
Memory Segmentation to Exploit

Sleep Mode Operation

Amir H. Farrahi Gustavo E. T�ellez Majid Sarrafzadeh

Department of Electrical Engineering and Computer Science

Northwestern University

Evanston, IL 60208, USA

Abstract

Sleep mode operation and exploiting it to minimize the

average power consumption are of great importance. In this

paper, we formulate the memory segmentation/partitioning

problem to exploit sleep mode operation and show that the

problem is NP-complete. We present polynomial time algo-

rithms for special classes of the problem. Some generaliza-

tions of the problem are discussed. Preliminary experiments

are conducted to show the e�ectiveness of the algorithms and

applicability of the approach. The experimental data con�rm

that a careful partitioning allows up to 40% more sleep time

which could be exploited to minimize the average power con-

sumption. Directions for further research in this area are

presented.

1 Introduction

As a result of advances in VLSI technology and the advent of
portable and mobile communication and computing services,

the minimization of power consumption in modern circuits

is of utmost importance. Due to this importance, there has
been considerable shift of attention in the logic and layout

synthesis areas [11, 13, 12, 9] and more recently in high-

level synthesis [3, 2, 8] from the delay and area minimization
issues towards low power design. Recent studies [1] indicate

that the clock signal and memory unit in digital computers,

each consumes somewhere between 15 to 45 percent of the
total power. This suggests good opportunities for savings in

power consumption due to these sources. Exploiting sleep

mode operation is an attempt to do so.
In general, the term sleep mode refers to the mode in which

there is no activity in part(s) of the system during certain

periods of time. The sleep mode issue can be studied at
di�erent fronts, e.g., behavioral level, register-transfer level

(RTL), logic level and transistor level.

In this paper we study the partitioning 1 problem to exploit
sleep mode operation for power minimization in digital cir-

cuits. The general problem can be viewed as partitioning a

set of circuit elements such that the savings in power con-
sumption achieved by switching each partition as a whole

into sleep mode is maximized. A partition can be switched

into sleep mode during time interval I = (l; r) if all the
elements in that partition are idle during I. The set of in-

tervals during which an element m is idle, is referred to as

the idle set of m. We present a general formulation for this
partitioning problem and study its complexity. The problem

�nds many applications in low power design, e.g. the follow-

ing (see Figure 1): memory segmentation, partitioning to
power-down portions of the design, clock tree construction.

We briey describe how to obtain the information on idle

.

.

.

.

.

.

Clock
Gating
Control

M2

M1

Mk

P2P1

P3 P4

Supply

a) Memory Segmentation

Sleep

Mode
Control

Power
Down

Control

b) Partitioning for Power Down

Clocked elements
c) Clock Tree Construction

segments

Memory

Clock and/or refresh signals

partitions
Circuit

Power

Figure 1: Circuit partitioning to exploit sleep mode

sets, later in the paper. The rest of this paper is organized as
follows: Section 2 presents the necessary background. Sec-

tion 3 briey describes a methodology to obtain the the idle

sets for a set of memory or clocked element in a design (i.e.,

the data needed for this problem). Section 4 describes the

problem formulation. The complexity of the problem is dis-

cussed in Section 5. Exact algorithms to solve the general

1The terms segmentation and partitioning are used inter-

changeably in this paper.

32nd ACM/IEEE Design Automation Conference
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission. 1995 ACM 0-89791-756-1/95/0006 $3.50

problem are presented in Section 6. Some special classes of
the problem are studied in Section 7 and polynomial time

algorithms are presented to solve these classes. Section 8

focuses on some generalization of the problem. Preliminary
experimental results for the problem are provided in Sec-

tion 9, and Section 10 concludes the paper summarizing the

key features of this study and provides directions for further
research in this area.

