
Abstract — A datapath synthesis system (DPSS) for the reconfig-
urable datapath architecture (rDPA) is presented. The DPSS
allows automatic mapping of high level descriptions onto the
rDPA without manual interaction. The required algorithms of
this synthesis system are described in detail. Optimization tech-
niques like loop folding or loop unrolling are sketched. The rDPA
is scalable to arbitrarily large arrays and reconfigurable to be
adaptable to the computational problem. Fine grained parallel-
ism is achieved by using simple reconfigurable processing ele-
ments which are called datapath units (DPUs). The rDPA can be
used as a reconfigurable ALU for bus oriented systems as well as
for rapid prototyping of high speed datapaths.

I. INTRODUCTION

Many computation-intensive algorithms take too much
execution time, even on a well-equipped modern workstation.
This opens a market for hardware accelerators of all kinds.
Custom configurable accelerators have the advantage to be
adaptable to the computational problem. Such an accelerator
should be scalable. This means that it should be extensible to
various sizes depending on the computational needs. Custom
computing machines (CCMs) [2] provide such extensibilities.
CCMs are based on SRAM based field-programmable gate
arrays (FPGAs) [1]. Most available FPGAs are configurable
only at bit-level to support both random logic as well as data-
paths. Consequently they provide only modest performance
and capacity with 32-bit datapaths.

The reconfigurable datapath architecture (rDPA) provides
higher throughput and more area efficiency for implementa-
tion of such wide datapaths than FPGAs available commer-
cially. Therefore it can be used as a basis for building word-
oriented CCMs. The rDPA is in-circuit reconfigurable, and it
is scalable to nearly arbitrarily large arrays. A controller
allows to use the rDPA as a data-driven reconfigurable ALU
(rALU). This rALU is intended for the parallel and pipelined
evaluation of complete expressions and statement sequences.
In scientific computations such a statement sequence or state-
ment block usually occur in loops. The loop is controlled by
multiple for-statements evaluating a statement block several
times (fig. 1). The control of these loops can be performed by
a host or a special address generator like in the Xputer [7].

For a high user acceptance, a synthesis system should be
available that is able to map the statement blocks onto the
rDPA without manual interaction. Such a synthesis system,
the datapath synthesis system (DPSS) is presented in this

Fig. 1. Statement block in two nested for-loops

for (j = 0, …, …) (1)
 for (i = 0, …, …) { (2)
 /* statement block */ (3)
 y[i] = a + b[i] * c[i-1] …; (4)
 if (a < 3) …; (5)
 … (6)
 } (7)

paper. The following section sketches the reconfigurable data-
path architecture. Section III explains how this architecture
can be used as data-driven rALU on a bus oriented system by
describing the rALU controller interface. The datapath syn-
thesis system is introduced in section IV. Finally the paper is
concluded.

II. RECONFIGURABLE DATAPATH ARCHITECTURE

The reconfigurable datapath architecture (rDPA) consists
of reconfigurable processing elements, a sophisticated kind of
configurable logic blocks which we call datapath units
(DPUs). Connecting an array of two by four rDPA chips on a
PCB board, an array of 128 DPUs can be realized. The DPUs
are interconnected by the routing resources (fig. 2). Both are
described in the following.

Datapath unit architecture. The rDPA consists of a regular
array of identical datapath units (DPUs). Each DPU has two
input and two output registers. The operation of the DPUs is
data-driven. This means that the operation will be evaluated as
soon as all required operands are available. An extensible rep-
ertory of operators for each DPU is provided by the datapath
synthesis system from a DPU library. This operator repertory
includes the operators of the programming language C. The
architecture of the DPUs consists of a datapath including an
ALU and a microprogramable control unit. Operators such as
addition, subtraction or logical operators can be evaluated
directly, and larger operators like multiplication or division
are implemented by a microprogram sequence. New operators
can be added with the aid of a microassembler.

Routing architecture. The rDPA provides two interconnec-
tion levels: short lines for local interconnect, and long lines
for global interconnect. The topology of an interconnection
network can be static or dynamic. Static networks are fixed
during run-time. Dynamic networks can be changed during
run-time. Normally in commercial FPGAs all routing
resources are static, in the rDPA local interconnections are
static and global interconnections are dynamic.

