
Computing the Maximum Power Cycles of a Sequential Circuit �

Srilatha Manney Abelardo Pardoy R. Iris Bahary Gary D. Hachtely Fabio Somenziy Enrico Maciiz Massimo Poncinoz

y University of Colorado

Dept. of Electrical and Computer Engineering

Boulder, CO 80309

Politecnico di Torino
z Dip. di Automatica e Informatica

Torino, ITALY 10129

Abstract

This paper studies the problem of estimating worst case power

dissipation in a sequential circuit. We approach this problem

by �nding the maximum average weight cycles in a weighted

directed graph. In order to handle practical sized examples,

we use symbolic methods, based on Algebraic Decision Dia-

grams (ADDs), for computing the maximum average length

cycles as well as the number of gate transitions in the circuit,

which is necessary to construct the weighted directed graph.

1 Introduction

Designing integrated circuits for low power has become es-

sential in today's electronics industry. Besides developing

tools to automatically synthesize low-power devices, much

e�ort is currently being spent in developing accurate power

estimation tools to evaluate various circuit implementations.

The easiest approach to power estimation is the one based

on logic simulation. It is known that the average power dissi-

pated by a CMOS circuit is directly related to the capacitive

load of the network and to the number of voltage transi-

tions at the output of the gates. This number, also called

the switching activity factor of the network, can be com-

puted by exhaustively simulating the circuit. This method

requires the explicit enumeration of all the possible pairs

of input vectors, which is impractical for devices of regular

size and complexity. Taking computationally less expensive

approaches is therefore needed; in particular, the use of sym-

bolic techniques based on BDDs may be quite useful. Fol-

lowing this track, Devadas et al. [1] showed how to implicitly

compute the pair (x�; x) of consecutive primary input vec-

tors which gives rise to the worst-case power dissipation, P ,

for a combinational circuit. They assumed that

P = c � V 2
DD �N(x�; x)

N(x�; x) =
P

g
C
g

Load �N
g(x�; x);

(1)

where Ng(x�; x) is the total number of transitions of gate g

when primary input vector x� is followed by vector x, and

c is a constant scale factor. C
g

Load is determined by actual

gate capacitance, fanout counts, and wire lengths.

This paper extends the above mentioned method to the

case of sequential circuits by computing the maximum av-

erage power cycle, CMax, of the �nite state machine associ-

ated with a given implementation of a sequential network.

The average power dissipated in this cycle is the sum of the

power dissipated in each transition, divided by the topo-

�This work is supported in part by NSF/DARPA grant MIP-

9115432 and SRC contract 94-DJ-560.

logical length of the cycle. This represents the maximum

sustained power that the sequential circuit may dissipate.

Our approach features symbolic processing based on Al-

gebraic Decision Diagrams (ADDs) [2, 3] throughout the

computation. ADDs are used to compute and store the

matrix N(x�; x) of the number of transitions in the whole

circuit whenever input vectors x� and x are applied con-

secutively. Furthermore, ADDs are used to represent the

weighted edges of a dual graph GD, derived from the state

transition graph (STG) of the circuit, and used to determine

the maximum power cycle.

Given directed STG G = (S;E), the maximum power

cycle computation can be shown as follows.

1. Compute the transition count functions Ng(x�; x) for all

gates g in the circuit. Our method solves a problem quite

similar to the one presented by Devadas et al. [1]. How-

ever, our procedure is novel in that it uses ADDs instead

of timed boolean functions. Furthermore, the quantities

computed are of more general interest.

2. Construct a dual graph GD = (SD; ED; (WD; LD)) de-

rived from G, which has a vertex s 2 SD for each edge

(s; t) 2 E of G. Each edge (u; v) 2 ED is labeled with

weight WD(u; v) equal to the power dissipation obtained

from Equation 1, and length LD(u; v), initially set to 1.

3. Find the maximum average cycles of GD. That is, the

cycles of greatest average edge length using an exact al-

gorithm [4] and iterative squaring [5].

4. Find a single maximum average cycle of GD using a sym-

bolic variant of the single-source shortest path technique

given in [4].

The bulk of the paper will be devoted to symbolic ADD-

based methods for computing transition counts (Section 2),

constructing the dual graph (Section 3), and �nding the max-

imum average cycles in this graph (Section 4). Section 5

is dedicated to symbolic processing considerations to im-

prove execution times. Section 6 shows experimental results

and Section 7 discusses conclusions and directions for future

work.

