
A Neural Network Approach to the Placement Problem

M. Saheb Zamani G.R. Hellestrand

School of Computer Sc. and Eng. School of Computer Sc. and Eng.

University of N.S.W. University of N.S.W.

Sydney, NSW, 2052 Sydney, NSW, 2052

Tel: +61 2 385-4898 Tel: +61 2 385-4028

Fax: +61 2 385-5995 Fax: +61 2 385-5514

e-mail: morteza@vast.unsw.edu.au e-mail: G.Hellestrand@unsw.edu.au

Abstract| In this paper, we introduce a new neural

network approach to the placement of gate array de-

signs. The network used is a Kohonen self-organising

map. An abstract speci�cation of the design is con-

verted to a set of appropriate input vectors fed to

the network at random. At the end of the process,

the map shows a 2-dimensional plane of the design in

which the modules with higher connectivity are placed

adjacent to each other, hence minimising total connec-

tion length in the design. The approach can consider

external connections and is able to place modules in

a rectilinear boundary. These features makes the ap-

proach capable of being used in hierarchical oorplan-

ning algorithms.

I. Introduction

Given an abstract speci�cation of a circuit, a placement

algorithm �nds the position of all modules in the design in

a 2-dimensional plane so that an objective function (usu-

ally total connection length) is minimised. The speci�-

cation normally contains a list of connectivities1 between

the modules in the form of a matrix, called a connectiv-

ity matrix and sometimes restrictions on the module port

positions.

In this paper, we present an algorithm based on the Ko-

honen self-organising map [4]. The self-organising princi-

ple has been previously applied to the placement prob-

lem [3, 2, 6, 1]. Kim and Kyung [3] take the two coordi-

nates, (x; y), of the modules on a plane as the inputs to

the network and the modules themselves as the outputs.

In this way, each neuron (module) is associated with the

two coordinates (x; y) at which it is placed. The neigh-

bourhood of an output neuron (module) is de�ned as the

neurons corresponding to the modules having connections

to it. The process involves applying a random (x; y) coor-

dinate pair to the network at each iteration, selecting the

module which is the least distance from the coordinates

1Connectivity is often considered as the number of connections
between modules. It can also be de�ned as a number indicating the

importance of connections to be minimised.

in the input vector, and updating the coordinates of the

neighbouring nodes according to their current distance

from the input vector. After a number of iterations, the

algorithm converges to the state where the positions of all

modules are determined. Chang and Hsiao's approach [1]

is similar to the above except they use a force-directed

method to generate the input vectors based on the cur-

rent position of the modules. These approaches do not

distinguish between high and low connectivities between

modules, hence the neighbourhood may inappropriately

include some modules with low connectivity.

Hemani and Postula's approach [2] is di�erent in that

the inputs are n dimensional vectors originating from the

connectivity matrix (the coordinate j of an input vector

Xi, xi;j, is the number of connections between module i

and module j). The neurons form a 2-dimensional plane

where the modules are to be placed. During the process,

the vectors are input to the network and the weights are

updated so that the neighbouring neurons of the module

associated with the input vector become more attractive

to the modules connected to it. At the end of this process,

each neuron is occupied by a module in such a way that

the connected modules are placed close together. This

approach works well for a binary connectivity matrix but

does not converge in many cases [6].

In our approach, a set of n-dimensional vectors is fed to

the network and the map assigns the modules to the slots

(neurons) in an optimised way. Connectivities greater

than 1 are also considered in the process. The idea is

explained in detail in Section III after a brief introduc-

tion of self-organising neural networks.

II. Self-Organising Maps

A self-organising neural network consists of m output

nodes which are fully connected to n inputs with variable

weights (Fig. 1). Therefore, each output node j has an

n-dimensional weight vector ~Wj = (w0j; w1j; :::; wn�1;j).

The weight vectors are set to small random numbers ini-

tially and are updated at each iteration. Each time, an n-

dimensional input vector ~V = (v0; v1; :::; vn�1) is applied



w ij

j

vi

Output Nodes

(Coordinates of a
distance vector)

Input Nodes

Fig. 1. Self-organising neural network.

Fig. 2. Neighbourhood in the self-organising map.

to the network and all output nodes compare their weight

vectors with the input vector. The node whose weight

vector is most similar to the input vector (i.e. their Eu-

clidean distance of the two vectors is the least) is selected

and its weight vector together with the weight vectors of

all its neighbouring nodes are updated so that they be-

come more similar to the input vector by a gain factor

(�):

wij
new

= wij
old

+ �(vi �wij
old
): (1)

The neighbourhood covers most of the output nodes

around the selected node at the beginning but it is re-

duced during the process until it contains only the selected

node (Fig 2). The gain factor is set to a number less than

and close to 1 initially and decreases linearly in time. At

the end of the process (training the network), the output

nodes which are geographically close in the network are

assigned by (i.e. respond best to) the input vectors with

small distances and the input vectors with large distances

are assigned to far output nodes.

