
Abstract - This paper describes a novel approach for gen-
erating the code of ECAD frameworks automatically from
abstract models. Instead of providing the framework compo-
nents of a design system in the form of a code library, we
favor to use such a ‘library’ at modeling level. The frame-
work components, common to all design tools, are described
by easily understandable base models. For each design tool,
the base models will be customized individually to meet the
tool-specific requirements. Then, the customized models are
input to a code generator that automatically generates tool
specific, optimized source code. A generic modeling system
and several code generators are implemented in a software
generation environment called MOOSE.

I. INTRODUCTION

VLSI design systems perform many tasks in various
domains and hierarchy levels. These tasks may be synthe-
sis, extraction, simulation, and verification steps. All
actions will be performed by different tools. A complete
ECAD system is a large collection of design tools together
with a central data management system (e.g. a design
database) and a design management system.

After more than two decades of implementing stand-
alone tools for designing ICs, most design systems
became more and more integrated. They follow the ECAD
framework approach to reduce the rapidly increasing soft-
ware costs. Overcoming the ‘software crisis’ is such
important that ECAD frameworks became a notable
research discipline. A good survey can be found in [1].
The goal of the framework approach is to improve both,
the design of integrated circuits by providing an always
consistent view of the design data as well as the develop-
ment of the design tools themselves. Since data manage-
ment, user interface, graphics, and control services are
implemented inside the framework, the code of the tools
can be reduced to the application specific algorithms. All

algorithms use the same framework infrastructure. Frame-
work components are comparable with software libraries
which have fixed interfaces to the application (e.g. [2]).

At first sight, this approach seems to be the ideal solu-
tion. Nevertheless, it has some drawbacks which are
caused by the inflexibility of the library concept. This is
mainly true for the data management component. We
therefore concentrate on the data handling during the rest
of this paper.

For efficiency reasons, design tools usually cannot be
implemented directly on top of a multi-user database.
Their runtime data have to be stored in main memory.
Input data are checked-out from the database and output
data are checked-in back into the database in large units
within a single transaction. To some extent, this caching
technique is already provided by modern client-server
databases [3], [4]. The most efficient data access for
design tools, however, is still provided by local data struc-
tures which are optimized for the actual design algorithms.

The tools all regard only sections of a comprehensive
data model and need similar but not necessarily identical
main memory data structures which are derived from the
comprehensive data model. Tool specific, local data struc-
tures should be added transparently to the structures corre-
sponding to the common data model. The same is true for
the other framework components like graphics, user inter-
face, and control flow. All these components have some
similar and some distinct parts for the different tools.

The main memory data structures are implemented as
abstract data types (ADTs). In the past, they were gener-
ally hand-coded which is very time consuming and error
prone. ECAD tool developers had to spend much time in
providing the tool infrastructure instead of writing design
algorithms.

We therefore propose a software engineering approach
to get more efficient, individual but correct code. We try to
generate the framework part of the tools automatically and
individually from the comprehensive models. Although
the final code is customized for a specific tool, the applica-
tion programmer has to write the code of the application
specific algorithms only. The framework components will
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be specified at model level, i.e. the comprehensive model
itself will be customized. The source code will then be gener-
ated automatically from the customized model. This process
results in efficient and correct code.

In this paper, we describe a software engineering environ-
ment called MOOSE (model-basedobject-orientedsoftware
generationenvironment) which has successfully been used for
generating the framework components of the PLAYOUT
VLSI design system [5]. Using MOOSE we are able to gener-
ate efficient application-specific code automatically from
abstract models.

The rest of the paper is structured as follows. Section 2 con-
siders the modeling level, i.e. the level of the program specifi-
cation. Section 3 then describes the generators and the
structure of the code automatically generated from the mod-
els. The generated framework code of several VLSI design
tools is analyzed in section 4, and we conclude the paper with
some final remarks in section 5.

