
Rephasing: A Transformation Technique for the Manipulation of
Timing Constraints

Miodrag Potkonjak Mani Srivastava
C&C Research Laboratories AT&T Bell Laboratories
NEC USA, Inc. 600 Mountain Avenue
Princeton, NJ 08540 Murray Hill, NJ 07974

Abstract - We introduce a transformation, named
rephasing, that manipulates the timing parameters in con-
trol-dataflow graphs. Traditionally high-level synthesis
systems for DSP have either assumed that all the relative
times, called phases, when corresponding samples are
available at input and delay nodes are zero or have auto-
matically assigned values to as part of the scheduling step
when software pipelining is simultaneously applied.

Rephasing, however, manipulates the values of
these phases as a transformation before the scheduling.
The advantage of this approach is that phases can be cho-
sen to optimize the algorithm for metrics such as area and
power. Moreover, rephasing can be combined with other
transformations. We have developed techniques for using
rephasing to optimize several design metrics. The experi-
mental results show significant improvements.

1. Introduction
Algorithm transformations have emerged as impor-

tant optimization tools in the process of high-level synthe-
sis. For the most part transformations in high level
synthesis have relied on the following two techniques:
dataflow optimizations based on algebraic identities and
redundancy manipulation and reorganization of control
flow structures such as loops (e.g. retiming, loop unfold-
ing).

The focus of our work is on an algorithm transfor-
mation, named rephasing, that belongs to a new category -
it manipulates the timing relationships between different
parts of a computation. While the precise positioning of
operations along the time axis is the job of the scheduler,
an algorithm transformation like rephasing manipulate
timing relationships without violating specified timing
constraints so as to veer the synthesis process towards
optimizing various design metrics.

The control-dataflow graphs (CDFGs) that are used
during the high-level synthesis of numerically intensive
applications have associated timing parameters such as
sampling period, the latencies between input-out pairs,
the relative times at which corresponding samples become
available on different inputs, and the relative times at

which the corresponding samples become available at the
delay nodes. While some of the timing parameters may be
constrained by performance requirements or by the inter-
face to the external world, others remain free to be chosen
during high-level synthesis. For example, while the sam-
ple period is usually specified, the relative times at which
corresponding samples become available at the delay
nodes are internal timing parameters that are free to be
chosen by an implementation.

Traditionally high-level synthesis systems have
either assumed that the relative times, called phases, when
corresponding samples are available at input and delay
nodes are all zero or have automatically assigned values to
these phases as part of the datapath allocation/scheduling
step in the case of newer schedulers that use techniques
like software pipelining and overlapped scheduling.

Rephasing manipulates the values of these phases
as an algorithm transformation before the scheduling/
allocation stage. The advantage of rephasing is that phase
values can be chosen to transform and optimize the algo-
rithm for explicit metrics like area, throughput, and power.
Moreover, the rephasing transformation can be combined
with other transformations such as algebraic transforma-
tions. Compared to retiming and functional pipelining, the
rephasing transformation not only preserves their key
advantages but also offers improvements such as elimina-
tion of granularity bottlenecks and no need for initial state
computation.

We have developed techniques for using rephasing
to optimize a variety of design metrics, and our results
show significant improvements in several design metrics.
We have also investigated the relationship and interaction
of rephasing with other high level synthesis tasks.

2. Previous Work
Relevant to the manipulation of timing relation-

ships by rephasing is the handling of timing constraints
that is done by the schedulers during high level synthesis.
While there are several notable exceptions [Ku92, Fil93],
most of high level synthesis work has been based on the
synchronous dataflow model of computation. As pointed
out earlier, most high-level synthesis systems for DSP
either assume that all input and delay node samples are
available at the same time (all phases are zero), or indi-
rectly assign values to the phases by using schedulers that
incorporate techniques such as overlapped scheduling and

32nd ACM/IEEE Design Automation Conference 
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.  1995 ACM 0-89791-756-1/95/0006 $3.50

software pipelining to generate complex time shapes
[Goo89, Pot94, Lam88].

