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Abstract
Boolean matching is to check the equivalence of two func-
tions under input permutation and input/output phase
assignment. In this paper, we will address Boolean
matching problem for incompletely speci�ed functions.
We will formulate the searching of input variable map-
ping between two target functions as a logic equation by
using multiple-valued function. Based on this equation,
a Boolean matching algorithm will be proposed. Delay
and power dissipation can also be taken into considera-
tion when this method is used for technology mapping.
Experimental results on a set of benchmarks show that
our algorithm is indeed very e�ective in solving Boolean
matching problem for incompletely speci�ed functions.

1 Introduction
Boolean matching is to check the equivalence of t-

wo functions under input permutation and input/output
phase assignment (so called NPN-class). It has been
widely used in technology mapping recently [1]-[7]. Ap-
plying Boolean matching in technology mapping can im-
prove the quality of mapped circuits and increase the
mapping exibility since it exploits implicit don't cares
which was not considered in traditional tree covering al-
gorithm. Moreover, it is able to shorten the mapping
time when using a library containing complex gates with
large input size. Boolean matching is also applied in logic
veri�cation, e.g., checking the equivalence of two circuits,
and verifying the implementation of a speci�cation.

Various methods for Boolean matching were proposed
[1]-[11]. Mailhot et al. [1] are among the �rst ones to
apply Boolean matching to technology mapping. They
proposed an algorithm using tautology checking based
on shannon decompositions. Don't cares were tackled by
a lattice-based method.

Savoj et al. [2] used smoothing and consensus op-
erators to solve Boolean matching problem. It also
considered the use of don't cares in Boolean match-
ing. Boolean uni�cation and branch-and-bound tech-
niques were adopted in [3]. The matching between t-
wo functions was checked by �nding the most gener-
al uni�er. Don't cares was also considered by this
method. However, these methods have the disad-
vantage of ine�ciency in terms of computation time.

The techniques presented in [5] were based on comput-
ing canonical forms of functions. In [11], Boolean match-
ing was done by using canonical Generalized Reed-Muller
forms of completely speci�ed functions. Yet, another
group of researchers take \signature" approach to solve
Boolean matching. Various signatures [4, 7, 9, 10] were
de�ned to characterize the input variables of Boolean
functions, where variables with di�erent signatures can
be distinguished from each other and many impossible
permutations can be pruned. The structure of Ordered
Binary Decision Diagrams (OBDD's) was also utilized for
Boolean matching [6, 8].These algorithms, although very
e�cient, failed to handle incompletely speci�ed functions
in Boolean matching.

In this paper, we propose a Boolean matching method
which is not only e�cient but also able to handle incom-
pletely speci�ed functions. We will use multiple-valued
functions to represent input-variable mapping and for-
mulate the matching process by a Boolean equation. Our
method can quickly reduce the searching space and �nd
all candidate mappings. Moreover, area, delay, and pow-
er dissipation can be easily coped with in our algorithm.

2 Boolean Matching with Don't Cares
An incompletely speci�ed function f is a Boolean func-

tion with don't cares. It involves three sets : the on-set
(fon), the o�-set (foff ) and the don't-care set (fdc). In
this paper, we will denote an incompletely speci�ed func-
tion as f = (fon; foff ).

With respect to the same set of inputs, two incom-
pletely speci�ed Boolean functions are equivalent if the
following consistency condition holds.
De�nition 2.1 (consistency) Two functions f(X)
and g(X) are consistent if and only if fon \ goff = �
and foff \ gon = �. It is denoted as f �= g.

Boolean matching is to check the equivalence of t-
wo functions under input permutation and input/output
phase assignment. Hence, given two incomplete-
ly speci�ed functions f(X) and g(Y ), where X =
fx1; x2; � � � ; xng and Y = fy1; y2; � � � ; yng, Boolean
matching problem for incompletely speci�ed functions is
to �nd a mapping (also assignment)  which maps xi to
a unique yj( �yj) such that f 0 �= g, where f 0 = f( (X))
(or �f ( (X))).

We will use the following example to illustrate Boolean
matching for incompletely speci�ed functions.

