
Fanout-tree Restructuring Algorithm for Post-placement Timing

Optimization

T.Aoki, M.Murakata, T.Mitsuhashi and N.Gotoy

Semiconductor DA & Test Engineering Center,
yResearch and Development Center,

TOSHIBA

Kawasaki, JAPAN

Abstract

This paper proposes a fanout-tree restructuring algo-

rithm for post-placement timing optimization to meet

timing constraints. The proposed algorithm restruc-

tures a fanout-tree by �nding a tree in a graph which

represents a multi-terminal net, and inserts bu�er cells

and resizes cells based on an accurate interconnection

RC delay without degrading routability. The algorithm

has been implemented and applied to a number of lay-

out data generated by timing driven placement. Ap-

plication results show a 17% reduction in circuit delay

on the average.

1 Introduction

With today's sub-micron process, the interconnection

delay becomes a dominant factor in total circuit de-

lay. Therefore, timing consideration in logic and lay-

out design stages is indispensable for designing high

performance LSIs.

A number of works on repower of cell size and bu�er

insertion have been proposed [5, 6, 7, 8, 9]. However,

some traditional methods may arise timing violations

after layout because the methods use inaccurate delay

based on the number of fanouts.

To solve this problem, several synthesis/resynthesis

methods that consider layout information in the syn-

thesis process have been presented. Pedram et al. [1, 2]

describe a logic synthesis method in which rough place-

ment is done during logic synthesis process, and use

placement information to estimate delay and routabil-

ity. Ginetti et al. [3] and Kannan et al. [4] describe a

gate sizing and fanout-bu�ering method, which uses a

placement information to calculate interconnection de-

lay. However, timing measures used in these methods

are based on the estimated wire load capacitance. So,

the estimated interconnection delays during the syn-

thesis process are very di�erent from the actual inter-

connection delays after placement. For today's sub-

micron process, RC delay can amount to as much as

15% of the total interconnection delay. To obtain good

results, or to obtain timing error free design, it is im-

portant to optimize circuits on interconnection RC de-

lay based on the placement.

In this paper, we present a fanout-tree restructuring

algorithm for post-placement timing optimization. The

proposed algorithm restructures a fanout-tree by �nd-

ing a tree in a graph that represents a multi-terminal

net. Furthermore, the method inserts bu�er cells and

resize cells based on an accurate interconnection RC

delay without degrading routability. This method is

incorporated into a concurrent logic and layout design

system [10] to reduce circuit delay on the layout stage.

The algorithm has been implemented and applied to

a number of layout data generated by timing driven

placement. Application results show a 17% reduction

in circuit delay on the average.

The paper is organized as follows: Section 2 intro-

duces a basic idea for our approach. Some de�nitions

and problem formulation are shown in Section 3. The

detail of the fanout-tree restructuring algorithm is de-

scribed in Section 4. The outline of the post-placement

timing optimization is described in Section 5. Experi-

mental results are shown in Section 6 and concluding

remarks are given in Section 7.

2 Basic Idea

In this section, we describe a basic idea of the proposed

fanout-tree restructuring algorithm. Fig. 1 is an exam-

ple of tree structure of a multi-terminal net, v0 is a

signal source, v1; : : : ; v3 are signal sink (v1 isn't con-

nected with the tree yet) and v6 is a Steiner point. In

this example, an interconnection delay from v0 to v2
can be expressed as follows [11]:

da(v0; v2) = da(v0; v6) + �R(v6; v2)C(v6; v2)

+�R(v6; v2)Ci(v2); (1)

da(�; v0) = �R(v0)Cl(v0);

Page 1

where � = 1:1, � = 0:7, Ci(vi) is the input capacitance

of terminal vi, C(vi; vj) is the wire segment capacitance

between terminal vi and vj , and R(vi; vj) is a wire

segment resistance, R(vi) is a on-resistance of source

terminal vi and Cl(vi) is the load capacitance from

vertex vi toward leaf of a tree. C(vi; vj) and R(vi; vj)

are expressed as follows:

C(vi; vj) = cL(vi; vj); (2)

R(vi; vj) = rL(vi; vj); (3)

L(vi; vj) = jx(vi)� x(vj)j+ jy(vi)� y(vj)j;

where c is the wire capacitance per unit length, r is

the wire resistance, L(vi; vj) is a rectilinear distance

between vi and vj , and x(vi) and y(vi) are x coordinate

and y coordinate, respectively.

v3

v0

v2

v1

v6

Figure 1: Example of routing tree. v1 isn't connected

with this tree yet.