However only recently has some limited work been
done on relaxing the assumption that all phases are zero
and explicitly manipulating the phases. Perhaps the first
direct effort at directly manipulating the phases as part of
an algorithm transformation was described by [Sri94] who
applied it to simultaneously optimize throughput and
latency for linear DSP systems. Besides targeting a nar-
rower set of goals for the limited domain of linear systems,
[Sri94] assumed that the corresponding samples at all the
inputs are mutually aligned to each other (all input phases
were zero), and the corresponding samples at all the delay
nodes in CDFG were mutually aligned to each other (all
delay node phases were a constant).

It is interesting to note that in some sense rephasing
corresponds to cycle stealing and wave pipelining in logic
synthesis [Lam92, Won89, Ung86, Ish90].

3. Rephasing: Definition and Intuition
The DSP systems that we are interested in have

multiple inputs, multiple outputs, and finite state. They
accept streams of samples on each of the inputs, and pro-
duce streams of samples on each of the output ports. We
represent an algorithm for a system by a hierarchical
directed control-dataflow graph (CDFG). In a CDFG the
nodes represent data operators or sub-graphs, data edges
represent the flow of data between nodes, and control
edges represent sequencing and timing constraints
between nodes.

The system state is represented in a CDFG by spe-
cial delay operator nodes which are initialized to a user
specified value. A delay operator node (often referred to as
just delay or state in this paper) delays by one sample the
stream of data on its sole input port. A CDFG corresponds
to an algorithm for computing the output samples and the
new samples to be stored at the delay nodes (i.e. the new
state) given the input samples and the old (current) sam-
ples at the delay nodes (i.e. the old state).

Figure 1a shows an example CDFG with two inputs
X and Y, and one output Z. The two delay nodes, U and V,
are represented by boxes with the letter ‘D’.

Associated with a CDFG are also timing constraints
specified by the user. These constraints arise from require-
ments of the interface to the external world and from per-
formance requirements. Consider a CDFG with P inputs,
Q outputs, and R delay nodes (state nodes). Let,

X[n] = (X1[n] X2[n]... XP[n])T be the vector of n-th
samples at the P input nodes of the CDFG

Y[n] = (Y1[n] Y2[n]... YQ[n])T be the vector of n-th
samples at the Q output nodes of the CDFG

S[n] = (S1[n] S2[n]... SR[n])T be the vector of n-th
samples at the R delay nodes of the CDFG

Given initial values S[0] of the samples in the delay
nodes, the CDFG repeatedly computes output samples
Y[n] and new samples S[n] for delay nodes from input
samples X[n] and old samples S[n-1] at the delay nodes for
n = 1, 2, 3...

Since we have restricted ourselves to single-rate
synchronous CDFGs, the data rates are identical at all
nodes so that the inter-sample time interval is identical
and constant for all nodes. The maximum rate at which
such a CDFG can process samples is called its Through-
put, and the inverse of this rate, called Sample Period, is
the minimum required time between successive samples
at a node in the CDFG. The sample period, denoted by TS,
is an important timing parameter that is usually con-
strained not to exceed a maximum value.

The relative arrival times of the n-th sample at each
of the P input nodes form the third important set of timing
parameters for a CDFG. ΦI(i) is the skew in the arrival of
Xi[n], the n-th sample at the i-th input, relative to the
arrival of X1[n], the n-th sample at the 1-st input. We call
ΦI(i), which may be negative, the Phase associated with
the i-th input. The interface to the external world may
require that the input phases be constrained to specific val-
ues. However many high-level synthesis systems [Rab91]
simplify scheduling by assuming that the n-th sample at
each input arrives at the same time, i.e. TIA(i)=0 for all
i=1..P.