Example 2.1 Given two functions f(x1; x2; x3), and

g(y1; y2; y3), where f
on = �x1 �x2 + �x1x3, f

off = x1x3,
gon = y1 �y3, and g

off = �y1y2. Let the assignment  be
a mapping of x1; x2, and x3 to y2; y3, and �y1, respective-

ly. Then, f 0 = f( (X)) = (f 0
on

= �y2 �y3 + �y2 �y1; f 0
off

=
y2 �y1). The Karnaugh maps of f; f 0 = f( (X)) and g are
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Figure 1: The Karnaugh Maps of f; f 0 and g.

shown in Figure 1(a), (b) and (c), respectively, where x
indicates a don't care minterm. From Figure 1, we �nd
that f 0 �= g. Hence, f and g are matched under the
assignment  .

Obviously, a exhaustive search is not feasible because
it takes 2n� n!� 2 permutations, where n is the number
of inputs. Instead, we will propose a method which for-
mulates the candidate assignments as a logic function by
multiple-valued logic.

For ease of explanation, only input permutation will
be discussed in the following. The result extented to in-
put/output phase assignment will be presented in Section
3.3. Before we derive rules for matching two incompletely
speci�ed functions, we have the following de�nition and
lemma.
De�nition 2.2 Let u be a binary-valued cube. Then,
1-lit(u) (0-lit(u)) is a subset of support u, where only
literals of u in uncomplemented (complemented) form are
in the subset.

Example 2.2 Given the input set X = fx1; x2; x3; x4g

and a cube u = x1 �x3x4. Then, 1-lit(u) = fx1; x4g and
0-lit(u) = fx3g.

Lemma 2.1 Let u1 and u2 be two binary-value cubes
with respect to the same input set. Then u1 � u2 = �
if and only if 1-lit(u1) \ 0-lit(u2) 6= � or 0-lit(u1) \ 1-
lit(u2) 6= �.
< proof :> It follows directly from the de�nition of
AND (�) operation.

Boolean matching for two incompletely speci�ed func-
tions, f(X) and g(Y ), is to �nd a mapping from X to
Y so that the consistency condition holds. From De�ni-
tion 2.1, the consistency of two functions f and g must
satisfy fon \ goff = � and foff \ gon = �. Consider
condition fon \ goff = � �rst. It requires that for every
pair of cubes ui 2 fon and vj 2 goff , ui � vj = � should
hold. That is, for any two cubes ui 2 f

on and vj 2 g
off ,

in order to satisfy the consistency condition, it is only
possible by mapping at least one variable of ui in com-
plemented form to one variable of vj in uncomplemented
form, or one variable of ui in uncomplemented form to
one variable of vj in complemented form. For each pair of
cubes, there are usually many possible partial mappings
which allow the intersection of the cubes to be empty. To
ensure the consistency condition, for each pair of cubes,
the �nal mapping result must satisfy at least one of the
partial mapping. The same argument is also true for the
cubes in foff and gon to ensure condition foff \gon = �.

We will use the following example to illustrate that in
order to satisfy the consistency condition, partial assign-
ments are derived from pairs of cubes.

Example 2.3 Given two functions f(x1; x2; x3), and

g(y1; y2; y3), where fon = �x1 �x2 + �x1x3, foff = x1x3,
gon = y1 �y3, and goff = �y1y2. For the pair of cubes
�x1 �x2 2 fon and �y1y2 2 goff , we have the following two
partial assignments :

1. x1 mapped to y2, or
2. x2 mapped to y2.

For the pair of cubes �x1x3 2 fon and �y1y2 2 goff , we
have the following two partial assignments :

3. x1 mapped to y2, or
4. x3 mapped to y1.

For the pair of cubes x1x3 2 foff and y1 �y3 2 gon, we
have the following two partial assignments :

5. x1 mapped to y3, or
6. x3 mapped to y3.

To satisfy the consistency condition, at least one partial
mapping derived from each pair of cubes must be satis�ed
in the �nal mapping results. That is, the �nal matching
must satisfy the partial mappings (1 or 2) and (3 or 4)
and (5 or 6).