Let's consider the case that the new signal sink ter-

minal v1 is connected to terminal v2. The new delay

from v0 to v1 can be calculated as follows:

da(v0; v1) = da(v0; v2) + e(v2; v1); (4)

e(v2; v1) = C�(�R(v6; v2) + �Rm(v2))

+�R(v2; v1)C(v2; v1) + �R(v2; v1)Ci(v1);

Rm(v2) = R(v0) +R(v0; v6) +R(v6; v2);

C� = C(v2; v1) + Ci(v1);

where da(v0; v2) is given by (1), Rm(v2) is a sum of

wire segment resistance from terminal v0 to v2 and C�

is the increase of load capacitance. In equation (4),

da(v0; v2) is the actual delay from v0 to v2 and e(v2; v1)

is a estimation delay from v2 to v1.

We use A*-Search algorithm to �nd bu�er insertion

points. The algorithm is known as the e�cient algo-

rithm to �nd the minimum/maximum cost paths from

a given vertex s to other vertex t in a graph by the

following estimation cost f̂(v).

f̂(v) = â(v) + ê(v); (5)

where â(v) is a estimation cost of the optimal path

from s to v. Also, ê(v) is a estimation cost from v to

t. In equation (4), the term da(v0; v2) corresponds to

â(v) and e(v2; v1) corresponds to ê(v). Then, the delay

minimization problem can be solved by the A*-Search.

The fanout-tree restructuring algorithm is based on

the above idea. It composed of the following basic two

steps. In the �rst step, a fanout graph is generated

from a multi-terminal net (as shown in Fig. 6). The

detail of the fanout graph is described in Section 4.1.

The fanout graph includes terminals, Steiner points of

routing tree and bu�er cells that will be inserted by

fanout-tree restructuring process. In the second step,

fanout-tree is generated by �nding a path based on A*-

Search. The generated fanout-tree suggests locations

for the point of newly inserted bu�er cells and its size.

The detail of new estimation cost for A*-Search and

path �nding algorithm is described in Section 4.2.

3 De�nitions

In this section, we introduce some de�nitions that are

used for describing the algorithm.

Let c be a cell in a circuit C. Each cell has a set of

signal sink terminals, or I(c), and a source terminal,

or v0(c). The source terminal v0(c) has a connection

to a set of sink terminals of other cells that is called

fanout set of v0(c), or F(v0(c)). A terminal which

drives t 2 I(c) is denoted by D(t). Fig. 2 shows an ex-

ample, F(v0) = fv1; v2; v3g, I(c) = ftI
1
; tI

2
g, D(t1) = tI

4

and D(t2) = tI
5
.

t4

v0t2
I
t1
I

c

v1

v2

v3

t5

da(t4,t1)
I di(t1,v0)

di(t2,v0)
I

da(v0 ,v2)

da(v0,v3)

dr(t4,t1)
I

dr(t5,t2)
I

dr(v0,v2)

dr(v0,v3)

da(t5,t2)
I

da(v0,v1)
dr(v0,v1)

Figure 2: Calculating the actual and required delay.

A timing constraint dr(vi) and an actual delay da(vi)

for each terminal vi belong to fanout set can be ex-

pressed as follows:

dr(vi) = dr(v0(c); vi) +MIN [di(t
I
j ; v0(c))

+ dr(D(t
I
j); t

I
j)jt

I
j 2 I(c); vi 2 F(v0(c))];(6)

da(vi) = da(v0(c); vi) +MAX [di(t
I
j ; v0(c))

+ da(D(t
I
j); t

I
j)jt

I
j 2 I(c); vi 2 F(v0(c))];(7)

where di(t
I
j ; v0(c)) is an intrinsic delay from tIj to v0(c),

Page 2

dr(v0(c); vi) and da(v0(c); vi) are timing requirement

and actual interconnection delay from v0(c) to vi, re-

spectively. As equation (6) and (7), a slack for cell c,

or z(c) can be expressed as follows:

z(c) = zr(c)� za(c); (8)

zr(c) = MIN [dr(vi)jvi 2 F(v0(c))];

za(c) = MAX [da(vi)jvi 2 F(v0(c))]:

The problem of fanout-tree restructuring is formu-

lated as follows:

minimize jz(c)j; c 2 C

subject to dr(D(t
I
i); t

I
i) � da(D(t

I
i); t

I
i), t

I
i 2 I(()c).