It must be noted that the timing parameters TS,
TL(i,j), and ΦI(i), for i=1..P, j=1..Q, are sufficient to com-
pletely characterize the timing associated with the inputs
and the outputs. In other words, the external timing
behavior of a CDFG is completely characterized by them.
The values of some of these externally visible timing
parameters may be constrained by design requirements.

The final CDFG timing parameter of interest is
ΦD(i), the skew in the arrival of Si[n], the n-th sample at

Figure 1: Timing Parameters Associated with a CDFG

+

*

D

D

UX Z

YV

n

n

n

n

n

n+1

n+1

n+1

n+1

n+1

n-1

n-1

n-1

n-1

n-1

TS

X

Y

Z

U

V

TL(X,Z)

TL(Y,Z)

ΦI(Y)

ΦD(U)

ΦD(V)

(a)

(b)

the i-th delay node of the CDFG, relative to the arrival of
X1[n], the n-th sample at the 1-st input. We call ΦD(i) the
Phase associated with the i-th delay node. It is clear that
Si[n] is not available earlier than ΦD(i) after the arrival of
X1[n], and Si[n] must be calculated no later than TS+ΦD(i)
after the arrival of X1[n]. Note that ΦD(i) may be negative.
Unlike TS, TL(i,j), and ΦI(i) which are external timing
parameters that may be constrained by the user, ΦD(i) is an
internal timing parameter that is unconstrained by the
user and may be chosen so as to satisfy design constraints
while optimizing design cost metrics.

What makes the delay node phases ΦD(i) for i=1..R
interesting as free timing parameters is that, as shown
below, TS and TL(i,j) can be expressed in terms of various
path lengths in the CDFG, input phases, and the delay
node phases. Let:

PID(i,j) = length of the CDFG path (in control steps)
from the i-th input node to the j-th delay node

PIO(i,j) = length of the CDFG path (in control steps)
from the i-th input node to the j-th output node

PDD(i,j) = length of the CDFG path (in control steps)
from the i-th delay node to the j-th delay node

PDO(i,j) = length of the CDFG path (in control steps)
from the i-th delay node to the j-th output node

k = number of pipeline stages that have been added
(or removed if k<0) to the initial CDFG that was given
by the user as a specification, and from which the
current CDFG was obtained after some
transformations

It can be shown that:

TS = max {PDD(r,s)+ΦD(r)-ΦD(s) ∀r,s∈1..R} ∪
{PID(p,r)+TIA(p)-ΦD(r) ∀p∈1..P, ∀r∈1..R}

TL(i,j) = k∗TS + max {PIO(p,j)+ΦI(p)-ΦI(i) ∀p∈1..P} ∪
{PDO(r,j)+ΦD(r)-ΦI(i) ∀r∈1..R} ∀i∈1..P, ∀j∈1..Q

From the above expressions it is clear that the val-
ues of TS, TL, ΦI, and ΦD are coupled - choosing some may
place constraints on the achievable values of the remain-
der. Consequently an algorithm transformation can
manipulate those timing parameters that are free. In fact,
such a transformation may be combined with other algo-
rithm transformations that effect the CDFG path lengths
PID, PIO, PDD, and PDO.

Our transformation rephasing is based on the idea of
assigning values to the input and delay node phases that
are free so as to improve desired design characteristics.
Many DSP schedulers assume that all input samples and
old delay node samples are available simultaneously at the
beginning of a sample period (i.e. all phases are zero), and
that the new delay node samples are to be calculated by
the end of the sample period. Rephasing plays around
with the free phases so as to stagger the computation suit-
ably - hence the name rephasing. Figure 2introduces the
basic idea behind our new transformation. The control-
data flow graph (CDFG) shown has two operations: multi-

plication which takes 3 control cycles and addition which
takes 1 control cycle. The CDFG also has two delay nodes:
U and V. The delay nodes are annotated by their phases. In
addition, the pair of numbers above the box correspond-
ing to a delay node denote the earliest time at which the
delay node sample is available and the latest time by
which the next delay node sample has to be calculated.
The goal is to obtain a minimal area implementation under
the sampling rate constraint of 2 cycles. The initial best
sampling rate is obviously 3 control cycles. Algebraic and
redundancy manipulation transformations are not effec-
tive since only one operation is available between delay
nodes. Retiming and functional pipelining are also not
effective - actually they can not be applied at all since no
delay nodes can be moved due to the blocking inputs and
the blocking output.