2 Background

There are three sources of power consumption in CMOS

circuits: the charging and discharging of capacitive loads

during switchings at gate outputs, the short circuit current
which ows during output transitions, and the leakage cur-

rent. The last two sources should be dealt with and opti-

mized using proper device and circuit design techniques [14],
hence the design automation community has focused on the

minimization of the �rst source, which is frequently referred

to as the switching power or dynamic power. The average
dynamic power consumption for a CMOS gate g with load

capacitance Cg is given by:

Pav(g) = 0:5 Cg V
2
dd D(g); (1)

where D(g) and Vdd represent the transition density 2 of

the signal at the output of g, and the voltage of the power
supply, respectively.

This suggests that a signal has a high contribution to the

dynamic power consumption if it has either relatively large
load capacitance or relatively high transition density. And

these are both true about the clock signal in moderately

sized synchronous digital systems. Now consider a scenario
in which the access times to a set of dynamic memory ele-

ments are known. If we can partition these memory elements

such that for long periods of time either of the partitions
contains no data, then we can turn o� the memory refresh

circuitry for that partition during these periods and thus re-

duce the amount of power consumption. Recent studies [1]
indicate that the clock signal and memory each consumes

somewhere between 15 to 45 percent of the total power in

digital computers. Hence, it would be worthwhile to study

the mechanisms and approaches through which the power

consumption due to these sources can be optimized. Exploit-

ing sleep mode operation being one of these approaches. Our
approach to exploiting sleep mode is to partition the memory

such that memory elements (MEs) with similar activity pat-

terns are grouped together so that the clock signals, refresh
circuitry, and/or the power supply to each partition can be

switched o� (via gates or switches) during the periods of

time that all the MEs in that partition are idle. Clearly,
there is some overhead involved, caused by the extra con-

trol logic needed to switch the partitions in and out of sleep

mode and the amount of power that switching in and out of
sleep mode will consume. This overhead is mainly depen-

dent on the switching pattern and switching frequency of the

partitions in and out of sleep mode. The activity patterns
for the MEs can be obtained through simultion of the real

time operations of the circuit, or using statistical approaches

applied at logic level. Given the idle sets of the MEs, the

2Average number of transitions per unit time.

m9

m4

m8
m7
m6
m5

m3
m2
m1

N9
N8
N7
N6
N5
N4
N3
N2
N1

Represents read (R) access
Represents write (W) access
Represents an idle interval

Access Sequences

0 3 6 9 12 15 18
Computation Time Windowstart end

Figure 2: Idle sets for memory from the memory access

sequence

question is how to partition the set of MEs to maximize the

savings in power consumption achievable by this technique,

and that how much power would this technique save us. We
believe that there is a high potential of savings in the power

consumption using this technique and our paper is an at-

tempt to study this problem. In the next section we discuss
how to obtain the idle sets.

3 Obtaining Idle Sets

In this section, we briey describe methodologies to obtain

the idle sets of the memory and clocked elements in a de-

sign. Availability of these activity patterns are vital for the
partitioning algorithm to be applicable.

3.1 Idle Sets for Memory Elements

Let M = fm1;m2; :::;mrg represent the set of dynamic

memory elements (MEs) in an application. Assume that

the access sequence for each ME mi 2 M during a whole
run cycle is given as a sequence of ordered pairs each of

the form (ti;Ai), where ti corresponds to the access time,

and Ai 2 fR;Wg represents the type of access, read (R),
or write (W) (see Figure 2). To obtain the access sequence

for the MEs, we can use simulation-based tools that take as
input an application program and produce statistics on the

resource utilization over time and space. Given the access

sequence for all the MEs, we can use the following rules to
generate, for each ME mi, the set of intervals during which

mi does not need to be refreshed (see Figure 2), and thus

obtain the idle sets for each ME:

� If the �rst access to mi is a W access at time t, then there
is no need to refresh mi prior to time t.

� After the last access to mi, there is no need to refresh mi.