4 Fanout-Tree Restructuring

Algorithm

In this section, we introduce the fanout-tree restruc-

turing algorithm. This algorithm consists of two basic

transformations, repower and bu�ering . The trans-

formations are illustrated in Fig. 3 and Fig. 4. The

repower chooses the best size of cell c and/or inserts

bu�er b (Fig. 3). The bu�ering inserts non-inverting

bu�ers (b1) and remakes a topology of the multi-

terminal net (Fig. 4).

The following pseudo-code is the fanout-tree restruc-

turing algorithm. In the �rst step, the algorithm eval-

uates the slack z(c) for the result of repower . If

repower does not meet timing constraint (z(c) < 0),

the algorithm applies bu�ering . The bu�ering process

makes a fanout graph , or G0(V 0; E0) and �nds the tree

Nt in the G0 by repeating a path search. The found

tree expresses how to remake a topology of the multi-

terminal net.

Fanout-Tree-Restructuring(c,�,� ,�)

f

z(c) = Repower(c,�,� ,�);

if(z(c) � 0) return;

G
0(V 0

; E
0) = Make-Fanout-Graph(c; �; �);

Nt = source vertex;

Let SINK be a set of all the sink vertices of V 0

which is sorted by the slack.

for each v� 2 SINK f

if(v� is included Nt) continue;

PATH = A*-Search(Nt; v
�

; �);

Nt = Nt [PATH;

Update-Tree-Spec(Nt); g

Insert-Bu�er(Nt; �) ;

g

v3v2v1

v3v2v1

v3v2v1v3v2v1

b b

b

b

c c c c

Figure 3: Repower transformations

I

v3v2

v1

c

b1

Figure 4: Bu�ering transformations

4.1 Fanout Graph

In this subsection, we de�ne the fanout graph which is

used in bu�ering to generate a fanout-tree.

A multi-terminal net can be represented as a directed

planar graph (DPG), or G(V; E). Where V is a set of

vertices which correspond to a signal source terminal v0
(source), sink terminals F(v0) (sink) and Steiner

points W (spoint), that is V = fv0g [F(v0) [W .

Also, E is a set of directed edge. If vi and vj can be

connected by straight line and vj isn't source , vi has a

outgoing edge from vi to vj , or (vi; vj) 2 E. In DPG,

there is a source at most one and it has only outgoing

edges. Fig. 5 shows an example of DPG, where v0 is

a source , v1,: : : ,v3 are sink and v4; : : : ; v6 are spoint .

The symbol '!' are uni-directed edges and '$' are bi-

directed edges.

Let G0(V 0; E0) be a fanout graph that is made by in-

serting new vertices and edges into a DPG G(V;E),

that is V � V 0 and E � E0. If there is an edge

(vi; vj) 2 E, we insert a new vertex g which corre-

sponds to a bu�er cell and insert new two edges (vi; g)

and (g; vj).

The following pseudo-code is the algorithm to make

fanout graph .

Make-Fanout-Graph(c; �; �)

f

E
0 = ;, V 0 = V ;

G(V;E) = Make-DPG(c; �; �);

for each (vi; vj) 2 E f

[x(g); y(g)] = SearchLoc(g�);

Page 3

if(g can't place) continue;

V
0 = V

0

[fgg, E0 = E
0

[f(vi; g); (g; vj)g;g

return G
0(V 0

;E
0);

g

The SearchLoc step aims to search a rectangular area

([x(vi); y(vi)]; [x(vj); y(vj)]) for a placement location of

g. Fig. 6 depicts the fanout graph G0 that is re-made

from DPG in Fig. 5, where g; g1; g2 are inserted bu�er .

4.2 Path Search

In order to �nds the path which meet the timing con-

straint, we use the A*-Search technique [13]. This ap-

proach is based on the performance driven global router

described in [14]. In the �rst step of A*-Search, start

vertices are pushed into a heap list H, that is main-

tained during path search. The A*-Search repeats the

following process until the target vertex v� is popped

out from H.

1. Pop out a vertex u from H.

2. Calculate new cost for vertex v which adjacent

to u.

3. If vertex v does not have trace-back-point, give

cost and push v into H.

4. If v has trace-back-point, compare the new cost

and old cost. If new cost are better than old cost,

change new trace-back-point of v to u, give new

cost to v and push v into H.

