
A Fast and Flexible Performance Simulator for
Micro-Architecture Trade-off Analysis on

UltraSPARCTM -I
Marc Tremblay, Guillermo Maturana, Atsushi Inoue and Les Kohn

SPARC Technology, Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, CA 94043

Abstract - Over one hundred micro-architecture features were
analyzed and simulated in order to determine if they should be
included in UltraSPARC-I. A fast and flexible performance sim-
ulator was developed in order to model these features. In this
paper, we describe UPS (UltraSPARC-I Performance Simula-
tor), and show how it was used to do trade-off analysis.

I. INTRODUCTION AND MOTIVATION

Advances in process technology have resulted in the avail-
ability of a large transistor budget for the current generation of
superscalar RISC processors. UltraSPARC-I, a 64-bit 4-way
superscalar processor developed by Sun’s SPARC Technol-
ogy, makes use of over five million transistors in order to
deliver performance three to five times faster than the previ-
ous generation[1][2][3][4].

The large number of transistors available allows many of
the latest micro-architecture advances to be implemented on-
chip. On UltraSPARC-I, there are over 100 micro-architecture
features influencing the performance of the processor. Each
single feature must be analyzed carefully so that its inclusion
is quantitatively justified. The gain in performance must be
weighed against:

• cycle time

• die size

• design time

The complexity of these features as well as their inter-
dependency makes it challenging for architects to evaluate
their effectiveness. In most cases, an accurate simulation of a
feature in the context of the whole processor is the only way
to quantify its impact. Traditionally, some features, for exam-
ple, the size of internal caches, could be simulated on a simple
cache simulator and results could be applied to a simple ana-
lytical performance model. That is no longer the case for high
performance processors such as UltraSPARC-I. Non-blocking
caches mandate that caches be simulated along with the rest of
the processor since the miss latency may possibly be covered

(at least partially) by executing other independent instruc-
tions. Also, because of the inter-dependency between the vari-
ous features, it becomes important to be able to “tweak” a few
features simultaneously, so that the global impact can be mea-
sured.

This paper describes the methodology that we used for per-
formance trade-off analysis for UltraSPARC-I. We first briefly
describe the architecture of UltraSPARC-I in Section II. The
performance simulator is covered in Section III.and
Section IV. Examples of architecture trade-off analysis are
described in Section V.

II. OVERVIEW OF ULTRASPARC-I

UltraSPARC-I is a high-performance, highly integrated
superscalar processor implementing the SPARC V9 64-bit
RISC architecture[5]. UltraSPARC-I can execute four instruc-
tions per cycle even in the presence of conditional branches
and cache misses. This is mainly due to the de-coupled aspect
of the units feeding instructions and data to the rest of the
pipeline. Instructions predicted to be executed are issued in
program order to multiple functional units, execute in parallel,
and can complete out of order.

The instruction set includes several graphics instructions
that provide the most common operations related to two-
dimensional image processing, two and three-dimensional
graphics, and image compression algorithms.

UltraSPARC-I is decomposed into 8 functional blocks (Fig-
ure 1): Prefetch and Dispatch Unit (PDU), Integer Execution
Unit (IEU), Floating-point/Graphics Unit (FGU), Load/Store
Unit (LSU), Instruction and Data Memory Management Units
(IMMU and DMMU), External Cache Unit (ECU), and the
System Interface Unit (SIU). An UltraSPARC-I module typi-
cally contains the processor, some external cache RAMs, and
two custom data buffer chips.

The PDU presents a stream of instructions to the IEU and
FGU through a 12 entry instruction buffer. Instructions are
fetched from a 2-way pseudo set associative 16K instruction
cache in a pipelined manner. Dynamic branch prediction
allows the PDU to efficiently fetch instructions across condi-
tional branches. Misses in the instruction cache are forwarded
to the ECU.

32nd ACM/IEEE Design Automation Conference 
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.  1995 ACM 0-89791-756-1/95/0006 $3.50

The IEU groups and dispatches up to four instructions from
the instruction buffer. The IEU features two ALU pipelines,
one load/store pipeline, one branch pipeline, and a windowed
register file. A non-pipelined early-out multi-cycle integer
multiplier and integer divider are also part of the IEU. Float-
ing-point and Graphic instructions are sent to the FGU and
load/store instructions are sent to the LSU to be executed. The
IMMU’s and the DMMU’s primary task is to provide a physi-
cal address from the virtual address provided by the Program
Counter (PC) and the virtual address adder respectively.

