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Abstract { We present theory and a novel, implicit algo-

rithm for functional disjoint decomposition of multiple-output

functions. While a Boolean function usually has a huge number

of decomposition functions, we show that not all of them are

useful for multiple-output decomposition. We therefore intro-

duce the concept of preferable decomposition functions, which

are su�cient for optimal multiple-output decomposition. We

describe how to implicitly compute all preferable decomposition

functions of a single-output, and how to identify all common

preferable decomposition functions of a multiple-output func-

tion. Due to the implicit computation in all steps, the algo-

rithm is very e�cient. Applied to FPGA synthesis, the method

combines the typically separated steps of common subfunction

extraction and technology mapping. Experimental results show

signi�cant reductions in area.

1 Introduction

The task of logic synthesis is to transform a set of Boolean
functions into a netlist of library cells. Due to its complex-
ity, logic synthesis is usually partitioned into two steps. The
decomposition of combinational logic is a central problem in
both steps.
In the �rst (technology-independent) step, a multiple-level

network is created by identifying and extracting common sub-
functions [1]. In the second step of logic synthesis, the func-
tions of the network are bound to a library (technology map-
ping). This may entail a renewed decomposition of complex
Boolean functions. If a network is to be bound to k-input look-
up tables (LUTs), which are widely used in FPGAs, classical
functional decomposition according to the theory of Ashen-
hurst [2], Roth and Karp [3,4] can be used [5]. Given a single-
output function f and a partition of the input variables into
bound set variables x and free set variables y, functional de-
composition determines functions d(x) and g(z;y) such that
f(x;y) = g(d(x); y). If, e.g., the bound set has cardinal-
ity k, each decomposition function di can be implemented in
one LUT. Recently, e�cient functional decomposition methods
based on Binary Decision Diagrams (BDDs) were proposed [6,
7,8]. It was also shown that an optimized encoding of the x-
vertices yields simple g-functions [9] and thus reduces area.
If these approaches are used to decompose a multiple-output

function, each output must be decomposed individually. Com-
mon subfunctions are not recognized. This is shown for a small
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Figure 1: Single-output (a) and multiple-output decomposi-
tion (b) of circuit rd53, k = 4.

circuit in Fig. 1 a).
Functional decomposition of multiple-output functions has

so far not been solved in a satisfactory way. As it combines
the previously separated steps of common subfunction extrac-
tion and technology mapping, multiple-output decomposition
is especially attractive for the synthesis for LUT architectures.
Fig. 1 b) shows the example circuit after multiple-output de-
composition with our algorithm.
A �rst approach to multiple-output decomposition was pro-

posed by Karp [4]. It is applicable only for functions with
2 outputs, but it has the advantage that several codes may
be assigned to one equivalence class of compatible bound set
vertices. If just one code is assigned to each equivalence class
(called "strict" decomposition [4]), not all common decomposi-
tion functions can be detected. Recent multiple-output decom-
position methods [10,11] propose such strict decompositions.
A con�ned non-strict decomposition method, which enforces
that all outputs are fed by all decomposition functions, was
suggested in [12].
This paper presents new theory and a novel, implicit algo-

rithm for the functional non-strict decomposition of multiple-
output functions. Our algorithm is based on the concept of
a preferable decomposition function, which is a decomposition
function for a single output with the potential to be shared by
other outputs. We show that the set of bound set vertices can
be partitioned into global classes, which constitute the elemen-
tary blocks needed to construct all preferable decomposition
functions. Due to the regular structure of most functions ap-
pearing in switching applications, the number of global classes
is usually much smaller than the number of bound set vertices.
However, the number of preferable decomposition functions

can still be huge. Recently, exact solutions to other CAD prob-
lems with huge sets of objects have been devised using implicit
techniques [13,14]. A set of objects is represented as a minterm
using the positional-set notation, and a set of sets of objects
is represented by its characteristic function. In our method,
we use global classes as elementary objects. A set of global
classes de�nes a decomposition function and is represented by
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a positional minterm. The set of all preferable decomposition
functions of an individual function is represented by a Boolean
formula. Using BDDs, we are thus able to represent sets of
preferable decomposition functions as Boolean formulas in a
very compact way.
In this paper, we furthermore describe how to implicitly

compute all preferable decomposition functions, and how to
identify the common preferable decomposition functions of a
multiple-output function. The BDD-based, implicit decompo-
sition algorithm is very e�cient. We apply it to the synthesis of
Xilinx XC3000 circuits. Experimental results show signi�cant
reductions in area.
The remainder of this paper is organized as follows. After

preliminaries on Boolean functions and partitions in Section
2, Section 3 summarizes the classical theory of single-output
decomposition. In Section 4, we discuss the partition of bound-
set variable vertices into global classes. We introduce prefer-
able decomposition functions in Section 5. The theory devel-
oped so far is applied in Section 6, where our implicit algo-
rithm for computing all preferable decomposition functions is
described. Experimental results on various benchmarks are
reported in Section 7.