From the above-mentioned description, we now devel-
op rules for partial assignments for each pair of cubes
p = (ui; vj), where ui 2 fon (foff ) and vj 2 goff (gon)
as follows:

Rule 1: For each xi 2 1-lit(ui), derive partial mappings xi
to every yj 2 0-lit(vj). For each xi 2 0-lit(ui), derive
partial mappings xi to every yj 2 1-lit(vj).

Rule 2: At least one partial mapping derived from each
pair of cubes must be satis�ed in the �nal result.

3 Boolean Matching Using Multiple-

valued Function
In this section, we �rst review multiple-valuedBoolean

function and then show how to model assignment as
multiple-valued function. Logic operations (AND and
OR) will be used to search matching solution. To speed
up the searching, some implementation issues will also be
addressed in this section.

3.1 Representing Assignments by Multiple-

Valued Functions

A multiple-valued input, binary-valued output
function f (hereafter known as the multiple-valued
function) is a mapping

f : P1 � P2 � � � � � Pn ! B

where Pi = f1; 2; � � �; pig represents pi values that vari-
able i may assume and B = f0; 1g the output value of
the function.

Let xi be a variable taking a value from Pi, and Si be
a subset of Pi. xiSi represents the Boolean function

xi
Si =

�
0 if xi 62 Si
1 if xi 2 Si:

xi
Si is called a literal of variable xi. For the example of

P1 = f1; 2; 3g, and x1 = 2, we will have x1
f1;2g = 1 and

x1
f1;3g = 0.
Given two Boolean functions f(X) and g(Y ), where

input set X = fx1; x2; � � � ; xng and Y = fy1; y2; � � � ; yng.
Now we show how to use multiple-valued function to rep-
resent assignment. De�ne a multiple-valued function F
as

F : P1 � P2 � � � � � Pn ! B; (1)



where P1 = P2 = � � � = Pn = f1; 2; � � � ; ng and B =
f0; 1g. Variable i of F corresponds to the input xi of
f(X) and Pi corresponds to the set of yi's which xi may
map to. A variable i assuming value j means that xi is
mapped to yj . A minterm of F is evaluated true if it
corresponds to an assignment. For example,

Example 3.1 Let X = fx1; x2; x3g and Y =
fy1; y2; y3g. Then a multiple-valued function F ,

F : N �N � N ! B;

is de�ned, where N = f1; 2; 3g and B = f0; 1g. If x1
mapped to y1, x2 mapped to y3 and x3 mapped to y2 is an
assignment, then the minterm (1, 3, 2) of F is evaluated
true.

A minterm is feasible if it may represent an assignmen-
t; otherwise, it is infeasible. For the same example shown
in Example 3.2, the minterm (1, 1, 2) is infeasible since
both x1 and x2 are mapped to y1.

We de�ne a multiple-valued function a totality if all
feasible minterms are evaluated true.

3.2 Computing Assignments Using

Multiple-valued Function

A solution to Boolean matching is searched mainly
based on consistency checking. We have developed t-
wo rules in Section 2 to de�ne the search space. In
this section, we will show how to represent Rule 1 us-
ing multiple-valued function. Then, the logic operations
(AND and OR) on multiple-valued function is used to
ensure Rule 2.

First, based on Rule 1, for a pair of binary-valued
cubes u and v, we de�ne MvCube(u; v).

De�nition 3.1 For two Boolean functions f(X) and
g(Y ), given two cubes u of f in on-set (o�-set) and v
of g in o�-set (on-set) with respect to input sets X =
fx1; x2; � � � ; xng and Y = fy1; y2; � � � ; yng, respectively,

MvCube(u; v) =
X

xi21-lit(u)

x
Sa
i +

X
xi20-lit(u)

x
Sb
i ; (2)

where Sa = fj j yj 2 0-lit(v)g and Sb = fj j yj 2

1-lit(v)g.

MvCube(u; v) gives all partial assignments  which sat-
isfy u( (X)) � v = �.
We use the following example to show howMvCube's are
computed using Rule 1.

