
Delay Abstraction in Combinational Logic Circuits

Noriya Kobayashi Sharad Malik

C&C Research Laboratories Department of Electrical Engineering

NEC Corp. Princeton University
Miyamae-ku, Kawasaki 216 Japan Princeton, New Jersey 09544-5263

Tel: +81-44-856-2134 Tel: 609-285-4625
Fax: +81-44-856-2235 Fax: 609-285-3745

e-mail: nk@sbl.cl.nec.co.jp malik@princeton.edu

Abstract| In this paper we propose a data struc-

ture for abstracting the delay information of a com-

binatorial circuit. The particular abstraction that we

are interested in is one that preserves the delays be-

tween all pairs of inputs and outputs in the circuit.

The proposed graphical data structure is of size pro-

portional to (m+ n) in best case, where m and n refer

to the number of inputs and outputs of the circuit. In

comparison, a delay matrix that stores the maximum

delay between each input/output pair has size propor-

tional to m � n. We present heuristic algorithms for

deriving these concise delay networks. Experimental

results shows that, in practice, we can obtain concise

delay network with the number of edges being a small

multiple of (m+ n).

I. Introduction

In this paper we propose a data structure for abstract-
ing the delay information of a combinatorial circuit. The

particular abstraction that we are interested in is one that
preserves the delays between all pairs of inputs and out-
puts in the circuit. There are several applications of such

an abstraction:

� Consider the problem of determining the delay of a
pair of cascaded operation units in high level syn-
thesis. (Such a cascade is also referred to as opera-

tor chaining.) The worst case delay of the cascade
is not necessarily the sum of the worst case delays

of the individual units. This is because the critical
paths in the two units need not be concatenated in
the cascade. However, if the delays between all pairs

of inputs and outputs of the original units are known,
then this information can be used to derive the cor-

rect worst case delay.

� Consider the case in logical and physical synthesis
when only one module is modi�ed and the change in

the delay needs to be propagated through the entire
design. A complete pass through the design may be

avoided, if for each combinational block we can make

available the delay between each input and output
pair.

One such delay abstraction is a delay matrix that stores
the delays for each input-output pair for each combina-

tional block. This requires large memory space since it
has m � n entries, where m and n are the number of in-
put and output terminals of a circuit. All entries of a

delay matrix have to be referred during delay computa-
tion. Large matrices make the delay computation task

slower. Another alternative is to use a network with the
same topology as the original circuit. Such a network is

typically quite large and it makes the delay computation
task much slower.
In [1], delay matrices are used as the timing model for

high-level synthesis. In [2], bipartite graphs equivalent to
delay matrices are used as the timing model, and [2] men-

tions a method to reduce the size of the bipartite graphs.
Since the method is a sort of relaxation, the reduced bi-
partite graphs do not keep the complete information.

In order to make the delay computation task faster, a
data structure for delay information must be simple and

small. In this paper, we propose an e�cient data structure
for the delay abstraction of a combinatorial circuit. We

call it the concise delay network. It consists of source
vertices, sink vertices, internal vertices and directed edge
with weight. Source vertices and sink vertices in a concise

delay network correspond to input terminals and output
terminals of a circuit, and the maximum weighted path

length from a source vertex to a sink vertex is equal to
the delay between the corresponding input and output.
A concise delay network requires only m+ n edges in the

best case, and m� n edges in the worst case.
We present heuristic algorithms for deriving concise de-

lay networks. Our algorithms are very simple and very
powerful and are based on applying network transforma-

tion rules. Experimental results shows that we can obtain
concise delay networks having number of edges that is a
small multiple of m+ n

The proposed data structure and our algorithm can be
applied widely in high level synthesis, logic synthesis and

layout synthesis.

8ns
8ns

16ns

+
+4

4
4

4

4

2
2

2
4

6

8

8
4

6

8

8

4

6

8

8

2

4
6 6

2

4
66

2
4
4

2
44

22

2
2

2
2

2
4

6

8

8
4

6

8

8

4

6

8

8

2

4
6 6

2

4
66

2
4
4

2
44

22

2
2

8ns 8ns

10ns

Fig. 1. Two adders in series and their delay computation based on

delay bipartite graphs.