2 Preliminaries

A single-output Boolean function is given by f : f0; 1gn !

f0; 1g. A multiple-output Boolean function is a vector of single-
output Boolean functions and is denoted by a bold letter, f =
(f1; : : : ; fm). Vectors of Boolean variables xi are also printed
bold, x = (x1; : : : ; xn).
A partition � of the set X of all bound set vertices x divides

the set into disjoint blocks or classes. Let R be an equivalence
relation on X . Then, the set of equivalence classes under R
is a partition of X , denoted by X=R. Let �1 = X=R1 and
�2 = X=R2 be partitions of X . Then �2 re�nes �1 if every
block of �2 is contained in a block of �1. Equivalently, �2

re�nes �1 i� R2 � R1. Let �1 and �2 be partitions of X . The
product partition � of �1 and �2, denoted � = �1 ��2, is the
partition of X which has the smallest number of blocks and
re�nes both �1 and �2. The product � of c partititons �i is

� =

cY

i=1

�i:

3 Single-Output Decomposition

We summarize the classical decomposition theory of Ashen-
hurst [2], Roth and Karp [3,4]. Only disjoint decomposition of
completely speci�ed functions will be considered.
Given a function f(x;y) and a partition of its n in-

put variables into the bound set BS = fx1; : : : ; xbg and
the free set FS = fy1; : : : ; yn�bg, functional decomposition
determines decomposition functions d1; : : : ; dc and the com-

position function g such that f(x1; : : : ; xb; y1; : : : ; yn�b) =
g(d1(x1; : : : ; xb); : : : ; dc(x1; : : : ; xb); y1; : : : ; yn�b): We are only
interested in non-trivial decompositions, i.e., c < b.
Let X = f0; 1gb denote the set of all BS-vertices. The ex-

istence of a decomposition can be determined using a relation
of compatibility between elements of X .

De�nition 1 Two bound set vertices x� 2 X and x� 2 X are

compatible, denoted x�Rfx� , i�

8y 2 f0; 1gn�b : f(x�;y) = f(x�;y):

For completely speci�ed functions, compatibility is an equiv-
alence relation. The relation Rf induces a local compatibility

partition �f = X=Rf = fL1; : : : ; L`g of the BS-vertices x into

` equivalence classes. These classes, which are associated with
a single-output function, will be called local classes later on.

The decomposition chart visualizes compatibility of BS-
vertices. The decomposition chart is a Karnaugh map where
rows are associated with FS-vertices and columns are associ-
ated with BS-vertices. Two BS-vertices x� and x� are com-
patible if their column patterns are identical. The column
multiplicity is equal to the number ` of equivalence classes.

Example 1 The decomposition chart of a function f1 shown
in Fig. 2 has 3 distinct columns. The compatibility partition
�f1 = X=Rf1 = fL1; L2; L3g is depicted in Fig. 3 a), where
L1 = f000; 001; 010; 100g; L2 = f011; 101; 110g; L3 = f111g.

The classical decomposition condition according to Roth and
Karp states that a decomposition exists i� for all pairs of BS-
vertices x� 2 X and x� 2 X :

:(x�Rfx�) =) d(x�) 6= d(x�): (1)

The decomposition functions di may evaluate to identical or
di�erent codes d(x) for compatible BS-vertices, but they must
evaluate to di�erent codes for incompatible BS-vertices. The
smallest number of decomposition functions, called codewidth

c, for (1) to be satis�ed is c = dld `e. We will always choose
this minimum value of c as this minimizes the number of de-
composition functions and the number of inputs of g.

Example 2 In Example 1, ` = 3 ) c = 2. A valid choice of
decomposition functions is d1(x) = x1x2x3 + x1x2x3, d2(x) =
x1x3 + x1x2x3 + x1x2x3. We thus have d(x) = (00) for x 2

f000; 001; 010g, d(x) = (01) for x 2 f011; 101; 110g, d(x) =
(10) for x 2 f111g, and d(x) = (11) for x 2 f100g.