Amongst previously proposed transformations,
only unfolding or unfolding combined with pipelining
and retiming can resolve the throughput (sampling rate)
constraint. However, it is well known that unfolding often
result in increased hardware requirements.

Figure 2: Rephasing: The introductory example. The
example is also used to illustrate how rephasing can be
used to eliminate granularity bottlenecks.

+

*

D

D

0 2

UX Z

Y

2 0

V

+

*

D

D

1 3

UX Z

Y

2 0

V

Phase = FD(U)=0

Phase = FD(V)=0 Phase = FD(V)=0

Phase = FD(U)=1

(a) (b)

v4

v3

+

+

*

1

2

3

4

5

6

7

8

9

*

*

+

v0 y1

z1

x2

z2

u0 x1

+

v2

v1

y2

y3

y4

x3

u4

z3

*

Figure 3: Using rephasing to improve throughput by
eliminating granularity bottlenecks. Schedule for
the example shown in two different representations
in Figures 3 and 4.

Now consider the same CDFG, as shown in Figure
2b. The only difference is that the phase, or timing con-
straints, associated with the delay node U is moved by one
control step relative to phase of the delay node V and
inputs. The resulting throughput (critical path) is now
only two cycles, since the maximal difference between the
availability and the required times for each delay node is
still two. That everything is correctly done can be checked
by analyzing the corresponding functional dependences
and from the graphically represented schedule in Figure 3.
In the remainder of the paper we will demonstrate system-
atic methods for exploring this mechanism of phase alter-
ation to improve a number of design metrics.

4. Properties of Rephasing and Using
Rephasing to Optimize Throughput
The first fundamental question about rephasing is

the following: Given a CDFG and a set of phase values for
each delay node and each input, is the computation well
defined i.e., is there a schedule that does not violate timing
constrains? Recall that in each cycle of the CDFG sum of
differences between the required times and the arrival
times of the various delay nodes has to be at least equal to
the sum of the computation delays of all the operations.

It is easy to see that this problem is equivalent to the
problem of detection of negative cycles. The detection of
negative cycles is a well studied problem in the theoretical
computer science literature. It can be solved in cubic run
time by using the Bellman-Ford or Yen algorithms [see
Law76, Section 11, pages 90-91].

There is a close and easily seen relationship
between rephasing and retiming [Lei91] of a CDFG. There
are however several important but less obvious differences
between rephasing and retiming. Interestingly almost all
of the differences result in giving an edge to rephasing for
use in optimizing compiler or as a high level synthesis
transformation. The advantages include:

1. There is no need for recomputation of initial states
(initial values of delay node samples);

2. There is no blocking input/output problem and no
operator node granularity bottleneck which prevent
achievement of iteration bounds [Lei91];

3. All numerical properties.

Throughput is one of the most important design
metrics. The iteration bound imposes a fundamental limit
on the achievable throughput when data-flow transforma-
tions (e.g. algebraic and redundancy manipulation) are not
used. In this section we demonstrate how rephasing can be
used as an effective mean to achieve iteration bound. All
results can be directly derived using graph theoretic
approaches. However, we will take an alternative, more
insightful approach. We will establish a relationship
between rephasing and a modified version of functional
pipelining, and use this relationship to derive the theoreti-

cal results and to design efficient algorithms. The second
approach not only simplifies the description of our meth-
ods, but also provides a valuable insight into the relation-
ship between the two transformations. The following
algorithm in polynomial times applies rephasing on an
arbitrary CDFG so that a throughput equal to the iteration
bound is achieved.