� If an access to mi (of any type, R or W) at time t, is
followed by a W access at time t0, then there is no need to

refresh mi during time interval (t; t0).

3.2 Idle Sets for Clocked Elements

Consider the description of a design after the scheduling and

allocation steps have been performed. We assume that the
functional units have registers at their input. This means

that if an FU F is not used for a consecutive set of cyles,

then we can gate the clock signal to the registers feeding
this FU during this idle time, and thus reduce the power

while (z < a) do {

 u1 := u - (3.z.u.dz) - (3.y.dz);
 y1 := y + (u.dz);

 z1 := z + dz;

 z := z1; u := u1; y := y1;
}

*

M3

M4

M2

M1

M1

M2

- -
S1S1

C1A2

c1 c2 c3 c4 c5 c6

A1

+

+

<

*

*

*

*

*

dz
z

dz
u

u
y

3
z

3
dz

u

Scheduling and Allocation

M1

y1

z1

ctr

u1

y" + 3zy" + 3y = 0

CDFG:

M2
M3
M4
A1
A2
S1
C1

FUs:

Figure 3: Idle sets for a scheduled and allocated design

consumption due to the clock tree. Furthermore, it guar-
antees that there would be no dynamic power consuming

activity during this time in F . From the scheduled and allo-

cated design we can say that if FU F is assigned to a control
step c, then it is active during c. Otherwise, it is idle dur-

ing this time. This allows us to generated the idle sets for

each of the FUs in our design. Figure 3 shows how to obtain
the idle sets from a design that solves a di�erential equa-

tion of the form y00 + 3zy0 + 3y = 0 after scheduling and

allocation have taken place. The design contains the follow-
ing functional units: four multipliers M1;M2;M3;M4, two

adders A1;A2, one subtractor S1, and one comparator C1.

The idle sets for the registers at the inputs of each FU is
computed from the Control-Data Flow Graph (CDFG) af-

ter scheduling and allocation are done. These idle sets are

shown at the bottom next to their corresponding FU names.

The clock gating problem, and the placement of gates in the

clock tree are studied in [10]. A matching-based heuristic

is presented for grouping the clocked elements to form the

clock tree structure.

4 Formulation of The Problem

Consider a set M = fm1;m2; :::;mrg of MEs. We say that

ME m is idle during time interval I = (l; r), l < r, if m can

be switched into sleep mode during I. Intervals I1 = (l1; r1)
and I2 = (l2; r2) are non-overlapping if l1 � r2 or l2 � r1.

A set of intervals are non-overlapping if they are pairwise

non-overlapping. The idle set Nm of m consists of a set of
non-overlapping intervals or NISes (Non-overlapping Inter-

val Sets) during all of which m is idle. We assume that the

information about the idle sets of elements in M are given
as a set S = fN1;N2; :::;Nrg, where Ni = fIi1 ; Ii2 ; :::; Iini g

m6
m5
m4
m3
m2
m1 N1

N2
N3
N4
N5
N6

S1

S2
S

0 3 6 9 12 15 Time axis

A1

A2

S2 = {N3, N4, N6}
S1 = {N1, N2, N5}

t2 = 5
t1 = 4 sw1 = 2

sw2 = 2
A(S1) = {(1,3), (8,10)}
A(S2) = {(5,7), (12,15)}

The time window

T = 15

S = {N1 , . . . , N6}

Figure 4: Memory partitioning for sleep mode

is a NIS representing the idle set of mi (see Figure 4).
The notation () denotes an empty interval. Given intervals

I1 = (l1; r1) and I2 = (l2; r2), we say I1 covers I2 if either

l1 � l2 < r2 � r1, or I2 = () (that is, all intervals cover the
empty interval). The length L(I) of an interval I = (l; r) is

de�ned as the quantity r�l (or 0 if I = ()). The intersection

of two intervals I1 and I2, denoted as I1^I2, is de�ned as the
longest interval covered by both I1 and I2 (or empty if the

two intervals do not overlap). The intersection of more than

two intervals is de�ned similarly. The intersection of two
NISes N1 = fI11; I12; :::; I1n1g and N2 = fI21; I22; :::; I2n2g,
denoted as N1^N2, is de�ned as the NIS formed by the pair-

wise intersection of the intervals one picked from N1 and the
other picked from N2, that is:

N1 ^N2 = fI1 ^ I2 j I1 2 N1; I2 2 N2; I 6= ()g (2)

The intersection of more than two NISes is de�ned similarly.