The decomposition functions evaluate to two codes, (00) and
(11), for the compatible BS-vertices of class L1. Therefore,
this decomposition is called non-strict [4].
Obviously, the decomposition functions de�ne a partition of

the BS-vertices into classes with identical code. This partition
is illustrated by dashed and dotted lines in Fig. 3 b). More
formally, each individual decomposition function di de�nes a
partition �di = X=Rdi of the BS-vertices into onset and o�set,
where Rdi relates two vertices if they belong both to either the
onset or the o�set of di. Forming the product of all these
partitions �di , the resulting partition has blocks of vertices
with identical code. The decomposition condition (1) can thus
be restated using partitions of X :

Decomposition Condition 1 A functional decomposition

of the single-output function f by a set of decomposition func-

tions fd1; : : : ; dcg exists i�

cY

i=1

�di re�nes �f :
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Figure 2: Decompositon chart of a) f1 and b) f2.
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4 Global Partition

We state the multiple-output decomposition condition in a
similiar way:

Decomposition Condition 2 A functional decomposition of

the multiple-output function f = (f1; : : : ; fm) by a set of decom-
position functions Pf = fd1; : : : ; dqg exists i� for each output

fk there is a subset Pfk � Pf of cardinality ck such thatY

d2Pfk

�d re�nes �fk ; (2)

where ck = dld `ke is the codewidth and `k is the number of local
classes of �fk . The total number of decomposition functions is

denoted by q.

Note that the Decomposition Condition 2 is satis�ed if the
Decomposition Condition 1 is satis�ed for each output. In the
worst case, however, there is no decomposition function shared
by several outputs, then q =

Pm

k=1
ck. Our problem then is:

Problem 1 Given a multiple-output function f(x;y), deter-
mine a minimum set Pf of decomposition functions such that

Decomposition Condition 2 is ful�lled.

According to the laws of set algebra, A � B ^ C � D =)
(A \ C) � (B \ D), we take the product of all partitions on
the left as well as on the right side of (2), and obtain

qY

i=1

�di re�nes

mY

k=1

�fk : (3)

De�nition 2 The product of the local compatibility partitions

�fk is called the global compatibility partition, short global

partition �̂, which partitions the bound set vertices into p

global classes:

�̂ = fG1; : : : ;Gpg :=

mY

k=1

�fk :

The global partition partitions the BS-vertices into global
classes such that the vertices of a class are compatible for each
individual output fk.

Example 3 Let f = (f1; f2), where f1 and f2 are the
functions of Fig. 2. The local compatibility partitions are
�f1 = fL

1
1; L

1
2; L

1
3g with L

1
1 = f000; 001; 010; 100g, L1

2 =
f110; 011; 101g, L1

3 = f111g, and �f2 = fL
2
1; L

2
2; L

2
3; L

2
4g with

L
2
1 = f000g, L2

2 = f001; 010; 100; 110g, L2
3 = f011; 101g and

L
2
4 = f111g.
We have `1 = 3 ) c1 = 2 and `2 = 4 ) c2 = 2. The global

partition is then given by �̂ = fG1;G2;G3;G4;G5g with G1 =
f000g, G2 = f001; 010; 100g, G3 = f110g, G4 = f011; 101g
and G5 = f111g. For the local classes of �f1 , L

1
1 = G1 [G2,

L
1
2 = G3[G4 and L

1
3 = G5. The function f can be decomposed

with the following three d-functions, d1(x) = x1x3 + x2x3 +
x1x2, d2(x) = x1x2x3+ x2x3+x1x3+x1x2, d3(x) = x1x2x3 +
x1x2x3 + x1x2x3 + x1x2x3, such that f1 = g1(d1(x); d3(x);y)
and f2 = g2(d1(x); d2(x);y). Decomposition function d1 is
shared among both outputs.

We will now show the relevance of functions which can be
constructed from global classes. Such functions are de�ned as
constructable:

De�nition 3 Given a global partition �̂ = fG1; : : : ;Gpg, a

function d(x) : f0; 1gb ! f0; 1g is called constructable with

respect to �̂ i� each global class Gi is completely contained in

either the onset or the o�set of d.

