
A Tool for Measuring Quality of Test Pattern for LSIs' Functional Design

Takashi Aoki Tomoji Toriyama Keiji Ishikawa Kennosuke Fukami
aokit@aecl.ntt.jp tori@center.nel.co.jp ishikawa@aecl.ntt.jp fukami@aecl.ntt.jp

NTT LSI Laboratories

3-1 Morinosato Wakamiya, Atsugi, Kanagawa. 243-01 JAPAN

Abstract| A prototype tool is developed for mea-

suring the quality of test patterns for simulation to

verify LSI functional designs. The tool is able to

count activated conditional branches and evaluate the

branch pass index of test patterns. The branch pass

index indicates the ratio of the number of conditional

branches validated by the pattern to the total number

of conditional branches in a design. We developed the

prototype tool for PARTHENON[1]. The tool prints out

branch identi�cation names not examined by the test

pattern. In using the tool for experimental designs, it

helped designers to signi�cantly improve pattern qual-

ity if a branch pass index of 100% for LSI veri�cation

patterns was not achieved. Only about 30 seconds of

the processing time was required for a 1000 sentence

module. Bugs can often be found in designs with little

e�ort.

I. Introduction

As a higher system performance is required, there are

more cases where the functional design of LSIs is trans-

lated from such algorithms that were operated on soft-

ware into a hardware description language (HDL). Even

if an algorithm is described as a kind of software language,

and if it can be veri�ed through simulation by a test pat-

tern evaluating its quality, we can not always apply a test

pattern to the veri�cation of the LSI design successfully

because of structure di�erences in design between soft-

ware and hardware description. Some di�erences might

be caused by grammatical di�erences between the soft-

ware language and HDL, and other di�erences might be

introduced by the designer. As a result, designs that de-

scribe some algorithms in HDL must be veri�ed by mea-

suring the quality of hardware veri�cation test patterns.

There are only a few methods available in hardware func-

tional designs to count executions of each line in design

description[2]; however, they do not clearly take account

of two instances produced from the same module. Thus

detecting the absence of veri�cation test patterns takes

a long time, as dose the problem of locating bugs in the

later design stages.

Therefore, we developed a prototype tool for measur-

ing the quality of test patterns for hardware functional

simulation to verify LSI designs. In experimental designs

the prototype identi�ed de�ciencies in the quality of ver-

i�cation test patterns, and helped designers to detect the

absence of test patterns.

II. Method

There are several kinds of veri�cation pattern quality

indices in the �eld of software engineering[3]. One of

them, the C1 index, is the quality of a test pattern that

veri�es a software module. It is de�ned as the ratio of

the number of conditional branches examined by the test

pattern to the total number of branches in the module.

To measure a kind of C1 quality of veri�cation patterns

on a piece of hardware, we modi�ed the hardware descrip-

tion with a strobe register at every conditional branch.

Here, the strobe register makes a record of the event each

time a branch is examined. When these strobe register

values are collected after the simulation, a kind of C1 in-

dex can be measured as the ratio of the number of strobe

registers which have recorded examinations to the total

number of strobe registers. We de�ne this C1 index as a

\branch pass index".

The validity of the branch pass index was evaluated

against a previous design with around 4000 gates[4] before

we started to develop the tool. We made test patterns

which have a 100% branch pass index against the design.

We found that these patterns satisfy the veri�cation items

which we previously made for the design. Therefore, we

decided to develop a prototype tool for measuring the

branch pass index with this method.

Instead of using a strobe register, the branch pass index

can be measured by remaking a simulator so that it can

record branch activities. However, this is di�cult. On

the other hand, since our method is almost completely

free from simulator detailed implementation, measure-

ment tools are easily developed and can be applied to

some other hardware functional simulator systems.

Moreover, because this method makes each instance

has its own strobe registers, even if the hardware de-

scribed has two instances copied from the same module,

the branches in these two instances can be distinguished

pre-simulation process
(connect strobe registers to the design)

hardware
description

printing
instructions

branch IDsimulation process
(Seconds[1])

post-simulation process
(evaluate index and list inactive branch)

branch pass index and inactive branch

hardware
description

mask
list

test
patterns

Fig. 1 Structure of prototype tool

unlike the case for measuring a software C1 index. The

branch pass index also takes account of conditional state

transitions if they are described using conditional branch

phrases.

III. A prototype tool

The tool �nds every conditional branch and connects

the strobe register to them. It also gives each branch an

identi�cation name and reports a branch identi�cation

name if the branch is not examined. To make it more

useful, the tool is controlled by an operator instruction to

suppress reports about branches that were never exam-

ined because of their speci�cations. Here, the operator is

the designer who designed and is verifying the hardware.

The type of HDL to be processed is SFL[5].

The structure of the prototype tool is shown in �g.1.

The designer prepares a hardware functional description

in SFL and a veri�cation test pattern. These are the same

as for an ordinary simulation. Together with these, the

designer can give the tool a branch mask list instructing

it to suppress any report about the branches in the list.

The tool consists of two parts: a pre-simulation process

and a post-simulation process.