Figure 4 shows NISes N1;N2;N3;N4;N5;N6 and also N1 ^
N2 ^ N5, N2 ^ N3 ^ N6. Given NISes N1, N2, we say N1

covers N2 if N1 ^N2 = N2. The endpoint set EN of a NIS

N is de�ned as the set of endpoints of the intervals in N ,
that is: EN = fp j 9p : (p; q) 2 N or (q; p) 2 Ng. The

durationD(N) of a NIS N = fI1; I2; :::; Ikg is de�ned as the

sum of the lengths of the intervals contained in it, that is:
D(N) =

Pk

i=1
L(Ii). Given a set S = fN1;N2; :::;Nkg of

NISes, the internal-intersection A(S) of S is de�ned as the

intersection of all the NISes in S, that is: A(S) = ^Ni2SNi.
The endpoint set ES of S is de�ned as the union of the

endpoint sets of the NISes in S, that is: ES = fp j 9N 2 S :

p 2 ENg.

Given a set S, (S1; S2) is a bi-partitioning for S if: S1; S2 �
S, and S1[S2 = S. The bi-partitioning (S1; S2) is b-balanced

if jS1j � b and jS2j � b, where the notation jSij is used to

denote the cardinality of set Si. The gain G(S1; S2) of b-
balanced bi-partitioning (S1; S2) is de�ned as:

G(S1; S2) = t1 + t2 � a� (sw1 + sw2) (3)

where,

ti = D(A(Si)) ; i 2 f1; 2g (4)

swi = jA(Si)j ; i 2 f1; 2g (5)

In (3), the term t1+t2 accounts for the savings in power con-
sumption due to sleep mode operation of partitions S1; S2,

and the term a� (sw1 + sw2) accounts for the overhead re-

sulted from the extra control circuitry needed to supervise
sleep mode operation. The parameter a is introduced to

control relative signi�cance of savings vs. overhead terms.

Figure 4 shows an example of memory partitioning to exploit
sleep mode.

We can now formulate our problem P1 as stated below.

Note that the problem is formulated as a decision problem

although it can also be formulated as an optimization prob-
lem.

Instance: Ordered quadruple (a; b; c; S). Where a is

a positive number, b, c are positive integers, and S =
fN1;N2; :::;Nrg is a set of NISes of the form: Ni =

fIi1; Ii2; :::; Iinig.
Objective: Determine whether there exists a b-balanced
bi-partitioning (S1; S2) of S such that: G(S1; S2) � c.

5 NP-Completeness

In this section we discuss the complexity of P1 and show

that it is NP-complete. We present a transformation from
the MIN-CUT INTO BOUNDED SETS (MCP) problem

[6], which is an NP-complete problem. Given graph G =

(V; E), positive integer B < jV j, positive integer K, the
MCP problem asks whether there exists a B-balanced bi-

partitioning (V1; V2) of V such that the number of edges in

E with one endpoint in V1 and the other endpoint in V2 is
no more than K. We showed that the following lemma holds
3.

Lemma 1. MCP is polynomial-time transformable to P1.

It is easy to see that P1 is in NP. A non-deterministic poly-
nomial time algorithm just needs to guess a bi-partition

(S1; S2) of S and then check in polynomial time that the gain

G(S1; S2) of this bi-partition satis�es G(S1; S2) � c = K.
Hence, we have the following result:

Theorem 1. P1 is NP-complete.