2 Symbolic Transition Count Computation

The procedure to obtain the number of transitions at the out-

put of each gate will be similar to the one proposed in [1] but

completely symbolic by using ADD technology. After this

phase, a matrix N(r; x�; s; x) is obtained representing the

number of gate transitions produced in the circuit when �rst

setting the state lines and the inputs to the vector (r; x�), let

the circuit reach a steady state and then apply the new vector

32nd ACM/IEEE Design Automation Conference
Permission to copy without fee all or part of this material is granted, provided that the copies are not made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. 1995 ACM 0-89791-756-1/95/0006 $3.50

(s; x). Following the approach taken in [6] on the computa-

tion of arrival time ADDs, we �rst constructed ADDs which

represented all the transition times for each gate. Consider

a combinational two-input circuit with gate g as the active

gate in the process of computing the transition counts. Fig-

ure 1 shows an ADD fragment representing the transitions

of gate g for primary input pairs (10; 00) and (10; 01). Given

the delay of the gate, the output behavior is represented by

a voltage waveform with an arbitrary number of transitions.

Our strategy is to store the time interval between transitions

as terminal values of the transition count ADDs. In the �g-

ure, the edges marked with circles denote the negative phase

of the ADD node variable. Suppose UB is some upper bound

on the number of possible transitions that may occur at any

gate. We append q = log2UB new logic variables h1; : : : ; hq
to (x�; x), to order the transitions of gate g. The bottom

part of the ADD is just a binary representation of a linear

list of numbers.

0 5 15 25

10 00

10 01

x1

g

...

x1-

...

...

x2

h1h1

h2 h2

5 10

8

x2-

Figure 1: ADD Representation of Transition Times.

The top part of the ADD (in the �gure encoded by the

variables x�1 ; x
�
2 ; x1; x2) represents the previous and current

input vector pair for the gate g, while the bottom part of the

ADD (encoded by the variables h1; h2) represents the time

intervals for the transitions in the voltage waveform seen at

the output of the gate. The �gure shows how recombination

is more likely to occur when storing only the time di�erence

between output transitions instead of the absolute times.

In the current implementation a unit delay timing model is

assumed, however, our method can easily be extended for

non-unit delay.

The basic idea of the ADD-based symbolic transition

simulation is as follows: We �rst construct BDDs giving the

functional boolean values, yg(x), for each gate g. Next, we

process each gate in topological order from primary inputs

to outputs. For each gate g, we proceed by recursive descent

through the ADDs for the transition times of the fanin gates

fj of gate g. For each fj we extract a list of events repre-

sented by the bottom part of the ADD (variables h1; : : : ; hq).

We then traverse these event lists and with the delay and the

boolean equation of g determine the transition events at the

output. Thus, an event list for g is obtained, and an ADD

constructed for the event list. When we are �nished using a

given transition count ADD for simulating its fanout gates,

the ADD may be deleted (after storing its minterm count).

When the last gate has been processed, we have the transi-

tion count ADD for N(r; x�; s; x).

T

x

r s t

x-
r s t

x- x

Figure 2: N(r; x�; s; x) Measures the Transitions in T .

This approach symbolically explores all possible combi-

nations in the input and state signals of the circuit; however,

in the case of sequential circuits, we need to account for the

fact that not all states are reachable. More precisely once r

and x
� are speci�ed, s is determined by the transition rela-

tion of the given FSM. Figure 2 shows how each combination

is composed of a state combination and a primary input com-

bination. Our approach to account only for legal transitions

is to carry along BDDs for R(r), R(s), and T (r; x; s). Here

R(r) represents the set of reachable states, and T (r; x; s) is

the transition relation. As the recursive ADD cofactoring

proceeds in the above algorithm for ADD processing, we co-

factor the BDDs for R(r), R(s), and T (r; x; s). When any

of these three BDDs evaluates to 0, we no longer proceed in

the computation since the set of input and state variables is

not part of the behavior of the system.