II. Data Structures for Delay Computation

The simplest delay model for a combinatorial circuit

block is to use a single value representing the maximum
delay among all input-output pairs of the circuit. How-

ever, such delay information is too relaxed to permit pre-
cise delay computation. According to this single-value
delay information, the delay of two adders in cascade is

equal to two times of the delay of one adder (see Fig-
ure 1). But the actual delay is much smaller than this,

since a path consisting of critical paths on both adders
never exists in the cascade adders.

What is needed for providing more precise delay com-

putation, is information regarding the delay between all
pairs of inputs and outputs in each combinational circuit.
There are two kinds of data structures that are currently

used to represent this; delay matrix and delay network .
Both permit precise delay computation but require large

storage. Delay matrix is a [n � m] matrix, whose [i; j]
entry stores the delay value from primary input PIi to
primary output POj , where m and n are the number of

primary inputs and primary outputs, respectively. The
[i; j] entry is empty when there is no signal propagation

from PIi to POj , i.e. there is no data dependency be-
tween PIi and POj . A delay matrix can be represented

by a directed bipartite graph (Vs [Vt; E). Source vertex
set Vs corresponds to primary inputs and sink vertex set
Vt corresponds to primary outputs. A directed edge in E

from si 2 Vs to tj 2 Vt corresponds to [i; j] entry and has
the same weight as the corresponding value in the ma-

trix. The edge from si to tj can be omitted when no data
dependency between PIi and POj . (See Figure 2.)

Delay network is a directed graph whose topology is the

same as the original combinatorial circuit. Its vertices cor-
respond to primary inputs, gates, and primary outputs.
Its directed edges correspond to wires. Vertices and edges

are weighted by the delay values of corresponding gates
and wires. (See Figure 3.)

A delay matrix (a delay bipartite graph) and a delay

network can be used for precise delay computation, but

S0 S1 S2 S3 COUT

A0
B0
A1
B1
A2
B2
A3
B3

CIN 2
2
2
_
_

_
_
_

_

4 6 8 8
4 6 8 8
4 6 8 8
2 4 6 6
2 4 6 6
_ 2 4 4
_ 2 4 4
_ _ 2 2
_ _ 2 2

S0

S1

S2

S3
COUT

A1
B1

A2
B2

A3
B3

A0
B0

CIN

8

8

8

2
2
2
4

6

8

4

6

8

4

6

8

2

4
6 6

2

4

66

2

4
4

2
44

22

2
2

Fig. 2. The delay matrix and the delay bipartite graph of a 4-bit

ripple adder.

S0

S1

S2

S3

A0

A1

A2

A3

B1

B0

B2

B3

CIN

COUT

2

1

1 1

1

0

0

0

2

1

1 1

1

0

0

0

2

1

1 1

1

0

0

0

2

1

1 1

1

0

0

0

S0

S1

S2

S3

A1

A0

A3

A2

B1

B2

B3

B0

CIN

COUT

Fig. 3. A gate-level circuit for a 4-bit ripple adder and its original

delay network.

both require large memory space and also require large
running time for delay computation. As shown in Fig-

ure 1, the maximum delay from primary inputs to primary
outputs corresponds to a longest path in the weighted
graph. A delay matrix store m � n entries, and a delay

bipartite graph stores m�n edges in worst case. A delay
network stores m + n edges in the best case but it may

store more thanm�n edges in the worst case. Delay com-
putation using the longest path takes O(jV j + jEj) time
in this case. Since these data structures for delay infor-

mation have a large number of edges, the corresponding
delay computation task is slower. This is exacerbated by

the fact that this computation may need to be done re-
peatedly (possibly in an inner loop) in several synthesis

applications.

In this paper, we will consider reducing the number of
edges and vertices in data structures. Let us consider

Figures 3 and 4. Internal vertices in a delay network cor-
respond to gates. If we associate an internal vertex to a

1-bit full adder instead of a gate, we can save edges and
vertices while keeping the same delay information of the
original delay network. When we use such a delay net-

work, we can reduce the delay computation time. This
example suggests that the network topology for the delay

abstraction does not have to be the same as the origi-

2 S3A3
B3

COUT

S2A2
B2

2

S0A0
B0

CIN

2

S1A1
B1

2

Fig. 4. Reduced delay network of the 4-bit ripple adder.

nal circuit. It is su�cient for the delay network that the

maximum weighted length from a source vertex to a sink
vertex on a delay network is equal to the delay between

the corresponding primary input and primary output. We
call such a data structure, the concise delay network. The

goal of this paper is to construct the minimum concise de-
lay network.