The local interconnect of the rDPA is implemented as a
mesh. A mesh compared to other array structures is best suited
regarding I/O requirements and scalability. Further it allows
to execute systolic algorithms efficiently, since these algo-
rithms mainly use the local interconnect. Although bidirec-
tional communication is more flexible in implementing
expressions, a unidirectional approach is used for better area
efficiency. A problem occurs with the integration of multiple
DPUs onto an integrated circuit because of the high I/O
requirements of the processing elements. To reduce the
number of input and output pins, a serial link is used for data
transfer between neighbouring DPUs on different chips. Inter-
nally the full datapath width is used. For the user and the soft-
ware this serial link is completely transparent.

The global interconnect should provide a connection to
each datapath unit (DPU). In the rDPA it is used for I/O of

A Datapath Synthesis System for the Reconfigurable Datapath Architecture
Reiner W. Hartenstein, Rainer Kress

University of Kaiserslautern
Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany
Fax: ++49 631 205 2640, email: abakus@informatik.uni-kl.de

operands from outside into the array, and for propagation of
interim results to other DPUs far away. To save area, a time
multiplexing of the global interconnect is considered. A
scheduling can determine a good usage of this dynamic net-
work. A bus can be used for such a dynamic interconnect net-
work. A single I/O bus is sufficient to connect all datapath
units. Two buses can speed up I/O operations, especially when
each DPU has access to both buses. The communication is
controlled an external control unit. The data transfers are syn-
chronized data-driven by a handshake like the internal com-
munications.

With the proposed routing architecture, the rDPA can be
expanded also across printed circuit board boundaries, e.g.
with connectors and flexible cable. Furthermore it is possible
to build a torus structure.

Configuration. The array is scalable by using several chips
of the same type. The DPU address for register addressing of
the bus is configured at the beginning. The communication
structure allows dynamic in-circuit reconfiguration of the
rDPA. This implies partial reconfigurability during run-time.
The rDPA can be configured serially from any serial link at
the array boundary. One link is sufficient for the complete
array, but multiple ports can be used to save time. With the
rALU controller also parallel configuration for bus-oriented
systems is possible. The configuration is data-driven, and
therefore special timing does not have to be considered.

III. THE RALU CONTROLLER

With the rDPA, a programmable rALU controller for bus-
oriented systems is provided. Both, the rDPA and the rALU
controller form a data-driven reconfigurable ALU (rALU).
The rALU controller consists of a rDPA control unit, a regis-

Fig. 2. The reconfigurable datapath architecture (rDPA)
with the programmable rALU controller

op op op op op op

op op op op op op

op op op op op op

op op op op op op

buffer

configuration

register
file

rDPA
address

generation
rDPA

status

external Bus to Host and Main Memory

rDPA

rD
P

A
 b

us

unit
control

unit

ter file and an address generation unit for addressing the DPUs
(fig. 2).

Register file. It is useful for optimizing memory cycles,
e.g. when one data word of a statement will be used later on in
another statement. Then the data word does not have to be
read again from the main memory. In addition, the register file
makes it possible to use each DPU in the rDPA for operations
by using the rDPA bus for routing. Currently the register file
has 64 34-bit registers (32-bit data, 2-bit status).

Address generation unit. It delivers the address for the
DPU registers before each data is written into the rDPA over
the bus.

rDPA control unit. It holds a program to control the differ-
ent parts of the data-driven rALU. The instruction set consists
of instructions for loading data into the rDPA array to a spe-
cial DPU from the external units, for receiving data from a
specific DPU, or branches on a special control signal from the
host. The control program is loaded during configuration time.

A status can be reported to the host to inform about over-
flows or to force the host to deliver data dependent addresses.
An input and output buffer decouples the rDPA bus from the
external bus.

IV. THE DATAPATH SYNTHESIS SYSTEM

The datapath synthesis system (DPSS) allows to map state-
ments from a high level language description onto the rDPA.
The statements may contain arithmetic or logic expressions,
conditions, and loops, that evaluate iterative computations on
a small number of input data. The input language of the DPSS
is called ALE-X (arithmetic and logic expressions for Xput-
ers). It can be edited manually, or it can be generated from the
X-C compiler in the Xputer software environment [9].