In Example 3, the decomposition functions d1; d2; d3 are con-
structable with respect to the given global partition �̂. E.g.,
d1(x) = 1 , x 2 (G2 [ G3 [ G4). Note that d1 and d2 in
Example 2 are not constructable. The following theorem is
central to our theory:

Theorem 1 Any set Pf containing non-constructable decom-

position functions can be replaced by a set P 0

f
of constructable

decomposition functions without increasing the number q of re-

quired decomposition functions.

Especially, every set of non-constructable decomposition
functions corresponding to an optimum solution can be re-
placed by a set of constructable decomposition functions.
Therefore, an optimum decomposition with a minimum num-
ber of decomposition functions can be obtained by choosing
only constructable decomposition functions.
Therefore it su�ces to consider only constructable functions

as decomposition functions without detriment to the �nal num-
ber of decomposition functions. To build a constructable func-
tion d(x), each global class is assigned to either the onset or
the o�set. Then, the number of constructable functions is 2p.
We derive another useful property from (3):

Property 1 The number p of global classes determines a

lower bound on the number q of decomposition functions:

dld pe � q.

For Example 3 we have p = 5 ) q � 3. The found solution
with q = 3 therefore is an optimum solution w.r.t. the num-
ber of decomposition functions. This property allows to abort
multiple-output decomposition at an early stage if the number
of shared decomposition functions is too small (this may be
due to a bad variable partitioning).

5 Preferable Decomposition Functions

Constructable functions are not necessarily suitable for de-
composition. A trivial example is the function d(x) = 0, which
is constructable with respect to any global partition. Thus, a
property is needed which captures the suitability of a function
for decomposition.
Karp [4] gave conditions for a function d(x) : f0; 1gb !

f0; 1g to be suitable for single-output decomposition. His def-
initions of (partial) assignment and assignable relate to a de-
composition procedure which iteratively selects the decomposi-
tion functions for a single-output function. An assignment Pf
is a set of decomposition functions fd1; : : : ; dcg which satis�es
the decomposition condition. A set of decomposition functions
fd1; : : : ; dsg, s � c, is a partial assignment if there exist decom-
position functions fds+1; : : : ; dcg such that the union of both
sets is an assignment. We restate the de�nition of a partial



assignment in terms of partitions, and then use this de�nition
to de�ne the property assignable:

De�nition 4 Given function f , a set of decomposition func-

tions fd1; : : : ; dsg, s � c, is a partial assignment Pf;s i� the

product �Pf;s of the partitions induced by these functions,

�Pf;s :=

sY

i=1

�di ;

called the partial partition, has no block which contains BS

vertices of more than 2c�s
local classes of the compatibility par-

tition �f .

De�nition 5 A function d is assignable with respect to a

given partial assignment Pf;s i� Pf;s[d is a partial assignment

Pf;s+1.

Two aspects need to be emphasized here. First, assignability is
a property which is in no way related to the multiple-output de-
composition problem, but only to the ful�llment of the decom-
position condition for a single-output. Second, assignability is
always related to an already selected set of (assignable) decom-
position functions, i.e., a partial assignment Pf;s. Therefore, a
function which is assignable at an early stage of the decomposi-
tion procedure is not necessarily assignable at a later stage. As
an example, both the function d1 in Example 2 and the (di�er-
ent) function d1 in Example 3 are assignable for f1 if Pf1;0 = ;.
After selecting either of them as a partial assignment, the other
one is not assignable any more.
We now have two properties of decomposition functions. A

decomposition function must be assignable to satisfy the basic
decomposition condition for a single-output. Constructabil-
ity is su�cient for optimal sharing of decomposition functions.
Decomposition functions with both properties are called prefer-

able:

De�nition 6 A function d(x) : f0; 1gb ! f0; 1g is prefer-
able for a single output fk of a multiple-output function f i�
two conditions are satis�ed. First, it must be assignable with

respect to the output fk and a partial assignment Pfk;s. Sec-

ond, it must be constructable with respect to the global partition

determined by f(x; y).

6 Implicit Computation

To handle the large number of preferable decomposition
functions, we must represent them e�ciently.
Since preferable decomposition functions are constructable

by de�nition, we employ a bijective mapping from the set of
constructable functions to f0; 1gp. A vertex z = (z1; : : : ; zp) 2
f0; 1gp then represents a constructable function d in positional-

set form. The variable zi assumes value 1 if the global class
Gi is contained in the onset of d, and it assumes value 0 if the
global class Gi is contained in the o�set of d.