Rephasing for Throughput:

1. Find the iteration bound using Hartman’s minimum
ratio cycle algorithm [Har90];

2. Assign to each delay node a delay equal to the negative of
the iteration bound (for example, if iteration bound is k, assign
delay equal to -k);

3. Using the Bellman-Ford algorithm [Law76] find the
longest path between one node and all other nodes for each
strongly connected component. The node is arbitrarily randomly
selected;

4. Assign to the selected node phase 0. Assign to each delay
node the phase which equal to distance from the selected node.
Assign to each input a phase that is equal to some large negative
number M. M has a magnitude larger than the sum of delays of
all operations nodes in the CDFG.

For sake of brevity we omit the proof. The run time
of the algorithm is O(n3 log n).

The relationship between function pipelining and
rephasing is established by the following theorem which
we state without proof:

Functional Pipelining-Rephasing Relationship Theorem:
Rephasing on a given CDFG G1 is equivalent to functional
pipelining on a modified CDFG G2. G2 is obtained from G1 by
replacing each node with k multicycle delay by a chain of k nodes
with unit cycle delays.

5. Optimizing Area and Power Using
Rephasing
It has recently been demonstrated that retiming at

behavioral level can be effectively used to improve
resource utilization of the targeted design, and therefore
reduce the implementation area [Pot94]. However, the
effectiveness of retiming for area optimization is often lim-
ited by granularity and input/output bottlenecks. Figure
4a shows a typical example of this situation. It is assumed
that the available time is 4 control steps. Retiming can not
be applied on the initial CDFG because any movement of
the delay nodes is prevented by either the output or the
inputs. Since all operations, except addition +1, are on the
critical path, implementation requires at least 4 multipli-
ers, 2 adders and 1 subtracter.

The application of rephasing significantly improves
the resource utilization. If delay node D1 is shifted in time
by 3 cycles, see Figure 4b, it is easy to generate schedule
and assignment under significantly lower allocation con-
straints. Table 1 shows one of the possible resulting sched-
ules - only 1 execution of each type is now required.

It has also been recognized that the constraints
imposed by inputs and output positioning can be over-
come by the use of pipelining. However, rephasing often

has significant advantage not just over retiming, but also
over functional pipelining due to potential of rephasing to
remove granularity bottlenecks.

An efficient and effective approach for area optimi-
zation requires two components: an objective function to
estimate (predict) the area without the time consuming
application of scheduling, assignment, and physical
design tools; and an optimization algorithm for minimiz-
ing the objective function.

Our objective function for area optimization is cal-
culated using the following approach. For each operation i
with as-soon-as-possible time ASAPi, as late as possible
time ALAPi, and the length Durationi we define the func-
tion

 for each t ime

slot . Next, we calculate the values
U(t) of the function that describes the likelihood that some
operation of the specified type is scheduled in a given time
step. This is done by accumulating the contributions of all
operations of the specified hardware type:

(EQ 1)

multiplier adder subtracter

1. control step *3 +2

2. control step *4 +1 -1

3. control step *1 +3 -2

4. control step *2

Table 1: A Possible Schedule for the Rephased Example in
Figure 4b

-1

+2

D1

D2

+3

-2

0 4

4 0

*3 *4*1 *2

+1

Figure 4: Area minimization using rephasing. While for
the initial CDFG 4 multipliers, 2 adders, and 1 subtracter
is required, for the transformed CDFG only 1 multiplier,
1 adders and 1 subtracter are sufficient. The
corresponding schedules are shown in Table 1.