Example 3.2 Given two incompletely speci�ed func-
tions f(x1; x2; x3) and g(y1; y2; y3). Let fon = �x1 �x2 +
x1x2x3, f

off = x2 �x3 + x1 �x3, g
on = �y1y2, and goff =

�y3y1+y3 �y1 �y2. ThenMvCube(u; v)'s for all pairs of cubes
from fon and goff are as follows:

1 :MvCube( �x1 �x2; �y3y1) = x
f1g
1 + x

f1g
2

2 :MvCube( �x1 �x2; y3 �y1 �y2) = x
f3g
1 + x

f3g
2

3 :MvCube(x1x2x3; �y3y1) = x
f3g
1 + x

f3g
2 + x

f3g
3 and

4 :MvCube(x1x2x3; y3 �y1 �y2) = x
f1;2g
1 + x

f1;2g
2 + x

f1;2g
3 :

And,MvCube(u; v)'s for all pairs of cubes from foff and
gon are

5 :MvCube(x2 �x3; �y1y2) = x
f1g
2 + x

f2g
3 and

6 :MvCube(x1 �x3; �y1y2) = x
f1g
1 + x

f2g
3 :
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Figure 2: The Karnaugh Maps of f; f 0 and g.

For two incompletely speci�ed functions f =
(fon; foff ) and g = (gon; goff ), to ensure consistency
condition, Rule 2 says that the �nal mapping must com-
ply with at least one partial assignment developed for
each pair of cubes from fon (foff ) and goff (gon). Based
on the de�nition of MvCube and Rule 2, we have the
following theorem.

Theorem 3.1 Given two incompletely speci�ed func-
tions f = (fon; foff ) and g = (gon; goff ), the candidate
assignments  matching f to g is formulated as

 = totality �
\

i = 1 to j fon j

j = 1 to j goff j

MvCube(uoni ; v
o�
j ) �

\
i = 1 to j foff j

j = 1 to j gon j

MvCube(uo�i ; vonj );

(3)
where jfonj, jfoff j, jgonj, and jgoff j are the numbers of
cubes for fon, foff , gon, and goff , respectively, uoni 2

fon, uoffi 2 foff , vonj 2 gon, and voffj 2 goff .
< proof :> Directly from Rule 1 and Rule 2. The
anding with totality is to ensure infeasable solutions are
removed.
The same example of Example 3.2 is used to show that
based on Theorem 3.1 all possible assignments can be
derived using logic operations (AND and OR) on a multi-
valued function as follows.

Example 3.3 Given two incompletely speci�ed func-
tions f(x1; x2; x3) and g(y1; y2; y3). Let fon = �x1 �x2 +
x1x2x3, foff = x2 �x3 + x1 �x3, gon = �y1y2, and goff =
�y3y1 + y3 �y1 �y2. The candidate assignments  matching f
to g is formulated as :
 = totality �MvCube( �x1 �x2; �y3y1) �MvCube( �x1 �x2; y3 �y1 �y2)�

MvCube(x1x2x3; �y3y1) �MvCube(x1x2x3; y3 �y1 �y2)�
MvCube(x2 �x3; �y1y2) �MvCube(x1 �x3; �y1y2)

= totality � (x
f1g

1
+ x

f1g

2
) � (x

f3g

1
+ x

f3g

2
) � (x

f3g

1
+ x

f3g

2
+ x

f3g

3
)�

(x
f1;2g

1
+ x

f1;2g

2
+ x

f1;2g

3
) � (x

f1g

2
+ x

f2g

3
) � (x

f1g

1
+ x

f2g

3
)

= x
f3g

1
x
f1g

2
x
f2g

3
+ x

f1g

1
x
f3g

2
x
f2g

3
:

There are two cubes xf3g1 x
f1g
2 x

f2g
3 + x

f1g
1 x

f3g
2 x

f2g
3 in the

result. The �rst cube represents an assignment  1 which
maps x1; x2; x3 to y3; y1; y2, respectively, and the second
cube represents an assignment  2 which maps x1; x2; x3
to y1; y3; y2, respectively. By the �rst assignment, Fig-
ure 2(a), (b) and (c) shows the Karnaugh maps of f; f 0 =
 1(X) and g, respectively. It is clear that f 0 and g are
consistent and thus f and g are matched by  1.