II. TheModels

Our aim is tomodel the framework code rather than to
implement it by hand. The precondition to do this is that these
framework components can be described with rather simple,
but powerful models. Within our method, the model of a cer-
tain framework component is created in three steps: Step 1 is
to find amodeling notation for the models to be developed. In
step 2 thebase model for an application domain is developed.
This is done by analyzing the domain (in this case ECAD)
carefully and creating models which are suitable for the whole
domain. These two steps have to be performed only once per
application domain. The final model of the actual applica-
tion’s framework component, theframework model, is devel-
oped in step 3 by customizing the base model.

The MOOSE software generation environment we present
in this paper consists of two parts: a generic editor to perform
all three steps and a set of code generators. While the genera-
tors will be subject of section 3, we focus here on the model-
ing level.

A. Choosing a modeling notation

As explained above, our first step is to find a modeling
notation suited to match the aspects of the application domain.
For the description of data management components in the
ECAD domain, we have chosen an Extended Entity-Relation-
ship (EER) approach. This means, we enhanced the conven-
tional ER model [6] by object-oriented concepts like
inheritance and additional relation semantics as aggregation.
From our experience, this notation is very well suited for data
modeling in the ECAD domain and, therefore, a good starting
point for the development of a powerful base model.

B. Developing the base model

After selecting a modeling notation, a highly domain spe-
cific, comprehensive model has to be developed. Its existence

is a precondition for the integration of different applications in
the corresponding domain. This is an observation many peo-
ple working on ECAD tools and frameworks made. An early
model for the description of ECAD meta data was proposed
by Katz [7]. The work of the CFI on common models (e.g.
design representation [2]) shows their importance for the inte-
gration of different tools into a heterogenous ECAD frame-
work.

A base model is usually developed by combining such
well-suited submodels if they together cover more or less all
aspects of the application domain. It describes what is com-
mon to all applications of that domain. The design model we

use for PLAYOUT describes almost all aspects of the VLSI
design process such as the design tools, the designers, and the
design data [8]. It is structured into five submodels clustered
in two meta models (fig. 1). The process meta model describes
the involved tools, the resources (e.g. workstations), the users,
and the possible design flows. The product meta model
describes the design data. In this paper we will consider only
the product model which serves as the base model for the gen-
eration of ADTs.

The product model is divided into the design object model
describing the fine grain data for the tools (e.g. netlists, lay-
outs, etc.), and the design structure model describing meta
information such as hierarchy and versioning [9]. This
approach is common to many design environments.

C. Creating the framework model

To use the base model in an application project it must be
customized as it can be seen in figure 2. First of all, the base

model usually includes much more information than one
application needs. It would be inefficient to include the gener-
ated code of the whole base model into the application. Fur-
thermore, applications need local extensions to the model, for
instance data structures needed for internal algorithms. They

Fig. 1. PLAYOUT Design Model
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are usually not part of the base model and have to be instanti-
ated only for a particular application.

As explained above, the base model is a result of modeling
the ECAD domain. The framework model is built from the
base model by usingcharacteristics. The characteristics
describe the tailoring of the base model with respect to the
application project. This will be explained in detail below. The
MOOSE modeling component allows the user to enter the
base model (once for the whole ECAD domain) as well as the
characteristics (for every application project) and customizes
the base model.

D. Creating models with MOOSE

Within MOOSE, base models are constructed by using the
elements from the EER-notation (see above). (Sub-)models
can be clustered into schemata, which in turn can aggregate
other schemata, forming a schema hierarchy (see below). Dif-
ferent framework models can be derived from one base model
by using version and configuration concepts.

The following enumeration will describe which kind of
changes to the base model can be made, i.e. which types of
information can be put into the characteristics (see fig. 2).

- Schema aggregation:
Objects and their relations can be clustered into sche-
mata. Schemata can aggregate other schemata. It is, for
example, possible to have a schema of a tool verifying
the consistency of netlists which aggregates the schema
for the design structure model and the schema for netlists
but not the schema for layout data. This corresponds to
the view concept used in many design data models.

- Adding/deleting object types:
New object types can be added to model local data struc-
tures. Object types not needed can be made invisible for
the current application and will not be used for code gen-
eration.