The task of configuring the rDPA is carried out in the fol-
lowing phases: logic optimization and technology mapping,
placement and routing, and I/O scheduling. Partitioning of the
statements onto the different rDPA chips is not necessary
since the array of rDPA chips appears to be single large array
of DPUs with transparent chip boundaries. The DPSS pro-
duces an assembler file whereof the configuration files for the
rALU and the sequencing file are generated. The sequencing
file determines the sequence of input and output data
requested or produced by the rALU. The rALU code genera-
tion produces a control file for programming the rALU con-
troller and an rDPA code file for the configuration of the
reconfigurable datapath architecture. An overview on the
datapath synthesis system is given in fig. 3.

A. The ALE-X Programming Language

To simplify the programming by hand, the ALE-X pro-
gramming language should be easy to read, learn, and under-
stand. For this reason, the language is strongly oriented on the
concepts of the programming language C. The general form of
a rALU subnet description is listed in fig. 4. It contains a
structural part where the interface of the circuit is specified.
This means the input and output (I/O) ports, namely the input
and output variables as well as their data format is expressed.
Then a procedural part describes the sequential code consist-
ing of expressions, condition statements and loop statements.

The rALUsubnet_name gives the name of the rALU sub-
net. Each name of a rALU subnet must be unambiguous. The
variable_declarations lists the type of the variable and their

name. The type must be a valid type defined in the ALE-X
hardware file. This hardware file lists the limits and restric-
tions of the hardware. The body of a rALU subnet description
has a procedural semantics. First local variables may be
declared and constants may be defined. Then statements fol-
low that can consist of assignment statements, conditional
statements (if-else) and loop statements such as while-loops
and do-while-loops. It is not allowed to use indices for
addressing the variables, that means the loops work on local
data which is read once. The loops are controlled by the rALU
controller, that means only the statements and the condition
are implemented onto the rDPA. An example of a body of a
rALU subnet description which computes the square root of a
variable x is given in fig. 5.

The ALE-X Hardware File. This file allows to use the data-
path synthesis system in a very flexible way. If the hardware
of the rALU changes, e.g. new operators are available, a new
hardware file has to be specified only. Such a file consists of
the following parts: The limits of the hardware resources (e.g.
number of datapath units available in the rALU subnet) are
used to check a given ALE-X file if it can be implemented on
the current available hardware. The data types and the opera-
tors available are specified. The operators are listed with their
delay times. All listed operators must be accessible in the
operator repertory of the assembler for the code generation.
User defined functions can extend the available operator
library. Such functions can be scan primitives [5], trigonomet-
ric functions, square root, etc.

B. Logic Optimization and Technology Mapping

The condition statements are converted into single assign-
ment code. The same is done for the loop conditions. The loop
itself is controlled by the rALU controller. Loops and
sequences of assignments are considered as basic blocks.
Directed acyclic graphs (DAGs) are constructed from the
basic blocks. Herewith common subexpressions, identical

Fig. 3. Overview on the datapath synthesis system (DPSS)

DPSS operator
library

ALE-X

rALU ass. filesequencing file

rALU code generation

rALU ctrl. code rDPA code

DPSS

ALE-X

rALU ass. filesequencing file

rALUcodegeneration

rALUctrl.code rDPA code

from
C compiler

to data
sequencer

operator
library

Fig. 4. General form of a rALU subnet description

rALUsubnet rALUsubnet_name () (1)
 variable_declarations (2)
{ (3)
 body of the rALU subnet description (4)
} (5)

assignments, local variables, and dead code are removed. Fur-
ther constant folding and reduction in strength is used. Unary
operators are combined with the next operator if the operator
library provides this new merged operator. This step reduces
the number of required DPUs in the rDPA array. Further par-
allelism of single expressions is increased by tree-height
reduction [3]. This is done to a level such that an expression
can be placed with at most a single routing operator per local
interconnection. A simple algorithm is performed which uses
the commutativity and the associativity of some operators. If
expressions can be vectorized, it is sufficient to implement
one of these expressions, thus saving area. The required
results can be computed by pipelining this single expression.