III. Basic Concept

A set of n nodes are to be assigned to n modules which

are connected by a number of wires. The connectivity

information is given in the form of a matrix whose entry,

Cij i; j 2 [0; n�1], is the connectivity between the module

pair i and j. To minimise the total connection length in

the design, heavily connected modules should be placed

adjacent to each other. Since in general, satisfying all

the adjacency requirements may not be possible in a 2-

dimensional plane, a self-organising map is used to map

this higher dimensional proximity information onto a 2-

dimensional plane.

The Kohonen self-organising process starts with a set

of input vectors representing module connectivities and

assigns the vectors with highest connectivities (least dis-

tances) to the neurons which are geographically close in

the map after a number of iterations. To apply the self-

organising principle to the placement problem, we calcu-

late a vector for each module so that the distance between

each pair of modules reects the �nal desired proximity

of the module pair in the 2-dimensional map. The de-

sired proximity can be derived from the connectivity in-

formation; the heavier the connectivity Cij, the closer (in

distance) the modules i and j should be placed. These

vectors are then fed to the network and recycled at ran-

dom during successive iterations. At the end of the pro-

cess, the distance vectors belonging to the modules heav-

ily connected are assigned to the neurons which are geo-

graphically close.

For hierarchically speci�ed circuits, the oorplan of the

upper hierarchy levels can guide the oorplanning process

of the lower levels by applying constraints to the submod-

ules' ports positions [8]. These constraints are considered

in our algorithm by initialising the weight vectors of the

neurons at the desired port positions to values close to the

main vectors of the submodules connected to the ports,

depending on the number of connections between them.

In other words, the ports are considered as single point

submodules whose positions are �xed. In this way, the

algorithm can handle complex cases where a port is con-

nected to many modules with di�erent connectivities and

can place the modules with more connections closer to

that port.

Another strength of this approach is its capability to

work with rectilinear shapes. The complexity of rectilin-

ear shapes results in current oorplanners employing rect-

angular dissection approaches which may result in large

waste space. In our approach, this is done simply by con-

sidering a rectilinear map with the shape obtained from

the upper level oorplanning process.

IV. Distance Vectors

The objective is to generate a set of vectors ~V whose

similarities (distances) correspond to the connectivities

between n modules. The following equation holds for

all vector pairs ~Vi = (v0i; v1i; :::; vn�1;i) and ~Vj =

(v0j; v1j; :::; vn�1;j):

n�1X

k=0

(vik � vjk)
2 >

n�1X

k=0

(vik � vlk)
2 i� Cij < Cil:

If the vectors are normalised vectors, one possible solution

to the above relations is:

8i; j = 0; :::; n� 1



~Vi: ~Vj = K:Cij < 1 if i 6= j

~Vi: ~Vi = 1 if i = j (2)

where K is a constant factor to keep the vij's within the

domain of real numbers2. This is because when

n�1X

k=0

(vik:vjk) <

n�1X

k=0

(vik:vlk)

then

n�1X

k=0

(vik � vjk)
2 >

n�1X

k=0

(vik � vlk)
2

for normalised vectors due to the fact that

n�1X

k=0

v2ik =

n�1X

k=0

v2jk =

n�1X

k=0

v2lk = 1:

This results in a system of
n(n+1)

2
equations with n2 vari-

ables, so we can select the
n(n�1)

2 variables arbitrarily to

generate a solution. To simplify the solution process, we

take

vij = 0 8i > j:

V. Algorithm

After initialising the weight vectors for all neurons to

small values, the vectors generated by the method of

Section IV are selected at random and fed to the net-

work at each iteration. As in the standard Kohonen self-

organising process [4], the best responding neuron j� cor-

responding to the minimum dj is selected where:

dj =

n�1X

i=0

(vi � wij)
2;

vi = the ith coordinate of the distance vector;

wij = the weight from the input node i to the output

node j (see Fig. 1).

Then the weights of the neighbouring nodes to j� are up-

dated according to equation 1.

The above procedure is repeated for a speci�ed num-

ber of iterations. As with the standard self-organising

process, convergence is guaranteed [4].

VI. Experimental Results

The algorithm was applied to 4 examples derived from

[5] and [2]. Only the global ordering phase [4] was used

to train the network. The initial neighbourhood was set

2
K must be chosen so as to make vik small enough to satisfy

equation 2.

39 7 5 1 0 2 4 6 8

0 0 1 0 1 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0

1 0 0 0 1 0 1 0 0 0

0 1 0 0 0 1 0 1 0 0 

1 0 1 0 0 0 1 0 1 0 

0 1 0 1 0 0 0 1 0 1

0 0 1 0 1 0 0 0 1 0 

0 0 0 1 0 1 0 0 0 1

0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 1 0 1 0 0 


Fig. 3. 10-module problem.(a): An optimal placement (b):
Connectivity matrix.

so as to cover about 70% of the neurons, and then the

coverage was decreased linearly with time to 0 after 1000

iterations. The gain factor was initialised to 0.4 and de-

creased linearly with time to 0.04 after 1000 iterations, as

recommended by Kohonen [4]. The network size was set

to 4 times the number of modules to avoid assignment of

more than one module to one node.