- Adding/deleting attributes and relations:
As well as object types, new relations can be added to or
existing ones can be deleted from the base model.
Attributes can be added to or deleted from any existing/
newly created object type.

- Optimizing for certain purposes:
The data structures of the resulting framework code can
be optimized. It is, for example, possible to optimize
these structures for access speed or for memory con-
sumption. In addition, object types or relations can be
annotated with instructions how they can be retrieved
from external data sources, resulting in an automatic data
exchange with design databases or other programs (see
also section 3).

The MOOSE system offers a basic technique to modify the
base model with the characteristics: the configuration of dif-
ferent schema versions. It is possible to derive new schemata
from existing ones, allowing the addition/deletion of object
types, relations, and attributes as stated above. This results in

new versions of these schemata. The configuration of sche-
mata allows the tool developer to define an own application-
specific framework model from the base model. The frame-
work model is then input to the code generators.

E. Modeling experiences

MOOSE has successfully been used for the development of
different tools. Table I indicates which parts of our base model
can be seen by several example applications. The usage of a

submodel is ranked from ‘o’ (the application does not use the
submodel) to ‘+++’ (the complete submodel is used). The
Chip Planner (top-down floorplanning) does not need to see
the design structure model as it is not interested in versioning,
the complete cell hierarchy, etc. But it needs a lot of detailed,
fine-grain design data from the design object model like the
shapes, sizes, and interconnections of the cells. Our design
management tool needs to know the complete design structure
model, including versioning, design alternatives, etc. But it is
rarely interested in detailed design data (except some statisti-
cal data and information needed for graphical object represen-
tation). The Repartitioner, a tool for changing the circuit
hierarchy, needs some knowledge about the design structure
as well as about the design data (ports, netlists, etc.). An EDIF
converter sees most of our design structure model and, more
or less, the complete design object model.

These examples show that it is feasible to spent some effort
in designing a good base model, because it can be reused for
different applications. Customizing the base model is easy
within the MOOSE system. It makes sense to customize the
base model by the techniques described above as most tools
don’t need the complete model but implement some additional
private data structures. This approach guarantees that only
highly tool-related, efficient ADTs will be built by the genera-
tor.

III. GeneratedFrameworkComponents

As depicted in section 1, this paper focuses on generating
data management components of ECAD frameworks. In this
section, we summarize different approaches to realize the data
management in existing ECAD systems and we outline the
generation of these by our software generation environment
MOOSE.

A. Data Management Implementation Techniques

Design systems typically have one common workspace
(archive workspace) and several workspaces for the design
tools (private workspaces) to manage the data of a design

TABLE I
CUSTOMIZING THEBASEMODELS FORDIFFERENTAPPLICATIONS

Part of Base
Model

Application

Chip
Planner

Design
Management Repartitioner

EDIF
Converter

Structure Model o +++ ++ ++

Object Model ++ + ++ +++



transaction (see figure 3) [10]. The archive workspace stores
all important design data persistently. These data may be
located within a file system or within a non standard database
management system. To support long design transactions, the
data of design tasks are checked-out from the archive work-
space (e.g. design database server) to the private workspace.
During the transaction, these data are cached by the private
workspace which is a client with respect to the database. Each
of these clients needs its own data management to handle the
cached design data. At this, because of the static property of
the tool implementation, the required object types are well-
known at compile-time and can be realized as an abstract data
type. A query interpreter and an optimizer are not necessary
for the data management at the client side. When the task is
finished, the resulting data are checked-in into the database.

The exchange of data between the database server (archive
workspace) and the clients (private workspaces of the design
tools) can be realized by a predefined file format (e.g. [11],
[12]) or by a communication transparent to the client applica-
tion (e.g. via the UNIX socket mechanism) [1]. In figure 3, the
different possibilities to exchange data in ECAD systems are
outlined.

