; E; d;w > be a synchronous data-

ow [12], let c be an arbitrary positive real number, and r be
a function from V to the integers, then r is a legal retiming of

G such that �(Gr) � c (Gr is the data-
ow after retiming) if

and only if

a)r(u) � r(v) � w(e) for every edge e = u! v of G, and

b)r(u)� r(v) �W (u; v)� 1 for all vertices u; v 2 V such that

D(u; v) � c

Where

�(Gr) is the iteration period measured in control steps after
retiming

W(u,v) = minfWpath(u; v; p): p is a path from u to vg

D(u,v) = maxfDpath(u; v; p): p is a path from u to v such that

Wpath(u; v; p) = W (u; v)g

Wpath(u; v; p) is number of delay elements in the path p

Dpath(u; v; p) is the sum of of computation delays of the ver-

tices (blocks) in the path p

The number of delays in an edge e after retiming wr(e) is
given by the expression below [12], where w(e) is the number

of delays before retiming.

wr(e) = w(e) + r(v)� r(u) (4:1)

Assuming, without loss of generality, that the designer assumes

that no edge should have more than wM delays, where

wM � maxe(w(e)) ; e 2 E (4:2)

wr(e) can be expressed as

wr(e) =

wMX
i=1

xe; i � wM ; xe; i 2 f0; 1g (4:3)

xe; i � xe; i+1 ; i = 1; :::;wM � 1 (4:4)

xe; i = 0 indicates that less than wM � i + 1 delays will be

placed on edge e. xe; i = 1 indicates that at least wM � i+ 1

delays will be placed on edge e.

Note that constraints (4.2) and (4.3) guarantee that condition

(a) of Theorem1 will always be satis�ed.

The delay du of a vertex u is given by:

du =
X
i

X
j

du; i; j�u; i; j ; �u; i; j 2 f0; 1g (4:5)

where X
i

X
j

�u; i; j = 1 (4:6)

�u; i; j = 1 indicates that block u has been implemented an

architecture of cost Cu; i; j.

In a similar way, the cost Costu of a vertex (block) u is given

by:

Costu =
X
i

X
j

Cu; i; j�u; i; j (4:7)

where Cu; i; j and du; i; j are the cost and delay of implementa-

tion (i; j) for vertex (block) u. Where implementation (i; j) for
computation block u denotes the use of algorithm @

u
i mapped

into a processor (architecture) of type j to implement block u.

Let p be a path from vertex u to vertex v (u
p
�! v). We de�ne

Dpath(u; v; p) and Wpath(u; v; p) as:

Dpath(u; v; p) =
X
a2p

dx =
X
a2p

X
i

X
j

da; i; j�a; i; j (4:8)

Wpath(u; v; p) =
X
e2p

w(e) (4:9)

Wpath(u; v; p) can be precomputed. On the contrary,

Dpath(u; v; p) depends on the choice of which implementations
(algorithm/architecture match) will be used for the vertices

(blocks) in the path.

For every path p connecting vertex u to vertex v we have

r(u)� r(v) =
X
e2p

w(e)�
X
e2p

wMX
i=1

xe i (4:10)

r(u)� r(v) =Wpath(u; v; p)�
X
e2p

wMX
i=1

xe i (4:11)

This expression can be generalized to a circular walk pc in

G. There is a circular walk starting in vertex u if and only
if there is a corresponding cycle in the undirected graph Go

derived from G by not considering the directions of the edges

of G and assuming the same weight values (w(e)) as in G.

Wcirc(u; pc) =
X
e2pc

sign(e; pc)w(e)�
X
e2pc

sign(e; pc)

wMX
i=1

xe i

(4:12)

8 circular walk pc in G; Wcirc(u; pc) = 0 (4:13)

where

sign(e; pc) = +1 if e has the same direction of pc
sign(e; pc) = �1 if e has direction opposite to pc

The maximum size set of linear independent equation involv-

ing circular walks in G can be found by �nding the minimum

spanning tree of Go, where the distance between two adjacent

vertices u; v is given by w(e), e=(u,v). Each edge e� = (u; v)

which is not in the spanning tree de�nes a unique cycle made

by the edge itself and the path between u and v in the span-
ning tree. As each cycle in Go de�nes a corresponding circular

walk in G, we �nd a set of linear independent equations. This

set is maximum because any other circular walk will derive an
equation that is a linear combination on the equations in the

set. The size of this set is O(jEj�jV j+1), because jEj � jV j�1

(Go is a connected graph). A tree shaped graph does not have
circular walk equations.

4.1.1 Linearization of condition (b)

The condition (b) of Theorem 1 refers to particular paths
p(u �! v) 2 G such that Dpath(u; v; p) is maximum

among all paths from u to v with minimum Wpath(u; v; p).

As w(e), e 2 E, is known, we can easily �nd the set
of paths P (u; v) = fpjWpath(u; v; p) is minimumg =

fpjWpath(u; v; p) = W (u; v)g by executing the all shortest

path algorithm on G. However we cannot decide which path
p 2 P (u; v) will have maximum Dpath(u; v; p) before we have

chosen the particular implementation (algorithm/architecture

mapping) of each vertex (block) vo 2 p. Therefore we need to
check condition (b) for each path p 2 P (u; v). This is accom-

plished by means of the following linearization, assuming the

iteration period upper bound c to be a positive integer.