For the 10-module example described in [5] (Fig. 3),

the Persky and Smith's algorithm [5] which is based on a

Hop�eld neural network produced more than 30% worse

results than the optimum solution. The optimal solution's

total connection length is 20 for this example. This result

was achieved in 50 trials in which only 5 of the trials were

valid.

We applied our algorithm to this problem using 4 trials

all of which were valid and very close to the global op-

timum (Table I). The algorithm in [2] produced optimal

result for this example, but may not work for the exam-

ples with non-binary connectivity matrices. We changed

the connectivities between the modules 1 and 3, and be-

tween modules 3 and 5 to 16 to compare our algorithm

with [2]. While our algorithm gave a result not far from

optimum, the algorithm in [2] did not converge after 5000

iterations even for a number of trials with di�erent initial

weights.

The second example, adopted from [2] is known as the

9-module design (Fig. 4). Although the approach in [2]

sometimes produces optimum results, it does not converge

in many cases even for the binary connectivity matrix [6].

In 3 trials, our algorithm produced 3 valid results one

of which equal to the global optimum and the other two

close to optimal solution (Table I). We again changed the

connectivity matrix so as to contain non-binary values

(Fig. 5). As shown in Fig. 6, our approach has placed all

the modules with high connectivities (solid lines) adjacent

to each other and other adjacency requirements (dotted

lines) are also met to some extent. A row assignment

method as in [3] may be applied to modify the module

positions. The algorithm in [2] did not converge for this

example after 5000 iterations.

The time required by the algorithm on a SUN4 work-

station for all the above examples was less than 5 seconds

which shows the approach is practical. The summary of

the results is given in Table I.



0 2

3 4 5

6 7 8

1

Fig. 4. 9-module example.

0 2

3 4 5

6 7 8

1 16

16

16

2

1 2

2

10

17 232

4

Fig. 5. 9-module example with non-binary connectivities.

16
17

10

32

2

2

4 2 2

16

16

3 0

5

17

4

6 2

8

1

Fig. 6. The result of placement for the modi�ed 9-module
example.

TABLE I
Comparison of connection length for 4 examples.

Total connection length

No of Persky's Hemani's Our Opt.
modules Alg. Alg. Alg. Sol'n

Persky 10 27 20 22 20
example (mean) (mean)

Persky ex. 10 - Not 70 50
(non-binary) Converged

Hemani 9 - 12 17.7 12
example (mean)

Hemani ex. 9 - Not see -
(non-binary) Converged Fig 6

VII. Conclusion

In this paper, we presented an approach based on self-

organising maps for the placement of regular designs like

gate arrays. The proximity requirements, in the form of

a connectivity matrix, which may not be fully met in 2

dimensions were converted to a set of n-dimensional dis-

tance vectors whose similarities (distances) correspond

to proximities. These vectors were then mapped to

a 2-dimensional plane by the Kohonen self-organising

method. The advantage of this approach over existing

approaches is that it considers connectivities greater than

one in the calculations, as is required for real designs. The

algorithm always gave valid results very close to optimum

and converged in short periods of time. The approach is

capable of placing the modules inside rectilinear regions

with external ports connection constraint, which may be

useful in hierarchical oorplanning. Another version of

the algorithm has been successfully applied to the oor-

planning problem [7].

References

[1] R-I Chang and P-Y Hsiao. Arbitrarily sized cell place-

ment by self-organizing neural networks. Proceedings

of IEEE International Symposium on Circuits and

Systems, pp. 2043{2046, 1993.

[2] A. Hemani and A. Postula. Cell placement by self-

organisation. Neural Networks, 3:377{383, 1990.

[3] S-S Kim and C-M Kyung. Circuit placement on arbi-

trarily shaped regions using the self-organization prin-

ciple. IEEE Transactions on Computer-Aided Design,

11(7):844{854, July 1992.

[4] T. Kohonen. The self-organizing map. Proceedings of

the IEEE, 78(9):1464{1480, September 1990.

[5] G. Persky and W. R. Smith. Experiments on cell

placement with a simulated neural network. Pro-

ceedings of International Workshop on Placement and

routing, pp. 7.4{7.7, 1988.

[6] R. Sadananda and A. Shrestha. Topological maps for

VLSI placement. International Joint Conference on

Neural Networks, pp. 1955{1958, 1993.

[7] M. Saheb Zamani and G. R. Hellestrand. A new neural

network approach to the oorplanning of hierarchical

VLSI designs. International Conference on Neural,

Parallel and Scienti�c Computations, 1995.

[8] M. Saheb Zamani and G. R. Hellestrand. A step-

wise re�nement algorithm for integrated oorplan-

ning, placement and routing of hierarchical designs.

Proceedings of IEEE International Symposium on Cir-

cuits and Systems, 1995.


	ASP-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index