Example 4 For the function f1 in Example 3, d1(x) = 1 ,
x 2 G2 [G3 [G4. The number of global classes is p = 5. The
function d1 is then represented in positional-set form by the
vertex z = (01110).

A set S of constructable functions is represented as a set
of z-vertices by a characteristic function � : f0; 1gp ! f0; 1g.
We have �(z) = 1 i� the constructable function represented
by z is in the set S. A set of preferable decomposition func-
tions is represented by its characteristic function and thus in
a single BDD. However, this compact representation is valu-
able only if it is also possible to compute all preferable de-
composition functions in an implicit way. Since preferability

includes assignability, this computation must be performed for
each output of the multiple-output function f . Furthermore,
since assignability depends on a speci�c partial assignment,
preferable decomposition functions must be recomputed after
updating a partial assignment.
We will now describe a procedure to compute the set of

preferable decomposition functions, represented by its charac-
teristic function �k(z), for output k. For ease of notation, we
explain the procedure for Pfk;0 = ;, i.e., no decomposition
function has been assigned so far.
From De�nitions 4 and 5 it follows that a function d is

assignable for Pfk;0, if neither onset nor o�set of d contain ver-
tices of more than 2ck�1 local classes. Equivalently, function d
is assignable if there are at least `k � 2ck�1 local classes that
completely belong to the onset (condition C1), and if there are
at least `k � 2ck�1 local classes that completely belong to the
o�set (condition C0) of d.
We introduce auxiliary variables v1; : : : ; v`k to represent sub-

sets of �fk (the set of `k local classes) in positional-set form.
In a �rst step, the set of all subsets of �fk containing at least
`k � 2ck�1 local classes is implicitly computed using the sub-

set algorithm of Fig. 4. The characteristic function for this set
is �k(v) = subset(`k � 2ck�1

; `k). Note that this characteris-
tic function �k(v) is a threshold function which evaluates to
1 i� at least `k � 2ck�1 out of `k variables take value 1. The
complexity of subset(�; `) is O(� � `).
From �k(v) two functions  

0
k(z) and  

1
k(z) are derived,

where  0
k(z) represents all decomposition functions satisfying

condition C0 and  1
k(z) represents all functions satisfying con-

dition C1. We obtain function  0
k(z) by replacing each v-literal

(which represents a local class) in �k(v) by the conjunction of
the negative z-literals that represent the global classes con-
tained in the local one. Similarly, we get  1

k(z) by replacing
each v-literal in �k(v) by the conjunction of positive z-literals.
The product of both functions and z1 yields the characteristic
function �k(z) = z1 �  

0
k(z) �  

1
k(z) representing the preferable

decomposition functions. Multiplication of z1 eliminates com-
plementary decomposition functions.

Example 5 We again consider the function f1 of Example 3,
`1 � 2c1�1 = 3� 22�1 = 1. We have �1(v) = v1 + v2 + v3. For
 
1
1(z), literal v1 is replaced by z1z2 since L

1
1 = G1 [G2, literal

v2 by z3z4 since L
1
2 = G3 [G4, and literal v3 by z5 since L

1
3 =

G5. Similarly, for  
0
1(z) literal v1 is replaced by z1z2 etc. Then

�1(z) = z1z2z3z4+ z1z3z4z5+ z1z2z5+ z1z3z4z5. For function
f2 in Example 3, �2(z) = z1z2z3z4z5+z1z2z3z4z5+z1z2z3z4z5.
The functions �k(z) are shown as row vectors in Fig. 5.

For s 6= 0, the partial partition �Pfk;s
itself consists of sev-

eral blocks. Then the above procedure must be applied for
each block and �k(z) is built by the product of all obtained
characteristic functions.
Having computed the characteristic functions �k(z) of each

output k, the task is now to �nd a z-vertex contained in the on-

return t�(v1; : : : ; v`)

t0 := 1

tj := 0

tj := tj + tj�1 � vi

for j := 1 to �

for i := 1 to `

for j := � to 1

Figure 4: subset(�; `) algorithm.
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Figure 5: Preferable d-functions for f1 and f2.

set of a maximum number of �k(z). Such a vertex corresponds
with a decomposition function which is preferable for a maxi-
mum number of outputs. This problem is solved implicitly by
the Lmax algorithm suggested by Kam [14].