3.3 Extension to Input/Output Phase As-

signment

The method presented in the previous subsections is
good only for input permutation. In this section, we will



extend this method to dealing with input/ouput phase
assignments.
Input Phase Assignment

Input phase assignment allows that each input xi maps
to an unique yj or �yj . Since each xi maymap to yj or �yj ,
the number of values of each multiple-valued variable is
doubled. Therefore, given two Boolean functions f(X)
and g(Y ), where input set X = fx1; x2; � � � ; xng and
Y = fy1; y2; � � � ; yng, the multiple-valued functions for
representing assignments extended to input phase assign-
ment is de�ned as:

F : P1 � P2 � � � � � Pn ! B; (4)

where P1 = P2 = � � � = Pn = f1; 2; � � � ; n; n+ 1; � � � ; 2ng
and B = f0; 1g. For each Pi, the �rst n represents yj
in uncomplemented form and the second n (i.e., n + j)
represents yj in complemented form.

As a result, to deal with input phase assignment, the
de�nition of MvCube(u; v) is modi�ed as follows.

MvCube(u; v) =
X

xi21-lit(u)

x
Sa
i +

X
xi20-lit(u)

x
Sb
i ; (5)

where Sa = fj j yj 2 0-lit(v)g [ fj + n j yj 2 1-lit(v)g
and Sb = fj j yj 2 1-lit(v)g [ fj + n j yj 2 0-lit(v)g.
Output Phase Assignment

To deal with output phase assignment, we simply con-
sider matching f and �g (the complement of g). Given
two functions f = (fon; foff ) and g = (gon; goff ). Since
�g = (goff ; gon), To match f and the complement of g,
Equation (3) is modi�ed as:

 = totality�
\

i = 1 to j fon j

j = 1 to j gon j

MvCube(uoni ; v
on
j )�
\

i = 1 to j foff j

j = 1 to j goff j

MvCube(uoffi ; v
off
j ):

(6)
With the above modi�cation, our Boolean matching

method is able to handle not only input permutation but
also input/output assignment.

3.4 Implementation Issues

It is necessary to compute Equation (3) to obtain
all candidate assignments. However, computing Equa-
tion (3) directly is impractical since the number of cubes
may be too large. Instead, the intersection operation can
be performed using two nested loops. Let f and g be
two functions to be matched. At the beginning of the
Boolean matching algorithm, the assignment  is set to
be true. During each iteration, for each ui 2 fon (foff )
and each vj 2 goff (gon), MvCube(ui; vj) is computed,
and  is set to be  �MvCube(ui; vj).

In the computation, totality function is not actually
calculated. Operation of anding totality can be complet-
ed by checking the feasibility of each cube in the resultant
cube list of MvCube operation in each iteration. More-
over, redundant cubes is likely generated in each itera-
tion. A cube is redundant if it is equal to or completely
contained in another cube. To prevent the number of
cubes from growing too large, redundant and infeasible
cubes must be deleted during the computation. For that
purpose, a procedure Reduction is designed to remove re-
dundant and infeasible cubes. A user de�ned parameter,
threshold, will be set up to control the time point when
to call Reduction. When the number of cubes exceeds
the threshold, Reduction is called.

Algorithm Partial-Assignment( ;f; g)
Input:f; g = binary-valued covers;
Output: return  or �;
Begin

if ( is �) then return �;
Sort the cubes in f and g by the cube size;
for each cube ui 2 f do

for each cube vj 2 g do
N = MvCube(ui; vj);

/* generate partial assignments for this
pair of cubes */

 =  
T
N ;

if (j  j> threshold) then
/* j  j: the number of cubes in  */

 = Reduction( );
/* remove redundant and infeasible

cubes */

endif

if ( is �) then return �;
endfor

 = Reduction( );
endfor

return  ;
End

Figure 3: The Partial-Assignment Algorithm

The computation time of Equation (3) heavily depends
on the sequence of pairs of ui and vj chosen for computing
MvCube(ui; vj). A good sequence may quickly reduce
the searching space, i.e., only a small number of cubes
remains in the cube list. Our heuristic is to compute the
cubes with less number of literals �rst. The reason be-
hind this heuristic is that if ui and vj have less number of
literals, then the number of resulting cubes for operation
MvCube(ui; vj) is smaller. Moreover, since anding oper-
ation is performed during the process, if the initial search
space is small, the subsequent operations is restricted in
a smaller search space. The above Boolean matching al-
gorithm is implemented as procedure Partial-Assignment
shown in Figure 3.