The FGU contains three floating-point units, 2 graphics
units, a completion unit, and a register file. All floating-point
and graphics instructions [6] (except for divide and square
root), have a one to three cycle latency and are fully pipelined,
allowing the issuance of two floating-point graphics instruc-
tions per cycle. The completion unit allows divide and square
root instructions to complete out of order with respect to other
floating-point and graphics instructions.

The LSU contains an 8 entry store buffer, and 9 entry load
buffer, and a direct mapped write-through 16K data cache.
The store and load buffers provide for non-blocking stores and
loads. They complete out of order with respect to other
instructions in the execution pipelines. A load miss doesn’t
stall the execution pipelines until a dependent instruction is
dispatched. Memory references that miss in the data cache are
forwarded to the ECU.

The ECU contains a 2nd-level cache controller supporting
512K to 4Meg of external cache and a bus interface unit. It
supports fully pipelined, single cycle accesses to the external
cache. A MOESI (modified, owned, exclusive, shared,
invalid) protocol is used to maintain coherency across the sys-
tem.

Prefetch/Dispatch

I EU

FGU

Graphics add

Grouping

Integer Reg

FP
reg

FP multiply

FP add

FP divide

Load/Store Unit
Data Cache

Load Buffer Store Buffer

External Cache Unit

IMMU

System

System

DMMUInstruction Cache

IBuffer

ALU0

ALU1

Graphics multiply

Interface
External
Cache
RAM

Interconnect

Figure 1: UltraSPARC-I Block diagram

III. U LTRASPARC-I PERFORMANCESIMULATOR (UPS)

The UltraSPARC-I Performance Simulator (UPS) consists
of approximately 45,000 lines of C code. It is a trace driven
simulator which takes a “shade” [7] trace as input and gener-
ates several files based on the processor model being simu-
lated. Among others, the following files are generated:

• Statistics file: all statistics related to micro-architecture
features are gathered in this file.

• Data references trace file: all activity related to loads,
stores, writebacks, and snoops is traced in this file.

• Execution trace file: the progress of all instructions is
graphically represented in this file. For each cycle, it
shows which instructions are dispatched and which
instructions have reached subsequent stages in the pipe-
line.

• Instruction buffer file: all activity regarding instruction
fetching, branch prediction, branch target prediction,
instruction buffer utilization, etc. is traced in this file.

All “trace” files generate their output for a specified cycle
range or for a specified function call. This effectively provides
observability to hot regions that architects may want to ana-
lyze.

A buffer containing a list of sequentially executed instruc-
tions, the effective address of memory operations, and the
direction taken by branches, forms the link between the trace
generator and UPS. From this information, UPS can fully sim-
ulate a processor without generating all data information (e.g.
there is no need to generate 64-bit multiplications/divides,
etc.).

Several C modules partitioned along the same way as the
block diagram in Figure 1, simulate each part of the processor
and interact with each other through simple data structures.
This partitioning allows several designers to work on the sim-
ulator in parallel.

UPS is able to simulate around 6200 instructions/sec on a
60 MHz SPARCStation 20. At this speed UPS is fast enough
to simulate some of the SPEC92 benchmarks. For some of the
larger benchmarks, such as 013.spice2g6, which execute more
than 15 billion instructions, the simulation latency is in the
order of a month. Since the main goal of UPS is to do trade-
off analysis and make quick design decisions, such a long
latency is unacceptable (notice that this latency may be fine
for final performance prediction). For this reason we use a
sampling methodology [8], which speeds up simulation by
over 300 times, bringing the simulation time down to 2 1/2
hours on a single machine for the longest SPEC92 bench-
marks. Samples can also be distributed across machines,
speeding up simulation time even more. The same methodol-
ogy was used for simulating real world applications such as
database programs, Verilog, Synopsys, VCS from Chrono-
logic, Hspice, and others.

IV. EVENTS MEASURED

In order to be effective, the performance simulator must
report numerous statistics enabling the measurement of the
impact of each feature. UPS keeps track of the following
events (among others):

• All possible combination of data and control dependences
(e.g. add-to-shift, load-to-fmul, etc.)

• All resource conflicts (e.g. running out-of-ALUs or having
more than 2 floating-point instructions to dispatch when
only 2 FP units are available, etc.)