-1

+2

D1

D2

+3

-2

3 7

4 0

*3 *4*1 *2

+1

(a) (b)

SSP

ui k() 1
ALAPi ASAPi– 1+
--=

t k t Durationi+<≤

U t() ui t()
i 1=

NumOperations

∑=

As an estimation of the requirements for execution
units of a specific type, we take the maximum of the func-
tion U(t) over all control steps for the corresponding type
of operations. Similarly, by considering each type of trans-
fer of data from a particular type of execution unit i to a
particular execution unit of type j, we calculate a function
indicating the need for interconnect of type ij. We estimate
the lifetime of each variable by assuming that it is alive
from the most likely control step that its producing opera-
tion is scheduled to the expected moment when the latest
operation which consume the variable is scheduled.
Expected times for both operations are calculated as the
middle of the ASAP-ALAP interval. The objective function
(OF) is the weighted sum of three components: execution
units, interconnect, and registers. The weights are propor-
tional to the cost of each component.

The new optimization algorithm is based on the
force-directed paradigm [Pau89] where at each step the
most critical part of the predicted cost is targeted. The fol-
lowing pseudo-code describes the algorithm:

while (it is 1st pass, or there was improvement in the
previous iteration) {

find objective function (OF) for each one clock step
change of the phase for each delay node and input;

find the best OF, and the corresponding one clock steps
change of phase;

apply the best selected one clock step rephasing;

}

An important addition that we made to the force-
directed optimization is the use of min-bounds [Rab91]. As
soon as the requirement for some type of unit reaches the
min-bound, further improvements in value of this compo-
nent are not considered as the improvements of the objec-
tive function OF, since the minimum along this dimension
has been reached.

Recently, power optimization has become impor-
tant [Cha92] due to the increasing desire for portability. We
now present a rephasing algorithm for power optimiza-
tion under throughput constraint.

Power minimization at the behavioral level can to
the first order of approximation be treated as a simulta-
neous optimization of throughput, area and number of
operations [Cha92]. The experimental studies confirm the
validity of this approximation [Cha92]. The objective func-
tion for power is more involved than the one for area due
to a need for taking into account the energy consumption
not only in the data path components but also in the con-
trol logic. We used the behavioral level power prediction
tools [Cha92] in Hyper for this task.

Rephasing does not alter the number of operations,
with the only exception being that it can reduce the num-
ber of transfer operations that are needed. This change is
usually relatively small. Extensive experimental studies as
well as theoretical analysis indicate that power vs.

throughput function has unimodal shape, i.e. there exist a
single minimum [Cha92].

Based on this observation we developed an algo-
rithm for power minimization using rephasing. The algo-
rithm conducts a search along the throughput axis. At each
step the area, and therefore the effective capacitance, is
minimized by applying the algorithm for area minimiza-
tion using rephasing.

6. Exper imenta l Resu l t s and
Conclusion
Throughput optimization using rephasing is a

problem of polynomial complexity (see Section 3.0). There-
fore, the key question is not how well the algorithm per-
forms, but how much improvement can be achieved using
rephasing. To analyze the improvements we studied 55
DSP examples. The average critical path was 67 control
cycles, while the median was 14. After rephasing the aver-
age and median critical path were long 3.6 and 2 control
cycles respectively. So the average and median improve-
ments were was by factors 20 and 7 respectively.

Table 2 shows the performance of rephasing for
area optimization on the set of 10 examples. The average
reduction of area was by 31.5%, the median reduction of
area was by 35%.

Table 3shows the performance of rephasing for
power optimization on the set of 10 examples. The average
reduction of power was by 3.76 times, the median reduc-
tion of power was by 4.06 times.

