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Abstract|We present a new technique that broad-
ens the scope of BDD application. It is a method for
manipulating regular expressions that represent sets
of sequences including repetitions of symbols. In gen-
eral, sequences in the set represented by a regular
expression have an in�nite length and this makes rep-
resenting and manipulating them di�cult.
In this paper, we introduce length constraints into

a representation of regular expressions. Under these
constraints, our method can represent and manipu-
late large-scale sets of sequences of regular expressions
compactly and uniquely and greatly accelerates oper-
ations of regular expressions.
As regular expressions can represent behaviors of a

�nite state machine, our technique provides a useful
analysis method of �nite state machines and can be
applied to formal hardware veri�cation techniques.

I. Introduction

Recently, formal LSI design veri�cation methods have
attracted much attention [3, 1]. A typical approach is to
show the correctness of designs by comparing the behav-
ior of an implementation and its speci�cation. Both an
implementation and its speci�cation are represented by
�nite state machines. Finite state machines play impor-
tant roles as models in formal veri�cation, so a method
that enables their e�cient manipulation is required. Pre-
viously proposed methods represent transition relations of
�nite state machines to analyze their behavior. Although
the Binary-Decision-Diagram-based approaches [5, 15] are
very sophisticated, there are cases when transition rela-
tions cannot be represented in reasonable time and space.
In this paper, we propose an approach based on regu-
lar expressions for representing and manipulating �nite
state machines. Finite state machines are equivalent to
regular expressions. Sequences in a set represented by
a regular expression are equivalent to the transitions of
its corresponding �nite state machine. Regular expres-
sion inequivalence is NP-hard [13], [14] and of course �-
nite state machine inequivalence is NP-hard too. To re-
lax the complexity of manipulating regular expressions,
we introduce length constraints into the representation
of regular expressions. Length constraints enable us to
manipulate regular expressions as �nite sets of limited
length sequences. We propose the way to represent sets

of sequences as sets of combinations and a method of ma-
nipulating sets of combinations using Binary Decision Di-
agrams (BDDs).
BDDs are graph-based representations of Boolean func-

tions and enable us to manipulate Boolean functions ef-
�ciently in terms of time and space [2]. There are many
cases in which conventional algorithms can be signi�-
cantly improved by using BDDs [8, 3]. As our under-
standing of BDDs has deepened, the range of applications
has broadened. Besides Boolean functions, we are often
faced with manipulating sets of combinations in many LSI
design problems. By mapping a set of combinations into
Boolean space, it can be represented as a characteristic
function using a BDD. This lets us manipulate a huge
number of combinations implicitly, which has never been
practical before. Based on implicit set representation,
new two-level logic minimization methods have been de-
veloped [4, 9]. These techniques are also used to solve
a kind of covering problem [7]. Of course, transition re-
lations of a �nite state machine can be represented as a
characteristic function using BDDs [5, 15].
A zero-suppressed BDD (ZBDD) is a new type of BDD

adapted for the implicit set representation [12]. It can
manipulate sets of combinations more e�ciently than con-
ventional BDDs, especially when dealing with sparse com-
binations. We have recently studied cube set algebra for
manipulating sets of combinations [11], and proposed e�-
cient algorithms for computing cube set operations based
on ZBDDs. This technique is useful for many practical ac-
tivities related to LSI design, including multi-level logic
synthesis [10] and fault simulation.
In this paper, we present a new technique of manipu-

lating regular expressions that represent sets of sequences
including repetitions of symbols under length constraints
by using ZBDDs. This method can represent regular
expressions with large-scale sets of sequences compactly
and uniquely. In this method, we can atten regular ex-
pressions into canonical forms of sets with millions of se-
quences, which have never been represented before. Con-
structing canonical forms of sets of sequences immediately
leads to equivalence checking of regular expressions. Since
the calculus of regular expressions is a basic model for ma-
nipulating �nite state machines, our method is expected
to be useful for the formal veri�cation of LSIs.
We will �rst explain regular expressions and ZBDDs.



Next we will present the method for representing regular
expressions under length constraints with ZBDDs and dis-
cuss the algorithms of operation for regular expressions.
Finally, we will show the implementation of our method
and experimental results.

II. Preliminary

A. Regular Expressions

A regular expression provides a way of describing cer-
tain sets of sequences, and is de�ned over a certain set
of symbols. Here, we suppose that regular expressions
are built up by applying union, concatenation, and clo-
sure operations to the sets. To be more precise, let
�=f�1,� � � ,�kg be a �nite set of symbols. Then:

� Each of the expressions �1,� � � ,�k is a regular expres-
sion on �, as are � (the null string) and � (the empty
set).

� If S and T are regular expressions on �, then so is
their union S+T and their concatenation ST.

� If S is a regular expression on �, its closure S* (=�
+ S + SS + � � � ) is also a regular expression.