• All cache effects. This includes stalls due to instruction
cache misses, data cache misses, external cache misses.
All important cache statistics are monitored including
writebacks and displaced blocks.

• All TLB effects, including the average number of cycles
spent in the TLB miss handler.

• Branch prediction statistics.

• Load buffer statistics.

• Store buffer information, including the effectiveness of
store compression.

• Dynamic instruction mix.

• External cache bus arbitration/utilization.

The statistics file is processed by a Perl script which com-
bines information across samples and arranges it in a format
appropriate for a spreadsheet. Graphical information is then
generated from the statistics.

V. ARCHITECTURE TRADE-OFF ANALYSIS

One of the main goals for UPS was to offer enough flexibil-
ity for architects to be able to evaluate hundreds of variations
of the micro-architecture features. Examples of the parameters
that can be specified at compile time are:

• Scalarity (width) of the superscalar processor

• Pipeline depth and bypass restrictions

• Functional units: how many and what kind (ALUs, shifter,
loads, stores, FPadd, FPmul, FPdiv, FPsqrt, etc.)

• Cache organization: size, associativity, line size,
writethrough, writeback, replacement algorithm, levels,
latency, throughput, etc.

• TLB: size, associativity, page size

• Depth of store buffer, load buffer, instruction buffer

• Bus widths

• Main memory latency

• Floating-point operations: latency and throughput.

By adjusting these parameters and by comparing different
runs of the simulator, micro-architecture trade-off analysis can
be conducted effectively. We discuss some examples in the
following subsections.

A. Scalarity Study

One of the main characteristics influencing performance is
the scalarity of the processor. In Figure 2, we show an exam-
ple on how the scalarity and the number of ALUs influence
the SPECint92 CPI. Each column is labeled SX.Y where X is
the scalarity and Y is the number of ALUs. Even though we
used binaries compiled for a uni-scalar processor for this
experiment, which do not fully take advantage of the addi-
tional functional units, the following conclusions can still be
drawn from the graph:

• The combination (ALU, load/store, branch) is not common
(S3.1 does not perform significantly better than S2.1).

• A 2-scalar processor with 2 ALUs performs better than a
3-scalar with 1 ALU.

• A second ALU for the 3-scalar machine buys 8% in per-
formance.

• Going to 4-scalar buys around 4% while going to 5-scalar
only shows 1.3% improvement.

It is important to keep in mind that the differences between
each column in Figure 2 are significantly larger for code gen-
erated from a compiler which has knowledge of the target pro-
cessor, specifically the number of functional units and their
latency.

Scalarity.#_of_ALUs

S2.1 S2.2 S3.1 S3.2 S4.2 S5.2

C
P

I
0.70

0.76

0.82

0.88

0.94

1.00

0.92

0.88

0.90

0.83

0.80
0.79

Scalarity Study

Figure 2. Impact of Scalarity

B. On-chip Caches

UltraSPARC-I has a 16Kbyte data cache and a 16Kbyte
instruction cache on-chip. Process shrinks or smaller SRAM
cells could allow larger caches to be implemented. In Figure
3, we show the impact of increasing each cache from 16K to
32K and 64K. From the graph we observe:

• Beyond 16K, increasing the instruction cache does not
improve floating-point code much (0.2% better for 32K I-
cache and 0.3% better for 64K). This code is typically very
“loopy” with loops easily fitting in a 16K cache.

• Increasing the data cache size results in interesting perfor-
mance improvements for both integer and fp benchmarks
(e.g. 7.1% better for integer and 5.6% better for FP for an
I-cache and d-cache of 64Kbytes).

• 64 Kbytes of total on-chip cache, more specifically a 32
Kbyte I-cache and a 32 Kbyte D-cache, performs as well
as a 16 Kbyte I-cache plus a 64 Kbyte D-cache (80 Kbytes
of total cache).

We ran these simulations using binaries compiled for a pro-
cessor with blocking caches, so no attempt was made by the

compiler to schedule dependences away from loads. Doing so
would reduce the impact of having a larger D-cache. On the
other hand, better compilers reduce overall CPI which
increase the impact (as a percentage) of on-chip caches.