3 Deriving the Dual Graph

Suppose we are given an STG G = (S;E), with set of initial

states S0, and transition relation T (r; x; s) = f0; 1g de�ned

as T (r; x; s) = 1 if the circuit goes from state r to state s

with input combination x, and suppose that only the states

in the set denoted by R(s) � S are reachable from the states

in S
0. Suppose we are also given a transition count func-

tion N(r; x�; s; x), meaning that if we go from state r and

inputs x� to state s with inputs x, the circuit goes through

N(r; x�; s; x) gate transitions. As previously stated, we seek

to �nd the maximum average power cycle of the circuit, that

is, the sequence of states/inputs that causes the greatest av-

erage number of transitions.

Toward this end we de�ne a weighted dual graph GD =

(VD; ED; (WD; LD)), which has a vertex v 2 VD for each

edge (r; x; s) 2 E of G. (Note that s is uniquely determined

by r and x, and therefore may be omitted in the description

of a vertex.) There is an edge (u; v) 2 ED if there are suc-

cessive transitions T (r; x�; s) and T (s; x; t) for some state

t in G, where u = (r; x�) and v = (s; x). Note that each

edge (u; v) of GD is uniquely associated with a transition

count WD(u; v) = N(r; x�; s; x), since each such edge has

its own triple (r; x�; x). It follows that the dual graph has

the property that the path of maximum average length in

GD is in one-to-one correspondence with the maximum av-

erage power cycle in G. The the dual graph GD is large: It

has 2q2i vertices and 2q22i edges, where q is the number of

latches and i is the number of primary inputs. It is therefore

advantageous to manipulate a symbolic, rather than explicit,

representation of GD.

Given S
0, T (r; x; s), R(r), and N(r; x�; s; x), the dual

graph can be built as follows. We �rst compute the set of all

reachable vertices VD:

VD(u) = VD(r; x
�
) = R(r) � 9sT (r; x

�
; s): (2)

The edges of the dual graph are labeled by the functions

L
1
D(u; v) = R(r) � T (r; x�; s) � VD(s; x);

W
1
D(u; v) = N(r; x�; s; x) � L1

D(r; x
�
; s; x):

(3)

(Multiplying by VD(s; x) in the computation of L1
D(u; v) is

actually redundant, as long as the next state function is com-

plete.) In practice we store a pair of constants W;L at each

terminal node of the single ADD representing this pair of

functions. However, it will be convenient to refer in the se-

quel to separate functions WD(u; v) and LD(u; v).

1/0(1)0/0(2)

0/1(4)

1/1(3)

1/0(5)

1/1(8)

0/0(7)0/1(6)

R
00

B

01

A

10

C

10

1

2

3

456

7

8

8

3

36

8 11

9

11

6
3

9
38

7

40

Figure 3: Construction of the Dual Graph.

Here the initial topological edge relation ADD L
1
D(u; v)

has just two terminal nodes � and 1, where � = �1 is the

appropriate idempotent background value for longest path

computations [2]. Similarly, when T (x; s; t) = 0, we have

W
1
D(u; v) = �, else W 1

D(u; v) = N(r; x�; s; x).

Note that in computation, we convert the BDD T (s; x; t)

into an ADD, so the indicated multiplication represents a

term-wise ADD apply operation [2]. Note also thatN(u; v) =

0, always. Figure 3 depicts a STG and its correspondent dual

graph. The labels in parentheses in the edges of the origi-

nal STG correspond to the labels of the nodes in the dual

graph. The labels in the edges of the dual graph represent

the number of transitions in the circuit.

4 The Longest Average Length Cycle

The output of the dual graph calculation is a directed graph

GD = (VD; ED;WD), whereWD(u; v) is the transition count

weight associated with edge (u; v) 2 E. If an edge doesn't

exist between two nodes, the weight of the edge weight de-

faults to a background value of � = �1. The length and

the weight of a path between 2 vertices (u1; ui) is de�ned

to be the sum of the lengths and weights of the edges tra-

versed to reach ui from u1. In other words, for some path p

from (u1; ui), which contains edges e1; e2; : : : ; e(i�1),W (p) =Pi�1

j=1
WD(ei) and avg(p) =

W (p)

i�1
. If a path p starts and

ends at the same node, it is de�ned to be a cycle, and a

cycle of maximum average weight is

CMax = maxC2GDavg(W (C)); (4)

for every cycle C in GD.

The maximum average cycle, CMax is the cycle in GD

which, over the lifetime of the machine, dissipates the most

power. GD is assumed to consist of a single, strongly con-

nected component, although the algorithm below can be used

for graphs with multiple strongly connected components. As

stated in [4], each strongly connected component can be eval-

uated separately for CMax, and the maximum of the di�er-

ent CMax values is the true maximum average cycle. We

now describe two approaches for computing or estimating

CMax.