Design
Initial Area

[mm2]
Final Area

[mm2]
Final/Initial

[%]

8X8 DCT 40.46 22.19 54.8

9FWT 51.72 51.72 65.0

11WFT 54.08 25.94 66.5

11FIR 7.67 4.92 64.1

7IIR 18.27 16.25 88.9

Volterra 34.42 20.48 59.5

Lin5 37.71 30.45 80.7

Table 2: Area Optimization Using Rephasing

Design
Initial Power
[nJ/sample]

Final
Power [nJ/

sample]

Initial/
Final/

8X8 DCT 284.42 49.27 5.77

9FWT 76.52 18.32 4.18

11WFT 80.02 20.00 4.00

11FIR 21.17 5.21 4.06

7IIR 66.20 34.27 1.93

Volterra 81.77 40.06 2.04

Lin5 39.91 9.21 4.33

Table 3: Power Optimization Using Rephasing

We introduced a new type of transformation -
rephasing. Rephasing changes the timing constraints asso-
ciated with delay nodes, inputs, and outputs, and can be
used to address a variety of different design goals. We
demonstrated the effectiveness of rephasing in optimizing
a number of design metrics.

7. References
[Cha92] A.P. Chandrakasan, et al., “Hyper-LP: A Design

System for Power Minimization using Architectural
Transformations”, ICCAD, 300-303, 1992

[Fil93] D. Filo, D.C. Ku, C.N. Coehlo, G. De Micheli: “Inter-
face Optimization for Concurrent Systems Under
Timing Constraints”, IEEE Trans. on VLSI Systems,
Vol. 1, No. 3, pp. 268-281, 1993.

[Goo89] G. Goossens, J. Wandewalle, H. DeMan: “Loop
Optimization in register-transfer scheduling for
DSP-systems”, DAC-89, pp. 826-831, 1989.

[Har90] M. Hartman: “On cycle means and cycle staffing”,
Technical Report UNC/OR/TR-90/14, University
of North Carolina, June 1990.

[Ish90] A.T. Ishii, C.E. Leiserson: “A Timing Analysis of
Level-Clocked Circuitry”, Advance Research in
VLSI Conference, pp. 113-130, 1990.

[Ku92] D. Ku, G. De Michelli: “High Level Synthesis of
ASICs Under Timing and Synchronization Con-
straints”, Kluwer, Norwell, MA, 1992.

[Lam88] M. Lam: “Software Pipelining: An Effective Sched-
uling Technique for VLIW Machines”, SIGPLAN’88
Conf. on Programming Language Design and
Implementation, pp. 318-328, 1988.

[Lam92] W.C.K. Lam, R.K. Brayton, A.L. Sangiovanni-Vin-
centelli: “Valid Clocking in Wavepipelined Cir-
cuits”, ICCAD, pp. 518-525, 1992.

[Law76] E.L. Lawler: “Combinatorial Optimization: Net-
works and Matroids”, Holt, Rinehart and Winston,
New York, NY, 1976.

[Lei91] C.E. Leiserson, J.B. Saxe: “Retiming Synchronous
Circuitry”, Algorithmica, Vol. 6, No. 1, pp. 3-36,
1991.

[Pau89] P.G. Paulin, J.P. Knight: “Scheduling and Binding
Algorithms for High-Level Synthesis”, DAC-89, pp.
1-6, 1989.

[Pot94] M. Potkonjak, J. Rabaey: “Optimizing Resource Uti-
lization Using Transformations” IEEE Transactions
on CAD, Vol. 13, No. 3, pp. 277-292, March 1994.

[Rab91] J. Rabaey, et al., “Fast Prototyping of Datapath-
Intensive Architectures”, IEEE Design and Test of
Computers, Vol. 8, No. 2, pp. 40-51, June 1991.

[Sri94] M.B. Srivastava, M. Potkonjak: “Transforming Linear
Systems for Joint Latency and Throughput Optimi-
zation”, EDAC-94, pp. 267-271, 1994.

[Ung86] S.H. Unger, C-J. Tan: “Optimal Clocking Schemes
for High Speed Digital Systems”, IEEE Transactions
on Computers, Vol. 35, No. 10, pp. 880-895, 1986.

[Won89] D. Wong, G. De Micheli, M. Flynn: “Inserting
Active Delay Elements to achieve wave pipelining”,
ICCAD, pp. 270-273, 1989.

	DAC95
	Front Matter
	Table of Contents
	Session Index
	Author Index