C. Placement and Routing

A poor placement degrades the performance since some
internal variables have to be routed via the internal rDPA bus.
During that time the bus is blocked for other I/O operations. A
simulated annealing algorithm is chosen which gives better
results than a simple constructive cluster growth algorithm,
especially when the rDPA is connected as a torus. Different
torus structures can be considered. The simulated annealing
algorithm belongs to probablistic algorithms which improve
iteratively [8]. One additional routing operation per local con-
nection is considered in each iteration step by the simulated
annealing algorithm. This is usually sufficient since then
expression statements that represent a fully balanced tree up
to seven operators can be mapped onto the rDPA. If the tree is
not balanced much more operators can be implemented.
Larger connections are made via the rDPA bus. Thus the rout-
ing is considered during the placement. Unlike other simu-
lated annealing algorithms, the minimum placement is always
saved in each iteration step. The cost function of the annealing
algorithm considers the chip boundaries, the required routing
operators and with a high cost the connections via the rDPA
bus. Fig. 6 shows the implemented algorithm.

First, an initial placement for the simulated annealing proc-
ess is computed by placing the operators randomly onto the
rDPA. Then the COST-function gives the complete cost of this
placement. The cooling schedule is controlled by a linear
function f(temp) = 0.95 * temp. Two positions for exchange
are searched by the SELECT_POSITION()-function. Without
argument, this function gives a random position of an operator
in the rDPA array. With arguments (for the second position),
the function results a random position of an operator in the
neighbourhood of the position of the first argument. The sec-
ond argument determines the range of this neighbourhood. A
high argument allows to search for the new position in the
whole array, a low argument allows to search only in a small
neighbourhood. Usually the temperature of the cooling sched-
ule is used for this argument. Further the number of iterations
of the inner loop is decreased with the temperature. This can
be done because only a local neighbourhood for exchange is

 int i; (1)
 y = 0.22 + 0.89 * x; (2)
 i = 0; (3)
 while (i < 4) { (4)
 y = 0.5 * (y + x / y); (5)
 i = i + 1; } (6)

Fig. 5. Example of a body of a rALU subnet description

considered at low temperatures. The EXCHANGE-function
exchanges two positions of the current placement and results
the difference of the costs between the old and new place-
ment. Only the cost increase or decrease due to this exchange
is computed. The rest of the operators in the rDPA array are
not considered, for reasons of speed of the implementation.
The RANDOM()-function results a random number in the
range between the first and the second argument. An example
of an expression statement sequence mapped onto the rDPA is
given in fig. 7.

D. I/O Scheduling

Scheduling determines a precise start time of each opera-
tion. The start time must satisfy the dependencies between the
operations which limit the amount of parallelization. Since
scheduling determines the concurrency of the resulting imple-
mentation, it affects its performance.

The placement and routing step of the design implementa-
tion takes care that for each operation one datapath unit
(DPU) for evaluation of the operation is available. The static
local interconnect between the DPUs is responsible for trans-
ferring intermediate results to the following operation. That

/* Algorithm Simulated Annealing for the DPSS */
placement = INITIAL_PLACEMENT();
actual_cost = COST(placement);
minimum_cost = actual_cost;
for (temp = START_TEMP; temp > FINAL_TEMP && actual_cost != 0;
SCHEDULE(temp)) {

/* inner loop */
for (i = 1; i <= MAX_ITERATION(temp) && actual_cost != 0; i++) {

/* select two positions for exchange */
position1 = SELECT_POSITION();
position2 = SELECT_POSITION(position1, temp);
/* change positions and compute cost that results from change */
delta_cost = EXCHANGE(position1, position2);
/* accept new placement if … */
if (delta_cost < 0 || RANDOM(0, 1) < exp (-delta_cost / temp)) {

/* new minimum cost, retain minimal placement */
if (actual_cost < minimum_cost) {

minimum_placement = placement;
minimum_cost = actual_cost;

}}
else {

/* return to previous placement */
EXCHANGE(position1, position2);

}}}
placement = minimum_placement;

Fig. 6. Simulated annealing algorithm used

Fig. 7. Example of the placement of four expression statements
onto the reconfigurable datapath architecture

x1 = x + dx;
u1 = u - 3 * x * u * dx - 3 * y * dx;
y1 = y + u * dx;
c = x1 < a;

<+

+
x

*3

y

-
u

a
u1**u

dx
-

*3

y1

+

x1
x

dx

y dx

means, the arithmetic and logic operations are not constraint
by the resources. But two other resources are constraint: the
rDPA bus and the external bus providing the data from the
main memory.