Example 6 Fig. 5 visualizes this problem as �nding a column
with a maximum number of 1's in a covering table. There are
two z-vertices which are in the onset of both characteristic
functions �1(z) and �2(z). The vertex z1z2z3z4z5 is chosen. It
represents the subset of global classes fG2;G3;G4g and thus
the preferable function d(x) = x1x2x3 + x1x2x3 + x1x2x3 +
x1x2x3 + x1x2x3 + x1x2x3. This is the function d1 used in
Example 3.

The decomposition function, which is derived from the cho-
sen vertex z, is a partial assignment for all outputs k with
�k(z) = 1. The characteristic functions of the a�ected outputs
are recomputed, taking into account the given partial assign-
ment. Generally, the number of preferable functions decreases
with each recomputation. The algorithm stops if the partial
assignment of each output constitutes an assignment.

Example 7 In the example, the further z-vertices chosen are
z1z2z3z4z5, corresponding with decomposition function d2, and
z1z2z3z4z5, which corresponds with decomposition function d3
in Example 3.

7 Implementation and Experiments

Implementation Aspects. The implicit algorithm was
implemented in program IMODEC (Implicit Multiple-Output
DEComposition), which is embedded into the synthesis tool
TOS. Before IMODEC is applied, the output and the variable
partitioning problem must be solved.
Output partitioning concerns the problem of grouping func-

tions in a network to function vectors f . We use a greedy
heuristic which initializes the function vector with the func-
tion having a maximum number of inputs. Then, a function
which has a maximum number of inputs in common with the
current vector is combined with it. Multiple-output decom-
position is performed for the current f . If the decomposition
gain in comparison to Single-output decomposition of each fk
decreased by the last combination, the combination is undone.
This is repeated until no further suitable function remains to
be combined.
Variable partitioning is solved heuristically [15]. In the

sequel, CPU times are given in seconds for a DECstation
3000/500.

Problem Characteristics. We �rst demonstrate the re-
duction of complexity by the concept of perferable decomposi-
tion functions. Table 1 shows characteristical data on multiple-
output decompositions of some function vectors, which occured
during the decomposition of circuits f51m, alu4 and term1.
The name of the function vector and the number of outputs

m are given in the �rst column. The cardinality b of the bound
set, the number of local classes `k of each output and the num-
ber of global classes p are given in columns 2 to 4. The number

Table 1: Characteristics of decompositions
f b `k p # assign. # prefer. CPU/sec

ff51m 5 5 (4:3 � 109) (32) 0.167
m=3 2 2 2

4 6 6
5 1:3 � 107 30

falu4 8 32 (1:2 � 1077) (4:3 � 109) 12.757
m=3 24 2:1 � 1048 3:1 � 109

25 8:8 � 1044 2:8 � 109

26 1:4 � 1044 2:6 � 109

fterm1 7 64 (3:4 � 1038) (1:8 � 1019) 72.937
m=6 12 2:2 � 1038 1:4 � 1019

32 6:0 � 108 6:0 � 108

63 3:4 � 1037 2:8 � 1018

63 3:4 � 1037 2:8 � 1018

63 3:4 � 1037 2:8 � 1018

63 3:4 � 1037 2:8 � 1018

of assignable functions # assign. and of preferable functions
# prefer. is shown. The values in parenthesis give an upper

bound on the number of functions, which is 22
b

and 2p respec-
tively. The CPU time includes calculation of local and global
classes, implicit computation of characteristic functions �k(z)
for each output, choosing a perferable function, re-calculating
�k(z) for each a�ected output until complete assignments are
determined for each output.
It can be seen that the number p of global classes is

mostly much smaller than its theoretical upper bound given
by min((

Qm

k=1
`k); 2

b), indicating that the individual outputs
of f are closely related. Memory consumption and CPU time
are largely determined by p. Decompositions with less than 25
global classes are usually performed in less than one second.
The current bottleneck of our method is the construction of

the covering table for the Lmax algorithm. Depending on the
actual characteristic functions �k, the method may become
very expensive for p � 50. In these cases we can limit m
to make decomposition tractable. However, since an increase
in the number of outputs always implies a degraded variable
partitioning for each individual output, thus neutralizing the
increased sharing of subfunctions by the increased codewidth,
the values of m and thus also p are small in most practical
cases. Maximum values of m and p during decomposition of
benchmark circuits are given in Table 2.
The number of preferable functions is much smaller than

the number of assignable functions. However, the number of
preferable functions can still be very large. Our implicit algo-
rithm makes it possible to handle such large numbers of de-
composition functions in short CPU times.