6 An Exact Algorithm

The fact that P1 is NP-complete, rules out the possibility

of existence of a polynomial time algorithm for P1 unless
P=NP [6]. The general strategy in such circumstances is to

work at two fronts: Towards the theoretical end, the com-

plexity of special sub-classes of the general problem that
are potentially solvable in polynomial time are studied. To-

wards the practical end, heuristic approaches are developed

to solve the problem sub-optimally but in polynomial time.
Occasionally, it has been observed that formulation of an

exact solution to a general NP-complete problem provides

valuable insights on how to go about solving special classes
of the problem, or how to design practical heuristic algo-

rithms for the problem.

In this section we present an algorithm (Partition Exact)
to solve P1. The outline of this algorithm is shown in Fig-

ure 5. This algorithm forms the foundation of polynomial

time algorithms that we will present in later sections to solve
special classes of P1. It tries all possible pairs of NISes N ,

3See [4] for the proof of this lemma

7. Get such partitioning (P1, P2) of maximum gain ;
 with N , M being thier auto-intersections {
6. If there exists a b-balanced bi-partitioning (P1, P2) of S
5. For each NIS M consisting of intervals picked from Int_set {
4. For each NIS N consisting of intervals picked from Int_set {
3. Int_set = Set of intervals with endpoints in Es ;
2. Max_gain = -1 ;
1. Es = endpoint set of S ;
BEGIN

8. If (G(P1, P2) > Max_gain) {
9. S1 = P1 ;

10. S2 = P2 ;

END
15. }
14. }
13. }
12. }
11. Max_gain = G(P1, P2) ;

;
 Output:
 Input:

Ga(S1, S2) is maximized ;
b-balanced bi-partitioning (S1, S2) of S such that
(a, b, S = {N1, N2, ..., Nr})

ALGORITHM PARTITION_EXACT

Figure 5: An exact algorithm to solve P1

M that are potential internal-intersection of two partitions
S1 and S2 of a b-balanced bi-partitioning of S, and reports

the pairM;N among such partitioning with maximum gain.

Let p = jES j represent the cardinality of the endpoint set
of S, then there are p(p � 1) + 1 = O(p2) intervals (in-

cluding the empty interval) with endpoints picked from ES.

Therefore there are no more than 2p
2

ways to choose ei-

ther of N and M . Thus the algorithm Partition Exact

would have the time complexity O(22p
2

f(p; r)), where f(p; r)

is the time needed to perform steps 6 and 7 of the algo-
rithm. Using e�cient geometrical techniques we can achieve

f(p; r) = O(r+p), obtaining time complexity O(22p
2

(p+r))

for Partition Exact algorithm. The following observation

allows us to bound the search space in this algorithm:
Observation 1. Let Imax represent the longest interval

in a given P1 instance (a; b; S), and let (S1; S2) be a

bi-partitioning of S, then no intervals in the internal-
intersection of S1 or S2 could be possibly longer than Imax.

This means that we need to consider only the NISes con-

sisting of intervals with length at most equal to the longest
interval in the given P1 instance.

7 Some Polynomial Time Sub-Classes

In this section, we focus on some sub-classes of P1 for which

we can present polynomial time algorithms. The polyno-
mial time algorithm presented for each of these sub-classes

is obtained by slight modi�cations of the algorithm Parti-

tion Exact.

7.1 Single Interval NISes

This section addresses the following sub-class of P1, denoted

as P2:

Instance: Same as P1, with each NIS containing a single

interval.

Objective: Same as P1.

We can use the basic algorithm Partition Exact to solve

P2, however, the following observation allows us to achieve

a much faster algorithm.

Observation 2. Let P = fN1;N2; :::;Nkg be a set of
NISes, each containing a single interval. Then the internal-

intersection of P is a NIS that consists of either a single or

no intervals.