4 Minimum Weighted Matching for the

Best Assignment
In Section 3, We have shown an algorithm to �nd all

candidate mappings which satisfy consistency conditions.
To �nd a speci�c one among all candidates mappings, we
model the problem as a matching problem on a bipartite
graph. Also, We show that using this method, delay and
power dissipation can be easily taken into account during
technology mapping.
4.1 Bipartite Graph Matching

If two functions are matched, the result of Partial-
Assignment will contain a sum of cubes and each cube
corresponds to a set of candidate mappings. For example,

Example 4.1 Given f(X), g(Y), and two input set-
s X = fx1; x2; x3; x4g and Y = fy1; y2; y3; y4g. Let

cube c = x
f1;4g
1 x

f3g
2 x

f1;2;4g
3 x

f2g
4 be obtained by proce-

dure Partial-Assignment. Then, two assignments can be
deduced from this cube; one is mapping of x1 to y1, x2
to y3, x3 to y4 and x4 to y2 and the other is mapping of
x1 to y4, x2 to y3, x3 to y1 and x4 to y2.
To �nd a speci�c mapping, we must ensure that as-
signment from xi's to yi's is an onto mapping. The
selection of a speci�c solution can be modeled as a
matching problem on a bipartite graph. Given func-
tions f(X) and G(Y ), where X = fx1; x2; � � � ; xng and
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f1;4g
1 x

f3g
2 x

f1;2;4g
3 x

f2g
4 .

Y = fy1; y2; � � � ; yng, and a cube c = x
S1
1 x

S2
2 � � �xSnn 2  

obtained by procedure Partial-Assignment. A bipartite
graph B = (U; V;E) will be constructed for c, where
U = X, V = Y , and ei;j 2 E is an edge connecting ver-
tices xi and yj if j 2 Si. An assignment corresponds to a
perfect match on the bipartite graph. Figure 4 shows the
corresponding bipartite graph of Example 4.1. There are
two perfect matching in the graph. Each corresponds to
an assignment.

4.2 Considerations of Delay and Power Dis-

sipation

Boolean matching technique is commonly used for
technology mapping. When the result of procedure
Partial-Assignment contains many assignments, choice
must be made to select a speci�c one. Di�erent choice
may result in di�erent cost. For example, during tech-
nology mapping, a subcircuit (f) in the Boolean network
is mapped to a logic cell g in cell library. In most cases,
f is incompletely speci�ed since implicitly don't cares is
used. If f and g are matched and the result contains
many candidate assignments, the delay and power dissi-
pation of the mapped circuits may vary for di�erent as-
signments because di�erent assignment means di�erent
input correspondence.

For delay and power dissipation optimization in tech-
nology mapping, the basic idea is to assign weights on
edges in B and then �nd a minimumweighted matching.
In the following, delay and power dissipation optimiza-
tion are discussed.

Consider delay-driven technology mapping �rst. The
goal is to map a late arrival signal to an input line whose
longest path to the output node is shortest. Consid-
er a subcircuit f(X), a logic gate g(Y ) and input set
X = fx1; x2; � � � ; xng and Y = fy1; y2; � � � ; yng. Let ai
be the arrival time of signal xi and dj be the delay time
of input yj to the output of g. Then, the weight of ei;j,
weight(ei;j), is de�ned as

weight(ei;j ) = ai + dj for j 2 Si: (7)
Our objective is to �nd a perfect match whose largest
cost on an edge is minimized. With some modi�cation
on the algorithm of perfect match, this problem can be
solved in polynomial time. With these cost function and
objective function, the arrival time of output g can be
minimized.