The pre-simulation process generates a hardware de-

scription with strobe registers in it. It also generates

strobe printing instructions and a branch identi�cation

list.

In analyzing the hardware descriptions, whenever the

tool �nds a conditional branch, it connects a strobe reg-

ister to the branch and gives the strobe register a local

any{condition:
execution();

}

condition

execution

Fig. 2 A hardware description (SFL) without a strobe

register

any{condition:
par{AA0.on();

execution();
}

} .on()

D
R

CK

Q
’1’

strobe register "AA0"

condition

execution

Fig. 3 A hardware description (SFL) with a strobe

register

name inside the module, for example a sequence of num-

bers. Thus each strobe register is connected to a condi-

tional branch.

The strobe printing instructions instruct the simulator

to print every value of the strobe register. The values

consist of print instructions of the simulator and all strobe

register identi�cation names.

Strobe register identi�cation names consist of the hi-

erarchical names of the instances and the strobe register

local names in the module. Thus, two register identi�ca-

tion names in two instances produced from a module can

be distinguished by their names even if they are related

to the same branch in the module.

The branch identi�cation list is a list of all branch iden-

ti�cation names. A branch identi�cation name is uniquely

related to a strobe register identi�cation name that is con-

nected to the branch. Thus, two branch identi�cation

names in two instances produced from a module can be

distinguished.

Fig.2 is an illustration of a hardware description before

a strobe register has been inserted into the conditional

branch, and �g.3 is the same part with a strobe register,

at the second line \AA0.on()". Fig.4 illustrates the rela-

tionships between a test pattern (TP1) and strobe register

values. The TP1 activates a dotted line on a
ow chart,

and it changes the values of S2 and S3 from zero to one.

Thus, branches related to S1 and S4 are inactive at TP1.

The simulation is done using Seconds[1], a simulator for

SFL. The operator gives the simulator the description of

the hardware with the strobe registers, and a test pattern

with which the hardware description can be veri�ed. At

the end of the simulation, the operator gives the strobe

E1 E2

E3 E4

S1 S2 S3 S4

C1

C2

A design in HDL
modified with
strobe registers by
the tool

C1

E1

E2

E3 E4

C2

TP1

A flowchart to
be designed in
HDL

strobe
register

S1
S2
S3
S4

value

0
1
1
0

inactive
with TP1

Fig. 4 Relationships between a test pattern (TP1) and

strobe register values

mask list

...
/PRCNT/ALU_A/AA1
/PRCNT/ALU_A/AA3
...

inactive branch list

...
/PRCNT/ALU_0/AA5
/PRCNT/ALU_A/AA2
/PRCNT/ALU_B/AA2
...

branch identification
names

strobe
register
value

...
/PRCNT/ALU_0/AA5
/PRCNT/ALU_A/AA1
/PRCNT/ALU_A/AA2
/PRCNT/ALU_A/AA3
/PRCNT/ALU_B/AA1
/PRCNT/ALU_B/AA2
/PRCNT/ALU_B/AA3
...

...
0
0
0
0
1
0
1

...

Fig. 5 Suppression of the inactive branch list

printing instructions to the simulator, and makes the sim-

ulator print the value of each strobe register.

In the post-simulation process, the tool �rst extracts

the values of the strobe registers. Next, it calculates the

branch pass index of the test pattern. Since we use regis-

ters with an initial value of zero, the ratio of the number

of strobe registers with a non zero value to the total num-

ber of strobe registers indicates the branch pass index.

Next, it matches each branch identi�cation name to each

strobe register value. Branch identi�cation names that

match to a value of zero are listed in an inactive branch

list. In addition, the tool avoids listing a branch identi�-

cation name in the inactive branch list if any part of the

branch indication name belongs to the branch mask list.

Fig.5 illustrates the suppression of the inactive branch

list. Consequently, the tool measures the branch pass in-

dex, and lists and prints out inactive branches.

Design Size

0 500 1000 1500

B
ra

nc
h

P
as

s
In

de
x

(%
)

50

60

70

80

90

100

Average=86.8

A
B

Fig. 6 Measured branch pass indices

IV. Experimental

We applied the tool to the design of LSIs. In our ex-

periment, three designers designed and veri�ed parts of

an LSI for use in ATM communication processing using

test patterns that they had made.

First of all, each designer designed and veri�ed LSI

parts using conventional methods. Thus after the num-

ber of bugs accumulated had been stabilized, they made

veri�cation test patterns and used them to verify the de-

signs they had made. Next, they measured the branch

pass index of their veri�cation test patterns. Finally,

each designer used the tool to improve the veri�cation

test pattern they had made until the pattern became a

100% branch pass index.

V. Results

Each mark in �g.6 indicates the design size of a module

and the branch pass index of its veri�cation test pattern.

The design size indicates the number of sentences in the

module. The branch pass index was measured using the

tool, and was found to be 86.8% on the average.