Only few ECAD design systems span the whole design
space from behavior to masklayout. The integration of exter-
nal tools must therefore be supported. Transformers to trans-

Fig. 3. Data Management of an ECAD System
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With these investigations, we summarize the different
requirements which should be considered by a good software
generation package for data management components of
ECAD systems:

- The archive workspace and the private workspaces,
which cache transaction data, should be generated.

- The exchange of data between the private workspace and
the archive workspace must be realized in an efficient
and easy manner (e.g. by a defined file format or by net-
work communication).

- To integrate external tools, the implementation of ade-
quate translators should be supported.

All these requirements are solved by the MOOSE genera-
tors we describe in the following.

B. MOOSE Generator Approach

Our software engineering approach to fulfil the require-
ments listed above is software reuse by code generators [13].
Similar to generators like YACC and LEX the implementation
of the framework code is generated from an abstract model,
e.g. from an EER-model as described in section 2. Before we
show the advantages of our approach, we present some
MOOSE generators.

MOOSE provides different generators as shown in figure 4.
The data management generators use an EER-model as input
and create framework code as output. Each generator trans-
lates modeling primitives into framework code by using tem-
plates. Reuse is therefore realized in three ways: First, by
using templates at each generation step. Second, abstract mod-
els are used more than once, because they are used to generate
ADTs, file formats, communication, and documentation as we
will see below. Third, parts of the base model are (re-)used to
build the customized framework models (see section 2). The
MOOSE environment currently contains the following gener-
ators for the data management.
1) C-Code Generator

Our first code generator supports the programming lan-
guage C. Using a storage manager as a container library the C-
code generator automatically implements functions to create,
access, modify, and delete objects of each object type. It also
creates functions to connect and disconnect objects, i.e. to cre-
ate and destroy a relation between them. Data inheritance can
be realized by copying attributes from a base object type to a
derived object type. Beside these functions, routines to create
savepoints and to restore saved data are available. For the
application programmer the generated code serves as an
abstract data type (ADT) with data management functions. To
optimize the code, suitable data structures as AVL-trees or
hash tables are chosen depending on the characteristic.
2) C++-Code Generator

Newer implementations of our tools use the C++-code gen-
erator which implements an object-oriented class hierarchy.



For each object type it generates a class and, beside others,
methods to

- construct and destroy objects,
- access and modify instance variables,
- compare objects,
- create and destroy relations, and
- save and restore the data.
The generated code uses container classes of the NIH class

library [14]. The user has the possibility to extend the gener-
ated structures by adding user-defined methods to the gener-
ated classes. These user-defined methods will not be
overwritten when a new class hierarchy is generated.

At this point, it is important to notice that not only the decla-
rations but also the whole implementation code of the methods
is generated. This is one of the most important differences
between MOOSE which is specialized to ECAD frameworks
and general purpose code generators as they are, for instance,
delivered with OOA/OOD1 systems, e.g. Rational Rose/C++2.

Fig. 4. MOOSE
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3) VERSANT-Code Generator
To support persistence we developed a code generator for

the data definition language of the object-oriented database
management system VERSANT3. This code generator creates
methods with the same interface as the C++-generator. But in
this case, the underlying library is part of a database manage-
ment system instead of main memory data structures. Because
of the same interface a migration of an application from main
memory management to database management and vice versa
is a simple task.

So far, the code generators for the workspaces are intro-
duced. We saw that the generated application interface is
largely independent from the underlying data management
system. In the following, we further address the code genera-
tors for data exchange between two generated workspaces or
between a generated workspace and an external data source.
4) File Communication Generator

An ASCII file format to exchange design data between the
generated workspaces is defined by generating a parser and a
printer routine. Just as the ADTs, these I/O-routines and,
therefore, the data exchange formats are generated from the
EER model. This file format provides a communication
between different workspaces within an heterogeneous net-
work (see fig. 3).
5) Network Communication Generator

Instead of the ASCII file data exchange, a communication
based on the UNIX socket mechanism can also be generated
[15]. Whereas the data of the ASCII files must be checked-out
and checked-in by explicit function calls, this communication
is transparent to the application program. The generated private
workspace then distinguishes two cases: Either, the data are
already available in the ADT and can immediately be returned
or, otherwise, the data must be retrieved from the archive
workspace by using the generated UNIX socket communica-
tion. From the view of the programming interface, there is no
difference between these accesses. Data stored in the archive
workspace will be retrieved transparently to the application.