This observation tells us that no matter how we partition the

set of NISes S of P2 instance into S1 and S2, the internal-
intersection of either of the partitions P1 , P2 consists of

only a single interval. That is, we do not need to spend

time on multiple interval NISes for N and M at all, since
such NISes cannot possibly be the internal-intersection of

partitions for a bi-partitioning (S1; S2) of S. Therefore to

solve P2 we can use algorithm Partition Exact with the
for loops modi�ed such that only single interval NISes are

picked for N and M . This leads to a time complexity of

O(sp4) where s is the number of intervals in the problem
instance, that is, s =

P
r

i=1
(jNij), and p is the cardinality

of the endpoint set of S, and hence we have the following

theorem:
Theorem 2. P2 can be solved in polynomial time.

Bounding the Search Space: As here we are only dealing

with single interval NISes, the task of enumerating pairs of
NISes would become equivalent to enumerating single inter-

vals. The following observation reduces the solution space

to be searched during the execution of the algorithm. How-
ever, it does not improve the asymptotic time complexity of

the algorithm.

Observation 3. Let Imed and Imin represent the intervals
in the P2 instance with the median and minimum lengths,

respectively. Then it is easy to show that for one of the

partitions we only need to enumerate intervals of lengths no
more than L(Imed) and for the other partition we only need

to enumerate intervals of lengths no more than L(Imin).

7.2 Bounded Number of Switchings

In practice, having to switch the partitions in and out of
sleep mode too frequently may not be practical. Because

swiching a partition into or out of sleep mode is also a

power consuming activity which is desired to be minimized.
Moreover, as the number of such switchings is increased, the

complexity of the extra control logic needed to supervise

the sleep mode is also increased. This can lead to higher

percentage for the penalty caused by each time a partition

is switched into or out of sleep mode, on the savings in

power consumption. Therefore we introduce the following

restricted version of P1, called P3, in which the allowable

number of switchings in and out of sleep mode are forced by

an input parameter d to be limited:
Instance: Same as P1, plus integer, d.

Objective: Same as P1, with additional constraint sw1 +

sw2 � d.

Note that by increasing parameter a in a P1 instance we

can control sw1 + sw2 in the �nal solution. However, this
does not a�ect the time complexity of the algorithm Par-

tition Exact. On the other hand, by upper-bounding

sw1 + sw2 in problem P1 we can achieve an O(sp2d) al-
gorithm to solve the optimization version of P3 optimally,

which is a pseudopolynomial algorithm 4. To do this we re-

4It is polynomial in s, p, and exponential in log d, the minimum

strict the algorithm Partition Exact to only testing those
combinations of N ,M that satisfy jN j+ jM j � d. Note that

jN j = sw1 and jM j = sw2. The following theorem is an

immediate result:

Theorem 3. P3 can be solved in (pseudo)polynomial time.

8 Generalization

In this section we briey mention a couple of the generaliza-
tions of P1 (and its counterparts P2, P3. This is intended

to suggest that the basic formulation is easily adaptable to

cover broader range of optimization problems. We discuss
two generalizations: the multi-way partitioning, and the par-

titioning in a weighted environment. Note that we could also

have multi-way partitioning and weighted combined.

Multi-way Partitioning: This is a straightforward gen-

eralization. To solve this problem we can either perform
a recursive application of the algorithms presented for the

corresponding bi-partitioning problem, or enumerating the

potential internal-intersection for each of the partitions us-
ing m nested loops that would replace the two nested loops

in steps 4 and 5 of algorithm Partition Exact. The trade

o� is between the quality of results and the running time of
the algorithm. This problem is especially useful in partition-

ing for activity-driven clock tree construction (see Figure 1

c). An interesting idea would be have the algorithm com-
pute the optimal number of partitions as well as the contents

of each partition.

Weigted Partitioning: This version of the problem is ap-

plicable in circumstances where only statistical analysis is
possible to obtain the idle times for each element. In such

cases there is a weight wi associated with each interval Ii.