To �nd the path which meet the timing constraint,

we de�ne following cost function from equation (5).

f(v) = dr(v
�)� (da(v) + e(v));

da(v) = da(u) + �Rm(u)(C(u; v) +Ci(v)

+�C(u; v)R(u; v) + �R(u; v)Ci(v);

e(v) = �Rm(u)Cbuf + �Rbuf [C(v; v
�) + Ci(v

�)]

+�C(v; v�)Ci(v
�) + �C(v; v�)Ci(v

�);

Rm(v) =

�
on-resistance if v is bu�er

Rm(u) +R(u; v) otherwise

Cm(v) = MIN [Cm(u)� C(u; v)� Ci(v);

(dr(v)� da(u; v))=Rm(u)];

(u;v) 2 E 0;

where Cbuf and Rbuf are input capacitance and on-

resistance of bu�er , respectively. C(u; v) and R(u; v)

are given by equation (2) and (3). Rm(v) is a sum of in-

terconnection resistance from source v0(c) to v. dr(v
�)

is a required delay for a target vertex v� 2 F(v0(c)).

e(v) is a estimated delay from v to target v�. da(v)

is an actual delay from source v0(c) to v when pass-

ing through u. Cm(v) is an upper bound of add-able

capacitance at v to meet timing constraints of already

found paths.

In the step 4, if the value of da(v) is bigger than

required delay dr(v), the A*-Search does not push v

into H because the condition da(v) > dr(v) means that

the delay of this path does not meet the timing con-

straint for v. Also, the value of Cm(v) is a negative,

the A*-Search does not push v into Hbecause the neg-

ative value of Cm(v) means that we can not add any

capacitance to v.

In the step1, the target vertex v� is popped out from

H, the A*-Search traces back from the target v� to start

vertices to �x the path.

Let us consider a case of path search with an example

of Fig. 6, Fig. 7 and Fig. 8. We assume that Fig. 6 is

a fanout graph and Fig. 7 is a tree that was found

so far. In this case, the set of start vertex is Nt =

fv0; v1; v3; v4; v5; v6; g1g, the target vertex is v� = v2.

The �nal step traces back the path as (v2 ! g2 ! v6).

As a result, the path PATH = fv2; g2; v6g is found. In

this example, the net topology is depicted in Fig. 9.

4.3 Repower

In this subsection, we describe the algorithm of

repower . The repower has done following transforma-

tions:

- Substitute other cell that has the same boolean func-

tion.

- Substitute other cell that has a negative boolean

function and insert inverting bu�er.

- Insert a non-inverting bu�er.

- Insert two inverting bu�ers.

These transformations are depicted in Fig. 3. The

repower algorithm is simple. The �rst step of

repower makes a candidate list of transformation. The

transformation candidate for a cell c is a combination of

logically equivalent/negative cells and inverting/non-

inverting bu�ers. In the second step, repower has done

the following processes for each candidate of transfor-

mation:

- Place the substituted cell and inserted bu�ers.

- Construct a trunk Steiner tree [12] for calculating

objective function z(c).

- Choose the best transformation that has the mini-

mum z(c).

Page 4

5 Post-placement Net-list Opti-

mization

In this section, we describe the inputs, outputs and

an outline of the post-placement net-list optimization

(PNO). The inputs are a net-list of a circuit C, after

placement layout data �, timing constraints � and li-

brary �. The input library includes multiple transistor

size cells which have the same boolean function and

the timing information of cell consists of an intrinsic

delay, input capacitance and on-resistance. The input

timing constraint consists required time for each inter-

connection. The following pseudo-code is an outline of

PNO.

postPlacementNetlistOptimizer(C,�,� ,�)

f

CELL LIST = ;;

for echo c 2 C f

z(c) = Calculate-Slack(c; �; �);

CELL LIST [c; z(c)]; g

for each c 2 CELL LIST

Fanout-Tree-Restructuring(c,�,� ,�);

g

In the �rst step of the PNO, required and actual de-

lay for each cell c is calculated. The CELL LIST is

sorted by slack z(c), so that the �rst cell of the list has

the smallest slack. In the second step, the fanout-tree

restructuring , which resizes a cell and inserts bu�ers,

is applied to each cell in CELL LIST to meet timing

constraints. The outputs are net-list and layout data.

The output net-list is optimized by the fanout-tree re-

structuring . Also, the output layout data has new

location of resized cells and inserted bu�ers.