III. An Algorithm for Concise Delay Networks

In this section, we present a heuristic algorithm to gen-
erate a concise delay network with minimum size. Our

algorithm transforms a given delay network by applying
two transformation rules repeatedly to reduce the number
of edges and vertices. We consider only delay networks

with edge weight (with no vertex weight). This assump-
tion does not lose any generality, since vertex weight can

be easily transformed into edge weight. We denote the
weight of edge e by W (e).

First, we de�ne two transformation rules as follows:

Transformation Rule: TR.B-X (See Figure 5)

For any arbitrary four vertices v1; v2; v3; v4, if there

exist edges p1(v1!v3), p2(v2!v4), x1(v1!v4),
x2(v2!v3) and equation W (p1) � W (x1) =
W (p2) � W (x2) holds. Then delete edges

p1; p2; x1; x2, and create a vertex v and edges
s1(v1!v), s2(v2!v), t1(v!v3), t2(v!v4). The

weight of created edges are de�ned as follows:

W (s1) := 0

W (s2) := W (x2)�W (p1)
W (t1) := W (p1)

W (t2) := W (x1)

Transformation Rule: TR.Y-V (See Figure 6.)

(Case 1) For arbitrary vertex v, if the in-degree of v
is 1 and the out-degree of v is greater than 1. Then,

delete edge e(vs!v), each edge ei(v!vi) and vertex
v, and create each edge fi(vs!vi). The weight of

created edges are de�ned as W (fi) :=W (e)+W (ei).

iff. W(p1) - W(x2)
 = W(x1) - W(p2)

p1 p2

x1
x2

v1 v2

v3 v4

s1 s2

t1 t2

v1 v2

v3 v4

v

Fig. 5. TR.B-X.

vs

v

vs

vt

v

vt

(Case 1) (Case 2)

Fig. 6. TR.Y-V.

(Case 2) For arbitrary vertex v, if the in-degree of v
is greater that 1 and the out-degree of v is 1. Then,

delete edge e(v!vt), each edge ei(vi!v) and vertex
v, and create each edge fi(vi!vt). The weight of
created edges are de�ned as W (fi) := W (ei)+W (e).

On applying a TR.B-X or a TR.Y-V, the maximum
weighted length from each source vertex to each sink ver-
tex is not changed, and the number of paths from each

source vertex to each sink vertex is not changed. (We omit
the proofs of these facts, since they are easy to prove.) A

TR.B-X increases the number of vertices by one, while
keeping the number of edges the same. A TR.Y-V de-
creases the number of vertices by one and decreases the

number of edges by one. By applying the two transforma-
tion rules repeatedly, we can reduce the number of edges

in a network. A TR.B-X does not reduce the size of a net-
work, but it reduces the degree of vertices. The decrease

of degree of vertices increases the possibility of applying
TR.Y-V subsequently. Figure 7 shows delay networks ob-
tained by applying two transformation rules in series.

There are two possibilities to construct an initial delay

network. A delay bipartite graph, which is equivalent to
the delay matrix, is itself a delay network. An original
delay network (based on original circuit topology) is the

other possibility and it has to be transformed into a delay
network without vertex weight before we start to apply

transformation rules. We consider the use of both of them.

The following is a summary of the algorithm:

Algorithm A :

1. Given a delay network N .

2. Apply TR.B-X and TR.Y-V to N repeatedly in
any order until no more application of these two

transformation rules is possible.

12
3
412

31 2 1

(a)

12
3
41

1

11

2

0

(b)

122

1

1

11

2

0

0

(c)

12

2

1

1

11

2

0

(d)

1

10

1

1

1

1

2

0

(e)

Fig. 7. Delay networks by applying two transformation rules in

series. (a) as an initial delay network, we start from the bipartite

delay graphs of adder-like circuits, (a) =TR.B-X) (b)

=TR.B-X) (c) =TR.Y-V) (d) =TR.B-X) (e), (e) is the

resultant delay network.