C. Floating-point divide and square root

The capability of setting the latency of each unit on UltraS-
PARC-I allowed us to determine the performance difference
between a 3 and 4-bit per cycle algorithm. The 4-bit per cycle
algorithm requires more levels of logic and could have slowed
down the cycle time by at least 10%. If going to 3-bits per
cycle cost less than 10%, then it is the better choice (espe-
cially since integer performance and database performance
would also suffer from the lower clock frequency).

Figure 4 shows the impact of going to a 3-bit, 2-bit and 1-
bit per cycle scheme (vs. 4-bit). Going to a 3-bit per cycle
algorithm only reduces floating-point performance by 3% on
average. The “Ora” (15.3%) and “Doduc” (8%) benchmarks
are affected the most. These results influenced our decision to
choose the 3-bit per cycle algorithm and not impact cycle
time.

Performance Improvement for UltraSPARC with Larger On-chip Caches

SPECint92 SPECfp92

i16d16 i16d32 i16d64 i32d16 i32d32 i32d64 i64d16 i64d32 i64d64

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

0.0%

3.1%

5.2%

0.2%

3.3%

5.4%

0.3%

3.4%

5.6%

0.0%

2.1%

4.1%

1.9%

4.1%

6.2%

2.6%

4.9%

7.1%

Figure 3. Impact of increasing on-chip cache sizes.

VI. CONCLUSIONS

The design of modern processors requires extensive analy-
sis and sophisticated simulation techniques so that architects
can allocate die area to features that benefit performance the
most and optimize the CPI vs. clock rate trade-off. The simu-
lator used for UltraSPARC-I (UPS) provided both fast turn-
around time and the required flexibility for us to validate, in
terms of performance, the impact of dozens of micro-architec-
ture features on UltraSPARC-I.

The authors would like to thank Robert Yung, Shing Kong
and many others from the UltraSPARC-I design team, who
have contributed significantly to writing the code for UPS.

REFERENCES

[1] D. Greenley,et. al., "UltraSPARC: The Next Generation
Superscalar 64 bit SPARC", 40th annual Compcon, 1995.

[2] Larry Yang, "System design methodology of UltraS-
PARC", 32nd Design Automation Conference Proceed-
ings.

[3] James Gateley, et. al., "UltraSPARC I Emulation",2nd
Design Automation Conference Proceedings (in press)

[4] Ariel Cao, et. al., "CAD Methodology for the Design of
UltraSPARCMicroprocessor at Sun", 32nd Design Auto-
mation ConferenceProceedings.

[5] D. L. Weaver and T. Germond, “The SPARC Architecture
Manual”, Version 9, Prentice Hall, Englewood Cliffs, New
Jersey, (1994).

[6] L. Kohn, et. al.,"The Visual Instruction Set (VIS) in
UltraSPARC", 40th annual Compcon, 1995.

[7] Bob Cmelik and David Keppel, “Shade: A Fast Instruc-
tion-Set Simulator for Execution Profiling”, Proc. ACM
SIGMETRICS Conf. on Measurement and Modeling of
Computer Systems, May 1994, pp 128-137.

[8] Gary Lauterbach, “Accelerating Architectural Simulation
by Parallel Execution of Trace Samples”, Sun Microsys-
tems Laboratories, Inc. Technical Report SMLI TR-93-22
(Dec 1993).

Impact of Divide/Sqrt Latency (SPECfp92)

3bpc 2bpc 1bpc

sp
ic

e

d
o

d
u

c

m
d

ljd
p

2

w
a

ve
5

to
m

ca
tv o
ra

a
lv

in
n

e
a

r

m
d

ljs
p

2

sw
m

2
5

6

su
2

co
r

h
yd

ro

n
a

sa
6

fp
p

p
p

M
e

a
n

(%
)

D
e

g
ra

d
a

tio
n

 v
s.

 4
 B

P
C

0.0

5.4

10.8

16.2

21.5

26.9

32.3

37.7

43.1

48.5

53.8

59.2

64.6

70.0

13.7

66.5

27.8

11.8

23.8

1.0 1.7

12.9 11.3 12.7

36.4

11.0

6.1

22.7

4.6

22.6

9.5

3.6
8.1

42.8

0.3 0.6
4.1 3.5 4.3

12.4

3.7
2.1

8.3

1.6

8.0

3.4
1.2

2.9

15.3

0.1 0.2 1.4 1.1 1.5
4.4

1.3 0.7
3.0

ora at 1bpc
is 125% slower

Figure 4. Impact of the floating-point divide/square root algorithm.

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