In addition to this, the network communication generator
supports the integration of external data representations. As
described in section 2, it is possible to integrate external sys-
tems by defining a mapping table which maps the current data
model to the external view. In this table, the programmer adds
necessary data queries which will be interpreted by the exter-
nal data source. Of course, this implies that a query interpreter
is available at the server side.
6) Hypertext Documentation Generator

To support the application programmer in using the gener-
ated ADT, a comprehensive FrameMaker4 hypertext docu-
mentation is generated.

1. OOA/OOD: object-oriented analyze / object-oriented design
2. Rational Rose/C++ is a trademark of Rational.
3. VERSANT is a trademark of Versant Object Technology.
4. FrameMaker is a trademark of Frame Technology Corporation.



IV. Results

This section describes some advantages of our approach.
We present examples of using MOOSE in our VLSI design
system PLAYOUT and we show which data management
components were generated.

Since we developed MOOSE, all of our VLSI design tools
were (and are) implemented by using generators. Table II
shows information of two design tools already mentioned
above. The data management of the Repartitioner, which
includes a timing analyzer, is constructed by the C-code gen-
erator using an ER-model. Our design manager DESIMA is
generated by the C++-code generator based on an EER-
model. In addition, DESIMA uses an object-oriented graphic
library which has been referenced at the model level - not at
the implementation level as it is usual. A special graphics gen-
erator enriches the generated C++-classes with a set of useful
graphic routines to draw, move, delete, or highlight objects
[16]. Finally, we also implemented a recent version of
MOOSE by using an older version.

The comparisons of the generated lines of code (LOC) with
the total LOC number shows a generation quota up to 78%.
The generated part of the Repartitioner is smaller than for the
other two examples because its graphical interface is hand-
coded. Altogether, the experiences of our application pro-
grammers using MOOSE are completely positive. One impor-
tant factor for our success is the reduction of implementation
time which can only roughly be determined. Our application
programmers reported savings of about 1/3 of total implemen-
tation time.

Besides the size of the generated software, let us have a look
at the generated parts of the framework by considering the
requirements above. In figure 3, the generated framework com-
ponents are shaded: the archive workspace, the customized pri-
vate workspaces, the data exchange in form of file or network
communication. Besides the SE-process described in section
II, the generation of this tight-coupled client-server architec-
ture represents one of the important differences to other inter-
esting generator approaches (e.g. [17]). To realize the external
communication management half of the communication code
is generated automatically. To read and write external file for-
mats a parser and a printer based on a generated ADT must be
hand-coded (e.g. using LEX and YACC). To realize the net-
work communication with an external data source only the part
at the external site must be realized manually.

TABLE II
APPLICATIONSIMPLEMENTED BYUSING THEGENERATORAPPROACH

Applications Repartitioner DESIMA MOOSE

Model ER EER EER

Language C C++ C++

Graphics hand-coded generated generated

LOC (total) 150,000 65,000 70,000

LOC (generated) 50,000 50,000 35,000

Percentage 33% 78% 50%

V. Conclusions

We addressed a generator based approach of automatically
synthesizing efficient and correct code of ECAD framework
components. We showed how we set up base models which
must be done once for all tools. These base models will be
customized and then used as input for our code generators.
The result is automatically generated, and with that correct
code of the framework components.

Due to space limitations, we restricted this paper to the
description of modeling and generating data management
components. Our software generation environment, MOOSE,
however, is not restricted to data management. We recently
completed our first generators for a graphical interface based
on the X library [16] and for a Motif-based control interface.
We further investigate which parts of the still hand-coded
components can further be replaced by our approach. Our goal
is to generate as much as possible of the application.
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