Now, consider minimization of power dissipation in
technology mapping. Power can be minimized by consid-
ering the input part and output part of a gate. For the
input part of a gate, the goal is to have a smaller produc-
t of input-transition-density and input-load-capacitance.
For the output part of a gate, the goal is to have a lower

Algorithm Boolean-Matching(f , g)

Input: f = (fon; foff );

g = (gon; goff );
Output: return (Success,  ) if f and g are matched;
otherwise, return Failure;
Begin

 = 1;

 = Partial-Assignment( ;fon; goff );

 = Partial-Assignment( ;foff ; gon);
if (S 6= �) then

 = Minimum-Matching( );
/*  : a minimum-cost assignment */
return (Success,  );

else

return Failure;

endif

End

Figure 5: The Boolean-Matching Algorithm

output-transition-density. Consider a subcircuit f(X), a
logic cell g(Y ) and input set X = fx1; x2; � � � ; xng and
Y = fy1; y2; � � � ; yng. Let txi be the transition-density of
input xi, tyj be the transition-density of g with respect
to input yj (the transition probability of g when yi tran-
sits), and lyj be the input-load-capacitance of input line
yj . Then, to minimize power dissipation, the weight of
ei;j , weight(ei;j), is de�ned as

weight(ei;j) = txi � tyj � lyj for j 2 Si: (8)
With this cost function, the minimum-cost matching will
result in an assignment with low power dissipation.

A complete Boolean matching algorithm is shown in
Figure 5. Procedure Partial-Assignment is called to com-
pute all candidate assignments. If the result is not empty,
procedure Minimum-Matching is called to �nd a best as-
signment with respect to the de�ned cost function.

5 Experimental Results
The proposed Boolean matching algorithm has been

implemented in C language on SUN Sparc station. Our
algorithm can be applied both to completely speci�ed and
incompletely speci�ed functions. To demonstrate the e�-
ciency of our algorithm, 31 benchmarks of MCNC circuits
have been tested. For each circuit, a new circuit was gen-
erated by randomly permuting its input variables. Then
we applied our matching algorithm to match these two
circuits. Two sets of experiments were conducted to test
the matchings of completely speci�ed and incompletely
speci�ed functions, respectively.

The �rst experiment was performed to match com-
pletely speci�ed functions. Table 1 shows the experi-
mental results. The columns with labels on and o� give
the number of cubes of the on-set and o�-set for each cir-
cuit, respectively. The column prod is the product of on
and o� which is the number of cube pairs processed for
�nding candidate assignment. The column CPU shows
the running time in seconds. The columns without and
with show the running time of without using and using
speed-up heuristic described in Section 3.4, respectively.

Table 1 shows that 6 out of 31 cases can not be
completed in 3 hours CPU time without using speed-
up heuristic. For 17 out of the remaining completed 25
cases, the running time can be reduced varying from 1%
to 97% with speed-up heuristic. Summing up the total
running time except the 6 incomplete cases, using speed-
up heuristic achieves 61% less running time than without
using this heuristic.