• The external bus provides the rDPA with a regular data
stream. This bus is limited to a single I/O operation per
time.

• The rDPA bus is limited to a single operation per time too,
though as a local bus, it can operate faster than the external
bus.
Constraints can be classified into two major groups: inter-

face constraints and implementation constraints. Interface
constraints are additional specifications to ensure that the cir-
cuits can be embedded in a given environment. In our case,
these are the timing constraints of the data stream via the
external bus. Considering the complete rALU, the I/O con-
straints of the rDPA bus can be seen as implementation con-
straints. The rDPA bus is used for internal global routing via
the register file, additionally to the I/O operations. These
transfers to the register file and to the buffer register can be
considered as operations in the schedule. The external bus
adds timing constraints to these operations. Further, the
sequence of the data words via the external bus has to be the
same as the sequence of data words from the buffer register to
the rDPA or vice versa. But in-between this sequence via the
rDPA bus, getting and putting data words to the register file is
allowed. Due to the data-driven synchronization concept of
the rALU, the time steps for the scheduling algorithm are very
short and most operations use multiple cycles for evaluation.
The time step should be the largest common divisor of the
delay times of all used operations.

To determine deadlock free schedule and an optimal
sequence of the I/O operations, the following strategy is used:

• Perform a resource constraint scheduling of the sequencing
graph, including the get and put operations for I/O, but
without considering the timing restrictions of the external
data stream.

• Since the sequence of operations is fixed now after the first
scheduling, the timing constraints of the external data
stream are included.

• Perform a timing constraint schedule including the
requirements of the external data stream.
The goal of this scheduling is to find a deadlock free sched-

ule and an optimal sequence of the I/O operations. First a min-
imum-latency resource-constraint scheduling is used. The
sequencing graph consists of a set of operations including the
I/O operations of the rDPA bus. The vertex set V= {vi; i = 0,
1, 2, …, n} of a sequencing graph GS(V, E) is in one-to-one
correspondence to a set of operations, and the edge set E =
{(vi, vj); i, j = 0, 1, 2, …, n} represent dependencies. The
source vertex v0 and the sink vertex vn with n = nops + 1 are
both no-operations (NOP). The set of execution delays is D =
{di; i = 0, 1, 2, …, n} with d0 = dn = 0. It is assumed that the
delays are data independent and known. Further it is assumed,
that the delays are integers and a multiple of the time step.The
external bus is not considered at this time. Scheduling is done
on basic blocks only. This means, that there is no difference
between expression statements and conditions. The same is
valid for while and do-while loops. They are considered by the
code generation step. An example (fig. 7) of a sequencing
graph of a basic block is listed in fig. 8.

For the scheduling algorithm, a list schedule with improve-
ment of the priority list in each iteration step like in the force-
directed scheduling is used. The mobility µ determines the
ranking of the operations. The resource constraints are repre-
sented by the vector a, in our case, only the I/O operations are
required for this priority list (aI/O = 1), since all other opera-
tions are not resource constraint. The operations whose prede-
cessors have already been scheduled early enough, so that the
corresponding operations are completed at time step l are
called candidate operations Ul,k, with

Ul,k={vi ∈ V:type(vi)=k and tj+dj≤l ∀ j:(vj,vi) ∈ E} (1)

for any resource type k = 1, 2, …, nres. Fig. 9 shows the
scheduling algorithm used.

For simplicity it is assumed that each I/O operation has a
delay of three time steps, a multiplication 22, and an ALU
operation four. A multiplication with three is implemented as
a shift followed by an addition, which requires six time steps
in total. A first schedule determines the sequence of I/O opera-
tions via the rDPA. Thus the sequence of data words via the
external bus can be fixed.