The weight of an interval can represent the probability that
the corresponding element is idle during that interval. The

weighted version is also useful to model a circuit where dif-

ferent sub-circuits have di�erent power attributes due to the
fact that they result in more savings in power consumption

even if they are switched into sleep mode for the same pe-

riod of time (unlike the case for memory which the power
attributes are the same). In that case, each NIS Ni has a

weight wi associated with it.

9 Experimental Results

This section presents our preliminary results for this prob-

lem. The algorithm Partition Exact and its modi�cations
to optimally solve P2 and P3 are implemented in C and

tested. Because of unavailability of test data due to novelty

of the problem and its formulation, a set of randomly gener-
ated data with controlled parameters were used as test cases

to show the e�ectiveness of the algorithm and applicability
of the approach. The results of experiments are shown in

Table 1. To simplify the comparison, the following settings

are made for all the test cases:
� jSj = 100 (S is set of memory elements).

� Balance factor b = 40 (each partition should contain at

least 40 memory elements).
� A single interval per NIS (complying with P2 instance).

� Factor a is set to 0 (a is the penalty factor for the total

size needed to express d in the problem instance

min-len careful partitioning random partitioning
t1+t2

T
(%)

t1+t2
T

(%)
min max avg min max avg

5 6.0 8.0 7.2 0.0 0.0 0.0

10 16.0 18.0 17.2 0.0 0.0 0.0

15 26 30 29 0.0 0.0 0.0

20 38 42 40 0.0 0.0 0.0

25 60 84 69 12 60 31

30 88 104 98 52 80 68

35 116 130 125 84 112 99

total 531.4 225

Comparison +%91.7 1

Table 1: Careful vs. random partitioning

number of switchings.)

� T = width of the time window = 50 (see Figure 4).

The parameter min-len shows the length of the shortest in-

terval in each problem instance. For each value of min-

len, 10 random inputs are generated and tested with the
algorithm. The minimum, maximum and average values for

the ratio t1+t2
T

resulted from our partitioning algorithm and

from a random partitioning algorithm are shown, where t1
and t2 are the exploitable sleep time of the partitions in

the resulting bi-partitioning. The higher this ratio is, the

more savings in power consumption would be if we place the
corresponding partitions in sleep mode. Note that if we do

not consider the idle times in a partitioning scheme (as it

has been done so far) the result is essentially equivalent to
a random partitioning. We observe that as the length of

the minimum idle times (min-len) is increased to cover the

whole time window, the results get closer. Note that since
the computation window has width T = 50, practical range

for min-len is 5 to 25. These cases are shown in bold face

in the �rst column in Table 1. In such cases, our algorithm
produces superior results compared with random partition-

ing.

10 Conclusion

In this paper we studied the memory segmentation problem

to exploit sleep mode operation for minimization of the av-
erage power consumption. The motivation is to de-activate

the memory refresh circuitry, apply power down or just dis-

able the clock signals during the inactive periods of operation
of memory unit. Since it is impractical to have a separate

set of control signals for each memory element, it is advis-

able to partition the memory elements with close activity
patterns together such that each partition of the memory

can be switched into sleep mode during the time intervals

all of its elements are idle. We formulated the problem and

showed that it is NP-complete. We also showed some spe-

cial classes of the problem which are solvable in polynomial

time. Experiments were conducted to show the e�ectiveness

and applicability of the presented algorithms. The results of

experiments show possibility of signi�cant savings in power

consumption if the sleep mode is exploited properly. Our

future research in this area would be at several fronts: 1)

improve the time complexity of the presented algorithms as

well as designing heuristic algorithms that exploit the ge-
ometric features of the problem to achieve good solutions,