Karp's Algorithm. In [4], Karp proposed an algorithm

for calculating the minimum average edge weight cycle in a

weighted digraph. This algorithm is easily modi�ed to calcu-

late the maximum edge weight cycle to produce CMax. The

algorithm is simply stated as follows. Let s be an arbitrary

source vertex, and let Fk(v) be the weight of the longest

weighted path from v0 to v. We de�ne F0(v) = �; 8v 6= s

and F0(s)=0. Then we let

Fk(v) = max
(u;v)2E

(Fk�1(u) +WD(u; v)): (5)

Karp has proved that

CMax = max
v2VD

min
0�k�n�1

Fn(v)� Fk(v)

n� k
; (6)

where n = jV j. Once the maximizing v and k in (6) has been

determined, an actual cycle yielding the maximum average

weight can be determined by (1) �nding a length-nmaximum

weight path �(s; v) from s to v, and (2) extracting a terminal

cycle of length n � k occurring within �(s; v). An example

graph is given in Figure 4 The digraph at the left of the

Figure 4: Maximum Average Length Cycle Computation.

�gure has n = jV j = 4 vertices and jEj = 6 weighted edges,

withWD(2; 1) = 0, corresponding to a state-transition in the

original state diagram which causes no gate transitions. The

column vector iterates Fk(v); v = 0; 1; : : : ; n are shown at

the right. Equation 5 then gives

CMax = max
v2VD

min
0�k�n�1

2
64

5 1 1 7

0 0 �1 �1

1 13
3

3 1

1 1 13
3

1

3
75

= max
v2VD

2
64

5

1

3
13
3

3
75 = 5 (7)

Here the row maximizer was vertex 1, and the minimizer in

row 1 was k = n = 4. A longest path search from vertex

1 to vertex 4 identi�es the MPC as the Hamiltonian cycle

CMax = (1; 2; 3; 4; 1) with maximum average length 5, given

by a path of weight 20 and topological length 4, denoted in

the sequel as 20=4.

Because Karp's algorithm does O(jEj) length update op-

erations for each of the jV j vertices in the graph, it has a

worst case complexity of O(jV j � jEj). Unfortunately, al-

though symbolic computations can overcome (in principle)

the O(E) factor through ADD recombination, jV j iterations

must be done to get an exact answer, so Karp's algorithm

grows too expensive for combinatorically large graphs. Note

there is a non-background value in row v, column k if and

only if there is a path of length k and weight Fk(v) from s to

v. If n is large and other are many small cycles, we expect

the path length matrix to be asymptotically full. Note also

(row 3 in the example) that not all the row minimums cor-

respond to actual cycles or even to actual paths. This adds

some complication to obtaining a lower bound in the case in

which n is too large to complete the whole algorithm.

Iterative Squaring. To get around the requirement of n

iterations, an iterative squaring algorithm was developed.

Although this algorithm has been already tried in several

contexts by others, sometimes with limited success, it at

least has the virtue of looking at long cycles quickly. In

this algorithm we triangulate each edge by computing the

longest average length 2-path in parallel to the edge, storing

both the total weight and topological length of the 2-path.

The longest average weight 2 path replaces the original edge

if its average weight exceeds the weight of the original edge.

For the example of Figure 4, 2 steps of iterative squaring

is ordinarily though to su�ce, and we give the results for the

two steps:

W
1
D

L1
D

=

�
13
2

8 5

0 �
8
2

5
2

5
2

5 � �
8
2

8 10 �

W
2
D

L2
D

=

13
3

13
2

8 5
13
4

13
3

15
3

5
2

5
2

5 13
3

10
3

15
3

8 10 13
3

(8)

It can be observed that after 2 steps of iterative squaring the

inferior (1; 3; 2; 1) cycle with average 13=3 is on the diagonal

instead of the expected Hamiltonian cycle 20=5 > 13=3. This

disproves our former conjecture that after k steps of itera-

tive squaring, Ak
u;v =W

k
u;v=L

k
u;v gives the maximum average

length of a path from u to v of topological length Lku;v � 2k.