Each multiply used variable is read once from the main
memory and then transferred into the rDPA array and concur-
rently to the register file. This transfer to both locations does
not increase the delay time of the I/O operation. Supposing

Fig. 8. Example of a sequencing graph

*3

**

**3 +

<

-

-

x u dx y dx x dx

x1

yu

cy1

u1

NOP

+

NOP

0

1 2 3 4 5 6 7 8 9

10 11 12 13

14 15 16 17

18

19

20

2221

23

24

I/O (GS(V, E), aI/O) {
l = 1;
do {

/* schedule the I/O operations (k = 1) */
compute the mobility of the I/O operations µ1 = t1

L - t1
S

from ASAP and ALAP schedule;
determine canidate operations Ul,1;
schedule the Ul,1 with lowest mobility;
/* schedule the rest of operations (k ≠ 1) */
for (resource type k = 2; k ≤ nres; k++) {

determine canidate operations Ul,k;
schedule the Ul,k requiring no additional resources;

}
l = l +1;

} while (vn is not scheduled);
return (t);

}

Fig. 9. I/O scheduling algorithm minimizing latency
under resource constraints

that every five time steps a new variable can be transferred via
the external bus gives the minimum timing constraint for the
final scheduling. Fig. 10 shows the additional timing con-
straints introduced by the restrictions of the external bus.

Now a schedule which uses the same algorithm as before
leads to the final I/O schedule. Due to the timing restrictions
on the external bus, the free time slots on the rDPA bus are
used for transfers from the register file to the rDPA registers.
Fig. 11 shows the final I/O schedule which has a latency of λ
= 73 time steps. From this schedule, the sequencing file can be
determined. Further the schedule is deadlock free, that means
the data-driven synchronization concept of the rALU will
work with no problems.

E. Code Generation

The rDPA configuration file is computed from the place-
ment information of the processing elements and a library
with the microprogram code of the operators. The required
code is found in the operator library. The sequencing file is
computed from the sequence of data words via the external
bus. The configuration file for the rALU controller is extracted
from the final schedule of the I/O operators. It consists of
move operations from and to the rDPA, buffer register and
register file. An example schedule (the same as in fig. 11) of
the I/O operations via the external bus and the rDPA bus is
shown in fig. 12.

Fig. 10. Additional minimum timing constraints from the data stream
via the external bus

u dx y x x1 c y1 u1NOP NOP
55 5 5 5 5 5 5

3 4 6 2 20 22 21 23 240

number of vertex
maximum timing constraint

Fig. 11. Example of a final schedule for the rDPA taking care
of the data stream via the external bus

u

x

y

dx

y
dx

x

dx

*

*

* 3

* 3

*

+

<

-

-

+

u1

y1

c

x1

0

5

10

15

20

25

30

35

40

45

50

55

60

tim
e

st
ep

s

u

65

70
73

F. Optimization

Optimizations can be made in terms of area or speed. Area
improvements can be achieved by pipelining vectorized state-
ments. Speed improvements can be achieved by loop folding
or loop unrolling [4] if the statement block in the rDPA is
evaluated several times. This requires that these loops are con-
trolled by an external address generator like in the Xputer [7]
or that these loops are controlled by the host.

Vectorized Statements. Instead of mapping the vectorized
statement a few times onto the rDPA, it can be pipelined.
Adding timing constraints to force the sequence of vector
operations in the sequencing graph leads to a constraint
sequencing graph which can be scheduled as before.

Loop Folding. This the most popular technique for improv-
ing the speed of statement blocks that occur in inner loops
since no additional hardware is required. If the implementa-
tion in the rDPA is not I/O bound, the operations can be pipe-
lined across loop boundaries. Dependencies between two
iterations are considered by the mapping and the scheduling
algorithm. Two iterations are scheduled at once with addi-
tional timing constraints of the sequencing graph like in the
vectorization example. Loop folding requires a special control
signal of the address generator or the host to signal the end of
the loop.

Loop Unrolling. With this technique a certain number of
loop iterations is unrolled. This action results in a loop with a
larger body but with fewer iterations. The larger loop body
provides a greater flexibility for improving the speed of loop.
Loop unrolling requires at least twice as much datapath units
as without using this technique. Improvement against loop
folding can be achieved in designs that are not bound by the
I/O. Loop unrolling requires additional control especially if
the number of operations is not a multiple of the loop itera-
tions that are unrolled.