S0S1S2S3COUT

A1 B1A2 B2A3 B3 A0 B0 CIN

2
2 22 2

0

2

2

2

00000000

Fig. 8. The resultant concise delay network for the 4-bit ripple

adder.

Figure 8 shows the resultant delay network of the 4-
bit ripple adder, which is transformed from the bipartite

delay graph in Figure 2.

IV. Extended Algorithms

We have left several questions unanswered for Algo-
rithm A.

1. Which type of initial delay network should be se-
lected, a delay bipartite graph or an original delay

network?

2. Do we need to extend B-X transformation rules which
transform many-by-many vertices?

3. Does the order of applying two transformation rules
a�ect the size of the resultant delay network? If it

does, how do we determine the order of application?

A. Initial Delay Networks

Both delay bipartite graphs and original delay net-

work can be given as initial delay networks for the algo-
rithm. Note that we assume that original delay networks
have been transformed into delay networks without vertex

weight. We apply our algorithm twice; once using a delay
bipartite graph and once using an original delay network,

then we can select the better of the two results.

(a) (b) (c) (d)

Fig. 9. 3-by-2 transformation emulated by 2-by-2 transformations.

000

11

1

1

1

(c)(a)

11 11
11 1

1

1

(b)

1
1

1

11

0000

Fig. 10. Two resultant delay networks in di�erent applying orders

of transformation rules.

When we start with an original delay network, we will
need another transformation rule to obtain better re-

sults. Since combinatorial circuits may have reconver-
gence, there may exist more than one path between two

vertices in original delay networks. Consequently, delay
networks may have parallel edges between two vertices
while we run Algorithm A. On the other hand, parallel

edges never appear in delay networks transformed from
delay bipartite graphs, since the path between any two

vertices is unique, if one exists. Once parallel edges ap-
pear in delay networks, they are never removed by TR.B-
X and TR.Y-V. We introduce another transformation

rule, TR.PD, which deletes parallel edges between two
vertices except for one edge with maximum weight among

them. We extend our algorithm to add TR.PD, and we
call it Algorithm A'.

B. Extended B-X Transformation Rules

TR.B-X is applied to 2-by-2 vertices. A similar trans-

formation rule could be de�ned for 2-by-3, 3-by-3 or
many-by-many vertices. Such extended B-X transforma-

tion rules can be realized as a series of (original) TR.B-X
and TR.Y-V. (See Figure 9.) Therefore, we use only 2-
by-2 TR.B-X and not many-by-many.

C. Order of Applying the Transformation Rules

The order of applying the transformation rules a�ects
the topology of the resultant delay network. Di�erent

orders result in di�erent numbers of edges in the resultant
delay network. (See Figure 10.) Unfortunately, we have
not found the any consistent order that gives the best

result in all cases.

To escape the local optimum, we extend our algorithm

to introduce the inverse transformation of TR.B-X.

Transformation Rule: TR.X-B (See Figure 11) For

vertex v whose in-degree is 2 and out-degree is

12

2

1

1

11

2

0

1

10

1

1

1

1

2

0

Fig. 11. TR.X-B. (the inverse transformation of TR.B-X).

2, and the four edges around v are: s1(v1!v),

s2(v2!v), t1(v!v3), t2(v!v4). Then delete edges
s1; s2; t1; t2 and vertex v, and create four edges

p1(v1!v3), p2(v2!v4), x1(v1!v4), x2(v2!v3).
The weight of created edges are de�ned follows:

W (p1) := W (s1) +W (t1)
W (p2) := W (s2) +W (t2)

W (x1) := W (s1) +W (t2)
W (x2) := W (s2) +W (t1)

Algorithm A+ :

1. Given a delay network N0. Let i = 0.

2. Apply TR.B-X, TR.Y-V and TR.PD to Ni re-
peatedly in any order until no more application

of transformation rules is possible. Then, we
obtain new delay network Ni+1.

3. Apply TR.X-B to Ni+1, repeatedly in any order
until no more application of TR.X-B is possible.

Then, we obtain new delay network N 0

i+1.

4. If the size of N 0

i+1 is smaller than that of N 0

i ,
then let i = i + 1 and goto Step 2. Otherwise,

we take N 0

i as the resultant delay network.

TR.B-X keeps the number of edges same, which means
the number of edges in the delay network never increase

while Algorithm A+ is going on. The result of Algorithm
A+ may be smaller than that of Algorithm A'. However,

the result is still only a local optimum.