However it should be noted that if iterative squaring is

continued beyond log2(n) steps, the o�-diagonal elements of-

ten continue to grow or shrink until they reach the value of

the true MPC, because the paths from u to v continue to

be \pumped" through the maximum average cycle. In the

present case, we note that a third iteration will produce the

correct answer of 20=4 = 5 on each of the diagonal elements.

We therefore continue the iterations until the diagonal ele-

ments reach a �xed point.

>From a computational standpoint the iterative squaring

process is analogous to matrix multiplication with weighted

sum replacing the � operation, and max replacing the +

operation. Thus iterative squaring explores cycles of all pos-

sible lengths in d(log2 n)e iterations, where n is the number

of states in the reached set of the dual graph. Unfortunately,

as the above example demonstrates, average path lengths ag-

gregate in an unfavorable way. In fact,

(a=b) > (c=d) 6) (a+ e)=(b+ f) � (c+ e)=(d+ f): (9)

In our example, we saw that although (5 + 10)=(1 + 1) <

(8=1), nevertheless (20=3) = (5 + 10 + 5)=(1 + 1 + 1) >

(8 + 5)=(1 + 1) = (13=2).

Another drawback of iterative squaring is that each iter-

ation requires a matrix multiplication procedure which has

a complexity of O(n3). Therefore, worst case running time,

discounting recombination in the symbolic algorithm, for cal-

culating CMax is O(d(log2 n)e�n
3), compared to O(njEj) =

O(n3) for Karp's method.

Algorithm Comparison. Karp's algorithm has the un-

equivocal advantage of guaranteeing computation of the ex-

act maximum average cycle for the dual graph speci�ed. In

contrast, as far as we know, iterative squaring only gives a

lower bound.

However, iterative squaring has the advantage of a clearer

interpretation of intermediate results, since we do not yet

know quite what to do in cases where we cannot complete

all n Karp steps. Further, iterative squaring has the relative

advantage of early checking of long paths, and the backtrack-

ing algorithm for �nding the actual longest average cycles is

more straightforward. Further, although Karp's algorithm

is cheaper per iteration by worst case complexity measure,

the implementation of iterative squaring as matrix multipli-

cation using symbolic algorithms, can be arbitrarily cheaper

than n3, for circuits which lead to high recombination in the

ADDs for the dual graph.

5 Binning

The dual graph for many of the circuits has a large transi-

tion matrix of 228 elements or more. Even with a gigabyte of

memory, it cannot be represented using full matrix methods.

The ADD representation of matrices, due to recombination,

produces compact structures which require less memory but

more processing time. Therefore, a two-tier binning method

was developed to increase recombination and reduce execu-

tion times without signi�cantly jeopardizing accuracy.

Recombination in ADDs occurs when there are adjacent

terms in the matrix with the same value. The binning strat-

egy attempts to increase recombination by reducing the num-

ber of unique constants in the matrix. The two-tier approach

takes advantage of the fact that, in general, a maximum

average power cycle contains large weighted edges. There-

fore, our binning algorithm introduces a large error on small

weighted edges and a small error on the larger weighted

edges. For example, in Figure 5 all edge weights under the

break point value (Br) of 100 will be binned into values of

0, 50 or 100, depending on which bin has the smallest value

exceeding the current edge weight. Subsequently, all edge

weights greater than Br will be allocated to bins of value

100, 105, 110 : : : 135. EM and Em are the errors introduced

in the MaxBin and the MinBin Range, respectively. For

the example in Figure 5, EM=49 and Em=4. In the cur-

rent implementation, binning is performed on the weighted,

adjacency matrix used in Karp to produce the paths Fk(v).

Break Point

Binned Edge Weight

Number
 of
Edges

MaxBin
Range

MinBin
Range

= 100

105 115 125 1350 50

Figure 5: Two-Tier Binning Strategy.

The worst case error for the �nal, binned solution S to

the Cmax problem is as follows.

ES =
n � Em + (Sl � n) � EM

Sl
; n =

l
Sw � Sl � Br

Mw � Br

m
; (10)

where ES is the error for the max power cycle and Sl and Sw
are the topological length and weight of the Cmax solution.

n is the minimum number of edges in the MinBin Range,

i.e., the number of edges with the minimum error. Ideally,

n should be equal to Sl to minimize the error in the �nal

solution.

Based on the ES calculated using Equation 10, a range

Rmax is produced for the solution to the Cmax calculation.