8p 2 P (u;v)

Dpath(u; v; p) > c() Dpath(u; v; p) � c+ 1 (4:14)

Dpath(u; v; p) � c+ 1� (1� �p)
�p (4:15)

�Dpath(u; v; p) � �c� �p
�p (4:16)

where

�p 2 f0; 1g.

�p is a su�cient large constant,
�p � max(c + 1 �

Dpath(u; v; p);Dpath(u; v; p)�c) for all possible choices of block
implementations (algorithm/architecture mappings).

8p 2 P (u;v)

r(u) � r(v) � W (u; v)� 1 + (1 � �u; v)
�u;v (4:17)

�r(u) + r(v) � �W (u; v) + �u; v
�u; v (4:18)

where �u; v 2 f0; 1g.

�u;v is a su�cient large constant.

By equation (4.11), and as p 2 P (u; v) () W (u; v) =
Wpath(u; v; p), we �nd the more tight constraints below.

0 �
X
e2p

wMX
i=1

xe; i � �u; v (4:19)

X
e2p

wMX
i=1

xe; i � �u; v �wM � jfe; e 2 pgj (4:20)

where jSj is the number of elements of the set S.

Inequality 4.20 leads to the following additional constraint:

8e 2 p; xe; i � �u; v ; 1 � i � wM (4:21)

Therefore condition (b) can be expressed by the following con-

straint:

8p 2 P (u;v); �p � �u; v (4:22)

Constraints (4.15) and (4.16) can be expressed in a more tight
way as indicated below.

Dpath(u; v; p) � c+ 1� (1� �p)

0
�p (4:23)

�Dpath(u; v; p) � �c� �p

1
�p (4:24)

where

0�p = max(0; c+ 1�D
min
path(u; v; p)) (4:25)

1�p =max(0;�c+D
max
path(u; v; p)) (4:26)

Dmax
path(u; v; p) is the maximum possible value of Dpath(u; v; p)

Dmin
path(u; v; p) is the minimum possible value of Dpath(u; v; p)

For the time equidistant case, we �nd the following two results.

D
max
path(u; v; p) =

X
vo2p

d
max
vo (4:27)

D
min
path(u; v; p) =

X
vo2p

d
min
vo (4:28)

4.1.2 Summary of the model

We brie
y describe the 0-1 ILP formulation for the case with

(n,1)-type computation blocks, having time equidistant inputs,
in the following way.

Given a positive integer c, upper bound on the throughput
measured in number of control steps,

Minimize
P

u2V
Costu

subject to the constraints given by 4.2-9, 4.12-13, 4.19-28,

given the Boolean variables �u; i; j ; xe; i; �p; �u; v such that

u; v 2 V; e 2 E; p 2 P (u; v).

4.1.3 Blocks with time non-equidistant inputs and

more than one output

The present mathematical model can be easily extended to

handle synchronous data-
ow computations with computation

blocks having time non-equidistant inputs and more than one

output (Case II) by applying a set of substitutions discussed

in the technical report of this paper [5].

4.2 Size of the model

The size of the model is highly dependent on the system-

level
ow graph, because many constraints in the mathemati-

cal model are not needed for particular ranges of values for c as
well as for some combinations of implementation delays of the

computational block. We developed many methods to prune

as many constraints as possible at compile time (model gener-
ation) by pre-evaluating the values of many variables whenever

it is possible to do so. These optimizations are case speci�c,

and for the sake of brevity, they are included only in the techni-
cal report of this paper. However, we can estimate a worst-case

value for the size of the model (4.38) (4.39), assuming a system

with only (n; 1) time equidistant blocks:

O(#variables) = O(#constraints)

= O(#blocks+#(valid paths)) (4:38)

where the number of valid paths is a function of the number

of non-zero delay blocks, i.e., blocks in which the maximum

implementation delay is larger than zero.

O(#(valid paths)) = O(#(non zero delay blocks)2) (4:39)

5 Software Platform and Experimental

Results
The ILP-model of a given system-level task
ow graph (such

as in Figure 1) is automatically generated from the TFG by a
1500 line C program. The model is solved using a branch-and-

bound ILP-solver BOZO [9]. The model generator program

makes an extensive e�ort to prune unnecessary constraints by
pre-processing (pre-evaluating) many of the constraints in the

model, which helps to ensure low CPU times during the opti-

mization phase made by the ILP solver.
The following three audio and video processing examples

have been optimized using the proposed methodology and al-

gorithms.
(1) HOM - System for Homomorphic �ltering of images [5];

(2) IMAGE - System for Enhancement of compressed images

[5];
(3) LMS - Transform domain adaptive LMS �lter (Q = 1, 2

and 3) [5];

Parameter Q in the LMS examples denotes di�erent versions
of updating algorithms with three di�erent rates of conver-

gence. Table 2 shows the initial throughput and the through-

put after optimization. The average and median improvement
are by factors of 1.97 and 1.81 respectively, clearly indicat-

ing the importance of hierarchical pipelining in system-level

design. Run times of the ILP-based optimization algorithm
on a SUN4 computer are also given in Table 1. We assume

all architectures have the same implementation cost on these

benchmarks for the sake of simplicity, so only algorithm selec-
tion is performed.