Table 1: Benchmarking Results for Completely Speci�ed
Functions

No. of Cubes CPU
circuits

on o�
prod

without with

5xp1 65 76 4940 0.71 0.34

*alu4 575 609 350175 250.34

*apex1 206 1234 254204 1591.24

*apex3 280 756 211680 2012.25

*apex4 435 1471 639885 327.73

bw 22 66 1452 0.15 0.13

b12 42 29 1218 0.17 0.10

clip 119 151 17969 301.46 7.89

cm138a 9 8 72 0.08 0.08

cm150a 17 16 272 16.53 16.53

cm151a 17 17 289 0.51 0.51

cm152a 8 8 64 0.35 0.34

cm162a 25 35 875 0.25 0.10

cm163a 24 27 648 0.10 0.06

cm42a 7 10 70 0.01 0.01

cm82a 23 23 529 0.11 0.11

cm85a 48 57 2736 4.69 1.34

con1 9 9 81 0.02 0.01

duke2 87 314 27318 9.01 6.36

ex5 73 134 9916 5.01 4.87

f2 9 10 90 0.01 0.01

f51m 76 78 5928 1.08 0.65

inc 31 70 2170 0.70 0.64

misex1 12 30 360 0.07 0.07

misex2 28 73 2044 0.20 0.15

*misex3 678 679 472566 275.52

misex3c 197 616 121352 147.86 146.30

*pdc 251 987 247737 137.92

sao2 58 80 4640 10.21 2.04

vg2 110 194 21340 21.91 14.17

z4ml 59 59 3481 1.20 1.20

total 1175 2190 229854 522.40 204.01

The second experiment is designed for incompletely
speci�ed functions. To show the di�erent size of don't-
care set, we perform this experiment by removing 10%,
20%, and 30% of the cubes in on-set and o�-set of the
second circuit. Then the second circuit (incompletely
speci�ed function) is matched to the �rst one (complete-
ly speci�ed function). Table 2 shows the experimental
results. The columns labeled -10%, -20%, and -30%
show the results of cases where 10%, 20%, and 30% of
cubes are removed, respectively. The columns product
and CPU show the number of cube pairs processed and
the running time in seconds. Table 2 shows that match-
ing functions with smaller size of on-set and o�-set needs
less running time. In average, the running time of the
cases for removing 20% and 30% cubes are 15% and 20%
quicker than the case of removing 10% cubes, respective-
ly.

6 Conclusions
In this paper, we have addressed the Boolean matching

problem for incompletely speci�ed functions. Multiple-
valued functions are used to model assignment. We for-
mulate the searching of candidate assignments by using a
Boolean equation. A Boolean matching algorithm based
on the computation of this equation is proposed. Some
implementation issues to speed up the searching process
are also presented. Moreover, delay and power dissipa-
tion may be taken into account when this method is used
for technology mapping. Experimental results show that
our algorithm is indeed e�cient for many benchmark cir-
cuits.

Table 2: Benchmarking Results for Incompletely Speci-
�ed Functions

-10% -20% -30%
circuits

prod CPU prod CPU prod CPU

5xp1 8828 0.93 7852 0.84 6865 0.80

alu4 629953 478.39 560165 422.35 498768 373.73

apex1 456950 2665.32 405698 2061.94 355471 2074.16

apex3 380912 3326.28 338464 2976.01 296296 2762.98

apex4 1150666 635.64 1024368 564.00 894799 500.65

bw 2552 0.43 2266 0.36 2002 0.32

b12 2165 0.27 1923 0.22 1681 0.20

clip 32222 14.82 28625 12.45 25028 11.13

cm138a 127 0.09 110 0.08 93 0.07

cm151a 510 4.03 442 3.74 374 3.90

cm152a 112 0.89 96 0.37 80 0.30

cm162a 1545 0.25 1400 0.17 1195 0.19

cm163a 1143 0.41 1017 0.10 864 0.18

cm42a 123 0.04 106 0.02 89 0.01

cm82a 920 0.34 828 0.32 736 0.29

cm85a 4899 4.18 4326 4.07 3753 2.41

con1 144 0.04 126 0.03 108 0.03

duke2 49026 11.15 43503 10.58 37893 9.01

ex5 17724 8.87 15824 7.88 13716 6.89

f2 161 0.03 142 0.03 123 0.03

f51m 10624 1.63 9392 1.39 8238 1.29

inc 3843 1.18 3416 1.06 2989 0.99

misex1 624 0.21 558 0.20 492 0.16

misex2 3645 26.30 3230 21.69 2815 7.97

misex3 850276 534.81 765226 478.25 669748 414.98

misex3c 223304 272.03 193636 238.86 169299 205.10

pdc 444963 344.30 395439 291.45 345915 262.26

sao2 8336 5.63 7392 5.04 6448 4.53

vg2 38346 25.68 34122 23.15 29788 18.40

z4ml 6254 4.52 5546 4.24 4838 3.65

total 4293831 8368.73 3855238 7130.89 3380504 6666.61

norm. 100 100 90 85 79 80
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