It can be proven that the true Maximum Power Cycle Cmax

is within the range Rmax. Since we are binning up the edge

values in both ranges, the solution S produced by the binned

Cmax calculation is an upper bound on Cmax. The Minimum

bound on Cmax is Smin = S� ES.

6 Experimental Results

The experimental results presented in this sections were ob-

tained using a DEC 7000 Model 610 AXP with 1GB of mem-

ory. Table 1 shows the computational time spent in the logic

simulation and power estimation of various sequential cir-

cuits. Column labeled Gates shows the implementation of

the circuit in terms of unit delay gates. Execution time is in

CPU seconds. The algorithm is able to handle any number

of inputs per gate, as well as non-unit delay models. Label

SD is used for the column describing the number of states

in the dual graph GD. The column labeled Depth refers to

the depth of the circuit. The maximum number of transi-

tions in a certain gate is a function of circuit depth; hence

this parameter is used to compute the number of ADD vari-

ables necessary to encode the list of transitions. Note that

simulation time is not necessarily proportional to the num-

ber of gates. For example, the time required to run s208 is

signi�cantly less than the time required to run mm3, while

the number of gates is approximately the same. This is true

even though s208 has almost twice the number of primary

inputs as mm3.

Ckt PI/FF Gates Depth Time SD

arbiter4 4/8 37 10 14.57 1024

arbiter6 6/12 57 16 628.72 24576

mm2 5/6 98 20 6.29 768

mm3 6/9 143 23 363.96 8192

ex1 9/5 462 8 594.43 10240

s208 11/8 100 16 48.91 34816

s27 4/3 12 5 0.39 96

s298 3/14 141 10 67.43 1744

s386 7/6 203 10 311.40 1664

dk16 2/5 458 8 18.02 108

Table 1: Computation of matrix N(r; x�; s; x).

Tables 2, 3, 4 show the results for exact, upper bound,

and lower bound computations, respectively, for the circuits

described in Table 1. For all the tables, Wm refers to the

maximum edge weight in the the dual Graph GD. This is the

value expressed as the combinational solution to the MPC

problem. Note that in all cases, the �nal solution is signif-

icantly smaller than the combinational solution. Therefore,

the combinational solution provides an extremely pessimistic

approximation to the MPC problem. In Table 4, the column

labeled Ic/Im refers to the number of iterations completed

versus the maximum number of iterations possible using the

iterative squaring algorithm. Hence, the solution produced

by iterative squaring only considers cycles up to topological

length 2Ic . Finally, Table 3 provides a bounded solution to

the Cmax problem by using binning. Bm, BM , and Br refer

to the minimum bin value, maximum bin value and break

point. and ES is the maximum error produced by binning.

Smin and S are the lower and upper bound, respectively, for

the �nal MPC solution. All T ime values are expressed in

CPU seconds.

Table 2 provides exact solutions to some problems, but

due to the large size of GD and the complexity of Karp's

algorithm, the size of the problems solved is relatively small.

Binning reduces the execution time for the larger problems

so that they may be completed given the memory resources.

For example, s298 produces an exact solution in 1527 CPU

seconds, while the binned version completed in 606 CPU sec-

onds with an error of 18. Sometimes binning can introduce

a very large error such as that produced for mm3. For these

cases, the lower bound solution found using iterative squar-

ing may be used to shrink the solution bounds. The lower

bound found for mm3 is 149, which, when combined with the

binned solution, produces a �nal, bounded solution range of

[149, 253.33].

7 Conclusions

We have presented a new ADD-based algorithm for tran-

sition simulation. The number of transitions obtained are

used to label a dual graph derived from the original STG of

the circuit. We have presented also two symbolic algorithms

to solve the longest average length cycle. One of them is the

symbolic version of the algorithm proposed by Karp, and,

Name Bm/BM/Br/WM Sol ES Smin : S Time

s27 1/5/15/21 30/2 4 11 : 15 2.65

dk16 5/50/150/295 1537/7 23.29 196.29 : 219.57 2.86

arbiter4 1/8/16/34 86/4 3.5 18 : 21.5 88.46

arbiter6 5/40/40/52 255/6 33.17 9.33 : 42.5 11129.03

mm3 20/200/200/379 760/3 139 114.33 : 253.33 4928.83

s298 5/25/50/114 690/10 18 51 : 69 606.75

s386 5/50/150/215 350/2 26.5 148.5 : 175 3192.18

Table 3: Upper Bound Results.