V. Experimental Results

In this section we show the results of applying our algo-
rithms to some examples from the ISCAS combinational
logic benchmark suite. The experimental results show

that our algorithms reduce a large number of edges from
the initial delay networks. The number of remaining edges

is nearly proportional to the sum of source vertices and
sink vertices with a small proportionality factor.

First we demonstrate the characteristics of our algo-
rithms on simple delay models, and then we show the
result on real technology delay information, which demon-

strates our algorithm is still e�ective for real world.
As simple delay models, we consider two types of delay

models, `unit' and `unit-fanout' (`u-f' for short). In delay

model `unit', delay is computed as 1 per node in the cir-
cuit, and `unit-fanout' adds an additional delay of 0.2 per

fanout. We use the original circuits of ISCAS benchmark,
which means that we do not apply any logic optimization

to the circuits. We make both bipartite delay graphs and
original delay networks as initial delay networks, and in

each case considers two types of delay models. Bipartite
delay graphs are generated by computing delays of all
input-output pairs and original delay networks are trans-

formed into delay networks without vertex weight.

Table I shows how many edges are reduced by Algo-
rithm A' from each type of initial delay networks, in each

delay model. We describe only the number of edges in
the tables, since the number of vertices is less than that

of edges. There are no signi�cant di�erences with dif-
ferent delay models except for the bipartite delay graph
of C1908. We could not �nd from our experiment which

type of initial delay networks derives smaller resultant
networks in general. The conclusion thus is that we should

apply our algorithms for both types of initial delay net-
works and pick the smaller result.

Table II shows how many edges are reduced by itera-

tions of Algorithm A' and inverse transformations. We
have not found the optimum order of applying the trans-

formation rules to derive the minimum networks, how-
ever Algorithm A+ makes the resultant delay networks
smaller.

Table III shows the size of our best resultant delay net-
works compared with the number of primary inputs and
primary outputs. The average number of remaining edges

is 2.3 times of the sum of the numbers of primary inputs
and outputs, attesting to the quality of the results.

Algorithm A+ works also very e�ectively for real tech-

nology delay factor. We executed technology mapping of
the ISCAS benchmark circuits on an NEC gate-array li-

brary, and then, we generated delay matrices base on the
static delay analysis. The average number of remaining
edges is 3.5 times of the sum of the numbers of primary

inputs and outputs for actual library.

VI. Conclusion and future work

This paper presents an e�cient data structure, called

the concise delay network, for delay abstraction in com-
binational logic circuits; as well as simple and powerful
algorithms for deriving these concise delay networks. The

transformation rules de�ned in this paper are very sim-
ple and are easy to implement. The experimental results

show that even these simple rules can derive very small
sized concise delay networks. We show that concise delay

networks which have number of edges that are a small
multiple of the the sum of the number of inputs and out-
puts, are obtained in practice. Therefore, our approach

reduces the delay computational cost to O(jV j), while the
bipartite graph representation requires O(jV j2) computa-

tional cost, where jV j is the number of terminals.

TABLE I

The numbers of edges in delay networks for applying Algorithm A'

Circuit #of edges for bipartite delay graphs #of edges for original delay networks

Name m n Eg E1 (��E, E1=(m+ n)) Eg E1 (��E, E1=(m+ n))
unit delay u-f delay unit delay u-f delay

C432 36 7 225 69 (69%, 1.60) 69 (69%, 1.60) < 343 126 (64%, 2.90) 126 (64%, 2.90)

C499 41 32 1312 126 (90%, 1.73) 126 (90%, 1.73) < 440 234 (47%, 3.21) 234 (57%, 3.21)

C880 60 26 419 267 (36%, 3.10) 252 (40%, 2.93) > 729 209 (71%, 2.43) 218 (70%, 2.53)

C1355 41 35 1312 213 (84%, 2.92) 213 (84%, 2.92) < 1064 234 (78%, 3.21) 234 (78%, 3.21)

C1908 33 25 807 62 (12%, 1.07) 366 (55%, 6.31) 1522 263 (93%, 4.53) 300 (80%, 5.17)

C2670 233 140 1143 590 (48%, 1.58) 508 (56%, 1.36) > 2183 424 (91%, 1.14) 430 (80%, 1.15)