Examples
Sampling

Period before
optimization

Sampling
Period after
optimization

Improvement
factor

(speed-up)

Run-Time
(sec) on
SUN4

HOM 29 13 2.23 395

IMAGE 21 8 2.63 502

LMS (Q = 1) 21 13 1.62 960

LMS (Q = 2) 29 16 1.81 1270

LMS (Q = 3) 37 24 1.54 1005

Table 1: Throughput maximization

6 Conclusion
We introduced a new system-level synthesis technique for

throughput optimization which simultaneously considers algo-

rithm/architecture matching and retiming. The technique is

generalized so that pipelining is considered. The e�ectiveness

of the ILP-based optimization algorithm is demonstrated on

several real life examples. The application domain of the al-

gorithm is enhanced by exploring the relationship between the

new problem and several other problems in behavioral and

logic synthesis.

Acknowledgment

The authors wish to thank Mr. Diogenes Da Silva Jr. for the

helpful comments during the preparation of this paper.

References
[1] E.C. Anderson, J. Dongarra, \Performance of LAPACK: A

Portable Library of Numerical Linear Algebra Routines",Proc.
of the IEEE, Vol. 81, No. 8, pp. 1094-1102, 1993.

[2] P. Chou, E.A. Walkup, G. Borrielo, \Scheduling for Reactive

Real-Time Systems",IEEE MICRO, Vol. 14, No. 4, pp. 37-47,
1994.

[3] M.R. Corazao, M. Khalaf, L. Guerra, M. Potkonjak, J. Rabaey,

\Instruction Set Mapping for Performance Optimization", pp.

518-521, ICCAD93, November 1993.

[4] J. C. DeSouza-Batista and A. C. Parker, \Optimal Synthesis of

Application Speci�c Heterogeneous Pipelined Multiprocessors",

Proceedings of the 1994 Application Speci�c Array Processor
Conference (ASAP), San Francisco, August 1994.

[5] Y. G. DeCastelo-Vide-e-Souza, M. Potkonjak and A. C. Parker,

\Optimal ILP-based Approach for Throughput Optimization

Using Simultaneous Algorithm/Architecture Matching and Re-

timing", Technical Report in preparation, Department of EE-

Systems, Univ. Southern California, 1995.

[6] C. H. Gebotys and M. I. Elmasry, \Optimal Syntheis of High-

Performance Architectures", IEEE Journal of Solid-State Cir-

cuits, vol. 27, no. 3, pp. 389-397, 1992.

[7] G. Goossens, J. Wandewalle and H. De Man, \Loop optimiza-

tion in register-transfer scheduling for DSP- systems", 26th De-

sign Automation Conference, pp. 826-831, Las Vegas, NV, 1989.

[8] R.K. Gupta, C.N. Coelho, G. De Micheli, \Program Implemen-

tation Schemes for Hardware-Software System", IEEE Com-

puter, Vol. 27, No. 1, pp. 48-55, 1991.

[9] Hafer, L.J. and Hutchings, E., \Bringing up Bozo", Tech Rep.
CMPT TR 90-2, School of Computing Science, Simon Fraser

University, Burnaby, B.C., 1990.

[10] L. Hafer, A. Parker, \A Formal Method for the Speci�cation,

Analysis, and Design of Register-Transfer Level Digital Logic",

IEEE Trans. on CAD, Vol. 2, No. 1, pp. 4-18, 1983.

[11] A. Kalavade, E.A. Lee, \A Hardware-Software Codesign

Methodology for DSP Applications",IEEE Design & Test of
Computers, Vol. 10, No. 3, pp. 16-28, 1993.

[12] C. L. Leiserson and J. B. Saxe, \Retiming Synchronous Cir-

cuitry", Algorithmica, vol. 6, pp. 5-35, 1991.

[13] N. Park and A. C. Parker,\Theory of Clocking for Maxi-

mum Execution Overlap of High-Speed Digital Systems", IEEE
Transactions on Computers, vol. 37, no.6, pp. 678-690, June
1988.

[14] M. Potkonjak and J. Rabaey, \Optimizing the Resource Uti-

lization Using Transformations",ICCAD-91, pp. 88-91, Santa
Clara, 1991.

[15] M. Potkonjak, J.M. Rabaey, \AlgorithmSelection: A quantita-

tive computation-intensive optimization approach",ICCAD94,
paper 2B.1, 1994.

[16] S. Prakash, and A.C. Parker, \SOS: Synthesis of Applica-

tion Speci�c Heterogeneous Multiprocessor Systems", Journal

of Parallel and Distributed Computing, no. 16, pp. 338-351. De-
cember 1992.

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