In the design represented by the letter \B" in �g.6, the

pre-simulation process found 236 branches. Only about

30 seconds of pre-simulation and post-simulation process-

ing time was required for this module which was veri-

�ed through 40 minutes simulation process, using Sparc-

Station 1+. Pre-simulation and post-simulation process-

ing time was about 5 minutes for another 10000 sentences

module which was veri�ed through 150 minutes simula-

tion process.

Next, designers improved veri�cation test patterns rep-

resented by the letter \A" and \B" in �g.6, using the

inactive list produced by the tool. The design \A" has

Branches found by conventional methods

Branches suppressed by designer

Branches activated by additional test patterns

A B

B
ra

nc
h

pa
ss

 in
de

x
(%

)

50

60

70

80

90

100 (7)

Number of branches is indicated in parentheses

(7)

(34)

(195)

(7)

(128)

Fig. 7 Improvement possibility using the tool

4.0kG when it is synthesized and 142 branches in its de-

scription. This module works to store ATM cell payloads.

The module speci�cation is written as a
ow-chart with

conditional decisions. About 50% of branches used for

these decisions, and the other 50% used for arithmetical

functions.

The design \B" has 2.9kG when it is synthesized and

236 branches in its description. The module speci�ca-

tion is written as block diagrams. About 50% of these

branches work as selectors, 25% as decoders, and the other

25% as controllers. This module works to make the ATM

cell and send it out.

In the case of sample \A", at �rst its branch pass index

was 90%. The designer e�ectively made additional test

patterns and achieved a 100% branch pass index using

only 3% of the overall design and veri�cation time. In this

trial 14 inactive branches were found, with 7 (\Branches

suppressed by designer" in �g.7) of them inactive because

of speci�cation, and 7 (\Branches activated by additional

test patterns" in �g.7) of them inactive due to lack of a

veri�cation test pattern. Another trial (\B" in �g.6)

produced almost similar results. Fig.7 shows the results

observed for both A and B.

VI. Discussion

Pre-simulation and post-simulation processing was

much shorter than simulation processing time. Simula-

tion time was increased because the simulator processed

strobe registers, but we are able to ignore in our experi-

ments.

Of the modules shown in �g.6, only those with less than

100 sentences had 100% branch pass indices in our exper-

iments. In each case of sample \A" and \B", there were

7 inactive branches in the absence of veri�cation at �rst,

when previous veri�cation test patterns were applied to

each design.

In the design of \A", there are many combinations of

parameters to instruct ways to store ATM cell payloads.

These 7 inactive branches are activated on condition that

a test pattern is given after some parameter registers are

set by another test pattern. Such test pattern relations

were absent in sample \A".

In the design \B", there are combinations of signals and

states of ATM cell assembly. These all 7 inactive branches

are in the absence of test patterns which activate reset

signals at several states.

As the design of algorithms becomes more complex,

designers become more likely to forget to verify some

branches that they have designed, and this may conceal

serious problems until later in the design process. Assum-

ing that the size of a design often re
ects its complexity,

we conclude that in large design cases there is a statisti-

cal quality limit to a veri�cation test pattern made solely

through the designer's own e�orts.

However, improving the veri�cation pattern did not

take much time when the designers used this tool. These

�ndings naturally lead us to the conclusion that the tool

helps designers to remember branches they had designed

previously but had forgotten to validate.

VII. Conclusion

We developed a prototype tool to count executed con-

ditional branches and evaluate veri�cation test pattern

quality. In applying the tool to experimental designs, the

branch pass index measured was on average 86.8%. The

tool helped designers to search inactive branches and to

signi�cantly improve pattern quality, even though they

could not achieve branch pass quality of 100% for LSI

veri�cation patterns.

VIII. Concluding remarks

The quality of test patterns can be measured with the

tool when the design is veri�ed by simulation. Conse-

quently, bugs can often be found in designs with little

e�ort. The method does not require remaking simulators

and can be applied to some other hardware functional

simulator systems. The next stage is to adapt the tool to

verilog-HDL and VHDL.

IX. Acknowledgments

The authors would like to thank Dr. Atsushi Taka-

hara for allowing us to use and consult his SFL parser.

The authors also wish to thank Dr. Osamu Karatsu, Mr.

Yasuyoshi Sakai and Mr. Kazumitsu Takeda for fruitful

discussions and advice.

References

[1] Parthenon User's Manual, NTT Data, (1990).

[2] N.2 User's Manual, TD Tech.Inc. (1991).

[3] J. C. Huang, \Program Instrumentation and Soft-

ware Testing," Computer, 11(4), 25-31, (1978).
[4] T. Toriyama, \A Veri�cation Criteria for LSI Func-

tional Description," The 47th National Convention

IPS Japan, C-425 Vol.5 pp.135, (1993 Autumn).

[5] Y. Nakamura, K. Oguri, H. Nakanishi and R.

Nomura, \An RTL Behavioral Description Based

Logic Design CAD System with Synthesis Ca-

pability" Proc. 7th International Conference on

Computer Hardware Description Languages and

their Applications (IFIP CHDL 85), pp.64-78 (Aug.

1985).

	ASP-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