Technology Mapping for Xilinx XC3000. We target
the Xilinx XC3000 architecture, which has Con�gurable Logic
Blocks (CLBs) made up of 5-input LUTs.
In the �rst experiment, we compared the multiple-output de-

composition with functional single-output decomposition. The
input to the program was a collapsed network (circuits marked
with an � could not be collapsed). After decomposition the
node functions were assigned to CLBs as permitted by the
XC3000 technology. The number of CLBs is given in column
IMODEC-CLB. The maximum values of the numberm of func-
tion outputs and the number p of global classes, that occured
during multiple-output decomposition, are shown in column
IMODEC-m/p. For comparison, we also decomposed the col-
lapsed networks with our program in a mode which only per-
forms single-output decomposition (column Single).
Comparing columns 3 and 4 of Table 2, it is apparent that

multiple-output decomposition drastically outperforms single-
output decomposition. We achieve an average reduction of the



Table 2: Mapping to Xilinx XC3000 CLBs

IMODEC Single r+IMODEC r+FGMap
net m/ p CLB CLB CLB CPU CLB
5xp1 5/ 5 9 15 9 3.1 15
9sym 1/ 6 7 7 7 0.9 7
alu2 4/40 46 47 46 902.2 53
alu4 6/49 168 235 - - -
apex6 17/30 141 174 129 3.3 -
apex7 10/15 44 61 41 3.6 47
clip 5/14 12 19 12 17.3 20
count 8/ 3 26 35 26 49.1 24
des� - - - 489 582.4 -
duke2 5/54 177 311 122 28.9 -
e64 12/ 3 123 329 55 3.5 55
f51m 3/ 5 8 13 8 1.7 11
misex1 3/ 8 9 11 9 1.9 8
misex2 5/ 7 28 34 21 1.4 21
rd73 3/ 6 5 7 5 1.4 7
rd84 4/ 6 8 11 8 3.9 12
rot� - - - 127 2.1 194
sao2 4/11 17 24 17 17.4 27
vg2 5/12 41 64 19 3.3 23
z4ml 2/ 3 4 4 4 0.6 5
C499� - - - 50 0.0 49
C880� - - - 81 8.6 74
C5315� - - - 295 2.1 -P

(sub) - 873 1401 545 - 652

CLB count of 38%. There are some circuits, as e.g. 9sym, which
are optimally decomposed as trees. In these cases, no decompo-
sition functions are shared and multiple-output decomposition
does not yield an advantage. Surprisingly, the maximum val-
ues for p are small in most cases although functions with up to
17 outputs are decomposed. Only for the circuit alu4 we had
to limit m as discussed above.
In a second experiment, we compared our multiple-output

decomposition procedure with a BDD-based single-output de-
composition algorithm recently published by Lai et al. [6,7],
which seems to be state-of-the-art in decomposition for LUT-
architectures.
Results for IMODEC are given in column r+IMODEC. Re-

sults from [7] are repeated in column r+FGMap. As recom-
mended in [7], large circuits are pre-structured with the SIS-
script script.rugged [16]. The subtotal in column 5 gives the
sum for those circuits only for which results are given in col-
umn 7. IMODEC outperforms FGMap by about 16%. How-
ever, IMODEC has often no advantage over single-output de-
composition if a pre-structured network is the starting point
since many nodes already have 5 or less inputs. This is also
the reason for the small CPU times needed to decompose some
of the large circuits.
The relatively large CPU time needed for circuit alu2 results

from the greedy output partitioning approach, which performs
many trial decompositions until the best one is selected. Thus,
better output partitioning approaches with less trial decompo-
sitions would reduce computation times signi�cantly.

8 Conclusion

We have extended the classical functional decomposition
theory to multiple-output functions. We introduced the con-
cept of preferable decomposition functions. These functions are
both constructable in terms of global classes and assignable.
While assignability relates to the general suitability of a func-
tion as decomposition function, constructability expresses its
usefulness for multiple-output decomposition.
Although this concept drastically reduces the number of de-

composition functions to be considered, the number of prefer-
able functions may still be very large. We developed an im-
plicit, BDD-based algorithm for multiple-output decomposi-

tion which is able to e�ciently deal with large sets of preferable
functions.
Applied to the synthesis for LUT-architectures, experimen-

tal results indicate improvements of 38% over single-output
decomposition and improvements of 16% in combination with
standard logic synthesis techniques.
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