Fig. 13 shows a small example of loop folding and loop
unrolling.The loop folding is bounded by the multiplication,
whereas the loop unrolling is bounded by the hardware
resources. Using more hardware, or combining with loop
folding can further increase the performance.

V. CONCLUSIONS

A datapath synthesis system (DPSS) for the reconfigurable
datapath architecture (rDPA) has been presented. The DPSS
allows automatic mapping of high level descriptions onto the
rDPA without manual interaction. The required algorithms of
this synthesis system have been described in detail. Some
techniques for optimization such as vectorization for area
improvement, and loop folding or loop unrolling for speed
improvement have been outlined. The rDPA is scalable to
arbitrarily large arrays and reconfigurable to be adaptable to
the computational problem. Fine grained parallelism is
achieved by using simple reconfigurable processing elements
which are called datapath units (DPUs). The rDPA can be

Fig. 12. I/O operations of the external bus and the rDPA bus

u

u

dx x y x1 c y1 u1

dx dx x y dx u x1 c y1 u1xrDPA

ext.

0 7310 20 30 40 70
time steps

y

50bus

used as a reconfigurable ALU for bus oriented systems as well
as for rapid prototyping of high speed datapaths.

A second implementation of the rDPA using standard cells
with a datapath compiler will soon be submitted for fabrica-
tion. It provides 32 bit datapaths and arithmetic resources for
integer and fixed-point numbers. The datapath synthesis sys-
tem is completely specified. The optimization, the placement,
as well as the scheduling have been implemented. The code
generation is currently being implemented.

REFERENCES

[1] S. D. Brown, R. J. Francis, J. Rose, Z. G. Vranesic: Field-Programmable
Gate Arrays; Kluwer Academic Publishers, 1992

[2] D. A. Buell, K. E. Pocek: Proceedings of the IEEE Workshop on FPGAs
for Custom Computing Machines, Napa, CA, IEEE Computer Society
Press, April 1994

[3] G. De Micheli: Synthesis and Optimization of Digital Circuits; McGraw-
Hill, Inc., New York, 1994

[4] D. D. Gajski, N. D. Dutt, A. C.-H. Wu, S. Y.-L. Lin: High-Level Synthe-
sis, Introduction to Chip and System Design; Kluwer Academic
Publishers, Boston, Dordrecht, London, 1992

[5] S. A. Guccione, M. J. Gonzalez: A Data-Parallel Programming Model for
Reconfigurable Architectures; IEEE Workshop on FPGAs for Custom
Computing Machines, FCCM'93, IEEE Computer Society Press, Napa,
CA, pp. 79-87, April 1993

[6] R. W. Hartenstein, J. Becker, R. Kress, H. Reinig, K. Schmidt: A Recon-
figurable Machine for Applications in Image and Video Compression;
European Symposium on Advanced Services and Networks / Conference
on Compression Techniques and Standards for Image and Video Com-
munications, Amsterdam, March 1995

[7] R. W. Hartenstein, A. G. Hirschbiel, M. Riedmüller, K. Schmidt, M.
Weber: A Novel ASIC Design Approach Based on a New Machine Para-
digm; IEEE Journal of Solid-State Circuits, Vol. 26, No. 7, July 1991

[8] N. A. Sherwani: Algorithms for Physical Design Automation; Kluwer
Academic Publishers, Boston 1993

[9] K. Schmidt: A Program Partitioning, Restructuring, and Mapping
Method for Xputers; Ph.D. Thesis, University of Kaiserslautern, 1994

Fig. 13. Loop folding (a) and loop unrolling (b) of a small expression
statement example

b0

*

+
y0

0

5

10

15

20

25

30

35

40

45

50

55
57

a0

c0

b1

*

+
y1

a1

c1

a) b)

b0

*

+

y0

0

5

10

15

20

25

30

35

40

45

50

55

60

a0

c0

b1

*

+
y1

a1

c1

loop

lo
op

 b
od

y

head

loop
tail

65
68

	ASP-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