6 Experimental Result

The above method has been implemented. The pro-

gram runs on SUN/SparcStation-10 and applied to

SOG/EA type LSIs as shown in Table 1. Experi-

ments have been performed as the following procedure:

(1) Timing driven placement with an initial synthesized

net-list. (2) Net-list optimization by our method(PNO)

for the timing driven placement result. Set the timing

constraints to critical paths based on the precisely esti-

mated interconnection delays for given cell placement

results [10].

The experimental results are shown in Table 2. The

column labeled Delay represents the critical path de-

lays. Notice that pre is a before net-list optimization

and post is an after optimization. On the average, delay

was reduced by 17%.

Table 1: Chips characteristics
CHIP1 CHIP2 CHIP3 CHIP4

Technology 0.5�m 0.8�m 0.8�m 0.8�m

#Nets/#Cells 60k/50k 23k/20k 54k/43k 23k/18k

CHIP5 CHIP6 CHIP7 CHIP7

Technology 0.8�m 0.5�m 0.5�m 0.5�m

#Nets/#Cells 14k/11k 12k/12k 19k/17k 30k/26k

Table 2: Experimental results
Delay(ns) delay cpu

pre post reduction(%) time(min:sec)

CHIP1 23.00 18.98 17.5

17.49 11.14 36.3

15.74 11.14 29.1

7.95 7.39 7.7

CHIP2 50.09 41.99 16.2

47.28 39.60 16.2

44.61 35.75 19.9

43.72 36.29 17.0

CHIP3 52.44 44.77 14.8

27.78 24.33 12.4

CHIP4 42.87 39.88 7.0

32.13 18.44 42.6

22.53 16.52 26.7

18.14 14.72 18.7

17.81 12.99 27.1

5.26 5.14 2.3

CHIP5 10.88 10.81 0.6

41.88 39.00 6.9

CHIP6 14.87 13.68 8.1 15:19

CHIP7 15.65 12.44 20.5 28:31

CHIP7 13.73 11.54 15.9 17:29

7 Conclusions

We have presented a fanout-tree restructuring algo-

rithm for post-placement timing optimization. The al-

gorithm performs the restructuring to meet the timing

constraints by bu�er insertion and gate sizing. By the

A*-Search on fanout graph, the optimal bu�er loca-

tions are found without degrading routability that may

occur by wire crossing caused by the restructuring. Ex-

perimental results show 17% reduction in circuit tim-

ing for circuits laid out by timing driven placement

program.

References

[1] M.Pedram and N.Bhat, 28th DAC, pp.99-105,1991.

[2] M.Pedram and N.Bhat, ICCAD-91, pp.134-137,1991.

[3] A.Ginetti and D.Brasen, CICC-93,

pp.9.2.1-9.2.4,1993.

[4] L.N.Kannan,P.R.Suaris and H.Fang, 31st DAC,

pp.327-332,1994.

[5] M.A.Cirit. 24th DAC, pp.121-123,1987.

Page 5

[6] P.K.Chan. 27th DAC, pp.353-356,1990.

[7] K.Yoshikawa et al., 28th DAC, pp.112-117,1991.

[8] K.J.Singh and A.Sangiovanni-Vincentelli, 27th DAC,

pp.357-360,1990.

[9] S.Lin and M.Marek-Sadowska, Proc. of the European

Conference on Design Automation, pp.539-544,1991.

[10] M.Murakata et al., CICC-95, pp.465-468,1995.

[11] H.B.Bakoglu, Circuits, Interconnections, and Packag-

ing for VLSI, Addison-Wesley,1990.

[12] M.Igarashi et al., SASIMI-93,pp.253-244,1993.

[13] N.J.Nilsoon, Problem-Solving Methods in Arti�cial

Intelligence, McGraw-Hill,1971.

[14] S.Prasitjutrakul and W.J.Kubitz, IEEE Trans. on

CAD, vol.CAD-11,no.8,pp.1044-1051,1992.

v3

v0

v2

v1

v4

v5

v6

Figure 5: Example of directed planner graph. '!' are

uni-directed edges and '$' are bi-directed edges.

v3

v0

v2

v1

g g1

g
g

gg

g

g2

g

g

g

g

g

ggg

g

Figure 6: Example of fanout-graph. g; g1; g2 are in-

serted bu�er .

v3

v0

v1

g1
v4

v5

v6

Figure 7: Example of start vertices

v3

v0

v2

v1

g1

g2

v4

v5

v6

Figure 8: Example of maximized slack tree

v3

v0

v2

v1

g1

g2

Figure 9: Example of fanout-tree con�guration. g1 and

g2 are inserted bu�er cells.

Page 6

	ASP-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