2) study whether or not P1 can be formulated as a graph-
theoretic problem, and apply e�cient existing heuristics for

the graph-theoretic formulation (if one exists) to solve P1

in case of positive answer, 3) apply the existing heuristics
for MCP, e.g. Kernighan-Lin [7], Fiduccia-Matheyes [5],

Ratio-Cut [15], etc., to see how fast the can be implemented

for solving P1 and how well they perform, 4) classify the
designs for which the activity patterns could be generated

e�ciently, and in cases where such patterns may not be gen-

erated as a set of exact idle sets, study statistical approaches
that will generate some weighted version of the idle sets in

which the weights could represent the probabilities of being

idle during di�erent periods, and 5) ultimately, study the
more general problem of multi-way partitioning, in which

the algorithm should compute the optimal number of par-

titions as well as the contents of each partition. In such
a setting, the algorithm should take into account both the

number of partitions and the number of switchings for the

amount of overhead in power consumption, caused by the
extra control circuitry and switching the partitions into and

out of sleep mode, when computing the gain function, which

translates to the amount of savings in power consumption.

11 Acknowledgments

This work has been supported in part by the National Sci-

ence Foundation under grant MIP 9207267, and an IBM
PhD resident study program.

References

[1] In International Workshop on Low Power Design, April 1994.

[2] A. Chandrakasan et. al. \Optimizing Power Using Transformations". IEEE
Transactions on Computer Aided Design. Submitted, Dec. 1993.

[3] A. Chandrakasan et. al. \HYPER-LP: A System for Power Minimiza-
tion Using Architectural Transformations". In International Conference on
Computer-Aided Design. IEEE/ACM, 1992.

[4] A. H. Farrahi, G. T�ellez, and M. Sarrafzadeh. \Exploiting Sleep Mode
Through Activity-Driven Partitioning". Technical report, Northwestern
University, EECS Department, Evanston, IL, November 1994.

[5] C. M. Fiduccia and R. M. Mattheyes. \A Linear Time Heuristic for Improv-
ing Network Partitions". In Design Automation Conference, pages 175{181,
1982.

[6] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP{completeness. Freeman, 1979.

[7] B.W. Kernighan and S. Lin. \An Efficient Heuristic Procedure for Par-
titioning Graphs". Bell System Technical Journal, 49:291{307, Feburary
1970.

[8] R. Mehra and J. Rabaey. \Behavioral Level Power Estimation and Explo-
ration". In International Workshop on Low Power Design, pages 197{202.
IEEE/ACM, 1994.

[9] K. Roy and S. Prasad. \Circuit Activity Based Logic Synthesis for Low
Power Reliable Operations". IEEE Transactions on VLSI Systems, 1(4):503{
513, 1993.

[10] G. T�ellez, A. H. Farrahi, and M. Sarrafzadeh. \Activity-Driven Clock De-
sign for Low Power Circuits". Technical report, Northwestern University,
EECS Department, Evanston, IL, November 1994.

[11] V. Tiwari, P. Ashar, and S. Malik. \Technology Mapping for Low Power".
In Design Automation Conference, pages 74{79. ACM/IEEE, 1993.

[12] C. Tsui, M. Pedram, and A.M. Despain. \Technology Decomposition and
Mapping Targeting Low Power Dissipation". In Design Automation Confer-
ence, pages 68{73. ACM/IEEE, 1993.

[13] H. Vaishnav and M. Pedram. \A Performance Driven Placement Algorithm
for Low Power Designs". In EURO-DAC, 1993.

[14] H. J. M. Veendrick. \Short-circuit Dissipation of Static CMOS Circuitry
and its Impact on the Design of Buffer Circuits". Journal of Solid State
Circuits, pages 468{473, August 1984.

[15] Y. C. Wei and C. K. Cheng. \Ratio-Cut Partitioning for Hierachical De-
signs". IEEE Transactions on Computer Aided Design, 40(7):911{921, July
1991.

	DAC95
	Front Matter
	Table of Contents
	Session Index
	Author Index