Name WM Sol Time

arbiter4 34 86/4=21.5 118.55

dk16 295 2346/11=213.27 3.12

mm2 175 274/3=91.33 143.59

s27 21 27/2=13.5 2.66

s298 114 632/10=63.2 1527.01

Table 2: Exact Cmax Results.

Name WM Ic=Im Sol Time

s27 21 4/7 27/2=13.5 10.59

dk16 295 7/7 2346/11=213.27 108.11

s208 100 1/16 48/2=24 3093.44

s298 114 11/11 334/10=33.4 146.98

s386 215 2/11 248/2=124 1527.25

arbiter4 34 4/10 78/4=19.5 663.25

mm3 379 1/13 298/2=149 143.90

Table 4: Lower Bound Results.

when it can complete n = jV j iterations, provides an exact

solution to the problem. The second one, also symbolic, is

based on an iterative squaring scheme and provides a sub-

optimal lower bound on the true solution. We have explored

the tradeo� between execution time and accuracy of the so-

lution by means of a binning strategy in the values labeling

the edges of the graph. Our experiments have succeeded in

cases beyond the ability of conventional full-matrix or sparse

matrix methods. For example, circuit s208 has a dual graph

with 34816 vertices and more than 71 million edges. Since

the computation needs two matrices to be stored at the same

time, the memory requirements exceed 1 gigabyte. In this

particular example, our algorithms were able to provide cer-

tain bounds for the solution.

Currently there are several lines of research that are be-

ing explored. In order to improve the memory requirements

we are considering two options. On one hand we are measur-

ing the e�ect of dynamic reordering of the variables in the

ADDs in the memory requirements. Furthermore we have

some preliminary experiments using Edge Value BDDs [7]

that shows a reduction in the data size with respect to ADDs.

With regard to time e�ciency, we are exploring di�erent

ways to provide upper bounds in the computation. One ap-

proach consists of replacing all edge weights on edges leaving

a given node with the largest of them. A second approach

consists of partitioning the circuit as in [8, 9], which involves

tearing some primary input or present variables.

Acknowledgements

We thank Robert Brayton and Dirk Grunwald for their sup-

port in the experiments and Randall Bryant for providing a

counter example for the iterative squaring algorithm.

References

[1] S. Devadas, K. Keutzer, and J. White, \Estimation of power dis-

sipation in CMOS combinational circuits using boolean function

manipulation," IEEE Transactions on Computer-Aided Design,

vol. 11, pp. 373{383, Mar. 1992.

[2] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii,

A. Pardo, and F. Somenzi, \Algebraic decision diagrams and their

applications," in Proceedings of the International Conference on

Computer-Aided Design, (Santa Clara, CA), pp. 188{191, Nov.

1993.

[3] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii,

A. Pardo, and F. Somenzi, \Algebraic decision diagrams and their

applications," Journal of Formal Methods in Systems Design,

1994. to appear.

[4] R. M. Karp, \A characterization of the minimum cycle mean of a

digraph," Discrete Mathematics, vol. 23, pp. 309{311, 1978.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, An Introduction

to Algorithms. New York: McGraw-Hill, 1990.

[6] R. I. Bahar, H. Cho, G. D. Hachtel, E. Macii, and F. Somenzi,

\Timing analysis of combinational circuits using ADD's," in Pro-

ceedings of the European Conference on Design Automation,

(Paris, France), pp. 625{629, Feb. 1994.

[7] Y.-T. Lai, M. Pedram, and S. B. K. Vrudhula, \FGILP: An integer

linear program solver based on function graphs," in Proceedings of

the International Conference on Computer-Aided Design, (Santa

Clara, CA), pp. 685{689, Nov. 1993.

[8] H. Cho, G. D. Hachtel, E. Macii, M. Poncino, and F. Somenzi, \A

state space decomposition algorithm for approximate FSM traver-

sal," in Proceedings of the European Conference on Design Au-

tomation, (Paris, France), pp. 137{141, Feb. 1994.

[9] H. Cho, G. D. Hachtel, E. Macii, M. Poncino, and F. Somenzi,

\A structural approach to state space decomposition for approx-

imate reachability analysis," in Proceedings of the International

Conference on Computer Design, (Cambridge, MA), pp. 236{239,

Oct. 1994.

	DAC95
	Front Matter
	Table of Contents
	Session Index
	Author Index