C3540 50 20 724 467 (35%, 6.67) 473 (35%, 6.76) < 2956 621 (79%, 8.89) 651 (78%, 9.30)

C5315 178 123 2978 1569 (47%, 5.21) 1559 (48%, 5.18) > 4492 869 (81%, 2.89) 882 (80%, 2.93)

C6288 32 32 784 146 (81%, 2.28) 146 (81%, 2.28) < 4382 1470 (66%, 23.0) 1470 (66% 23.0)

C7552 207 108 3544 1814 (49%, 5.76) 2049 (42%, 6.50) > 6206 1149 (81%, 3.65) 1261 (80%, 4.00)

m : the number of input terminals.

n : the number of output terminals.

Eg : the number of edges in the given delay network.

E1 : the number of edges in the resulting delay network.

��E : = (Eg � E1)=Eg, the ratio how many edges are reduced.

E1=(m+ n) : the ratio resulting edges per terminals.

TABLE II

The numbers of edges in delay networks (in unit delay model) on iterations in Algorithm A+.

Circuit Bipartite delay graphs Original delay networks

Name m n E1 f Ef (��E,
E
f

m+n
) E1 f Ef (��E,

E
f

m+n
)

C432 36 7 69 2 45 (35%, 1.05) < 126 1 126 (0%, 2.93)

C499 41 32 126 1 126 (0%, 1.73) < 234 2 232 (1%, 3.18)

C880 60 26 267 8 216 (19%, 2.51) > 209 2 206 (1%, 2.40)

C1355 41 35 213 5 176 (17%, 2.41) < 234 2 232 (1%, 3.18)

C1908 33 25 62 1 62 (0%, 1.07) < 263 7 240 (9%, 4.14)

C2670 233 140 590 5 442 (25%, 1.18) > 424 3 413 (3%, 1.11)

C3540 50 20 467 8 366 (22%, 5.23) < 621 7 582 (6%, 8.31)

C5315 178 123 1569 8 1285 (18%, 4.27) > 869 4 827 (5%, 2.75)

C6288 32 32 146 3 122 (16%, 1.91) < 1470 2 1457 (1%, 22.8)

C7552 207 108 1814 8 1554 (14%, 4.93) > 1149 8 1061 (8%, 3.37)

E1 : the number of edges just after the �rst iteration.

Ef : the number of edges in the �nal resulting delay network.

f : the iteration number at the �nal result.

��E : = (E1 � Ef)=E0, the ratio how many edges are reduced by iterations.

Ef=(m+ n) : the ratio resulting edges per terminals.

We have an idea for rise/fall delays; we make two ver-
tices for each terminal, one for `rise' and the other for
`fall', then we make directed edges whose weight means

the delay from the corresponding input transition to out-
put transition. Empirical study for such representation is

future work. The representation of unbounded delay of
boundary gates and the complexity analysis of the mini-
mum network problem are also future work.

References

[1] S. Note, F. Catthoor, G. Goossens, and H. J. D.
Man, \Combined hardware selection and pipelining
in high-performance data-path design," IEEE Trans.

on CAD, vol. 11, pp. 413{423, Apr. 1992.

[2] A. Kuehlmann and R. A. Bergamaschi, \Timing anal-
ysis in high-level synthesis," in 1992 IEEE Int. Conf.

on CAD, pp. 349{354, Nov. 1992.

[3] S. Even, Graph Algorithms. Computer Science Press,

Rockville, MD, 1979.

TABLE III

The size of the resultant delay networks (in unit delay

model).

Circuit Resulting networks

Name m n Er
Er

m�n

Er

m+n

C432 36 7 45 0.18 1.05

C499 41 32 126 0.10 1.73

C880 60 26 206 0.13 2.40

C1355 41 32 176 0.13 2.41

C1908 33 25 62 0.08 1.07

C2670 233 140 413 0.01 1.11

C3540 50 20 366 0.47 5.23

C5315 178 123 827 0.04 2.75

C6288 32 32 122 0.12 1.91

C7552 207 108 1061 0.05 3.37

Average 0.13 2.30

Er : the number of edges in the �nal resulting delay network;

smaller one among networks starting bipartite delay graphs

and original delay networks.

	ASP-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