� Only those expressions that can be obtained by a
�nite number of applications of the above operations
are regular expressions on �.

The set � is usually called the alphabet of the expressions
based on it. In this paper, the notation L(R) is a set of
strings which regular expression R represents, jsj repre-
sents the length of a sequence s, and L(R)i is a subset of
L(R), that is fsjs2L(R),jsj=ig.
There is often a case when two quite di�erent-looking

regular expressions can represent the same set of se-
quences. For example, both a* + a*bb(b + aa*bb)*(�
+ aa*) and (bbb* + a)* represent the same set of se-
quences that do not contain isolated b's. Similarly, both
b*ab*(ab*ab*)* and (b*ab*a)*b*ab* represent the same
set of sequences that contain an odd number of a's.
In LSI designs, the implementation and speci�cation is
represented by di�erent �nite state machines, and the
corresponding regular expressions are usually di�erent.
Therefore, checking the equivalence of two quite di�erent-
looking regular expressions is a useful way for us to verify
LSI designs and that is our aim in this paper.

B. Zero-suppressed BDDs

Zero-suppressed BDDs (ZBDDs) are a new type of BDD
adapted for representing sets of combinations [12]. They
are based on the following reduction rules:

� Eliminate all nodes with the 1-edge pointing to the
0-terminal node. Then connect the edge to the other
sub-graph directly (Fig. 1).

� Share all equivalent sub-graphs in the same manner
as with conventional BDDs.

Notice that, contrary to conventional BDDs, we do not
eliminate nodes whose two edges both point to the same
node. This reduction rule is asymmetric for the two edges

0

0

x
1

Jump

f f

Fig. 1. Reduction Rule for ZBDDs.
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Fig. 2. E�ect of the Reduction Rule.

because the nodes remain when their 0-edge points to
a terminal node. When the number and order of the
variables are �xed, ZBDDs provide canonical forms for
Boolean functions.
Fig. 2 illustrates conventional and ZBDDs represent-

ing sets of combinations. Using the reduction rule, these
two BDDs are automatically reduced into the same form,
free of irrelevant variables. ZBDDs are more e�ective for
sparser combinations, which means that only a few ob-
jects out of many are included in each combination in the
set.
The methods for manipulating ZBDDs are de�ned as

set operations and di�er slightly from those for con-
ventional BDD manipulation. First, we generate trivial
graphs and then construct more complex ones by apply-
ing basic operations such as union, intersection, and dif-
ference. We can execute these operations in a time almost
proportional to the size of the graphs, just as with con-
ventional BDDs. (see [12] for detailed algorithms.)
Using ZBDDs, we can represent and manipulate

Boolean expressions e�ciently. For example, when ex-
panding the expression (a+ b+ c)(e+d+f )(g+h+ i) � � �
into a sum-of-products form, an exponential number of
product terms appears for the number of variables; how-
ever, a ZBDD implicitly represents these product terms
in a linear number of nodes, as shown in Fig. 3. In this
graph, each path from the root to the 1-terminal corre-
sponds to each product term in the expression. In this
way, we can represent a huge number of product terms
within a practical memory space. In this paper, we de�ne
Z(X) as representation of set X of combinations by using
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Fig. 3. ZBDD for (a+b+c)(d+e+f)(g+h+i)� � �.

ZBDD.

III. Representation of Regular Expressions

using ZBDD

Here, we show how we represent and manipulate reg-
ular expressions using ZBDDs. A method we developed
for manipulating Boolean expressions is also applicable
to regular expressions. However, Boolean expressions are
di�erent from regular expressions in the following points:

� Boolean expressions can be represented as a set of
combinations easily, and these can be dealt with e�-
ciently by using ZBDDs. But sets of sequences that
regular expressions represent are often in�nite sets
with in�nitely long sequences, and regular expres-
sions cannot be dealt with by using ZBDDs as they
are.

� Boolean expressions cannot deal with repetitions of
symbols. (xx=x, xyx=xy in Boolean expression.)

� Boolean expressions cannot represent permutations.
(xy=yx in Boolean expression.)

In this section, we present a method for representing
regular expressions by solving these problems.

A. Length Constraints

As we explained above, sets of sequences that regular
expressions represent are usually in�nite sets that have
in�nitely long sequences of symbols. ZBDDs cannot deal
with such sets, so we introduce length constraints into
them. Now, suppose that the length constraint is a non-
negative integer `, we consider only the subset of se-
quences whose length is shorter than or equals to `. The
size of this subset is at most the `-th power of the size
of the alphabet that appears in the regular expression.
Sequences whose lengths are i correspond to behaviors of
the �nite state machine until the i-th step. And so, con-
sidering only the subset of the sequences whose lengths
are shorter than or equal to ` is equivalent to consider-
ing all behavior of the corresponding �nite state machine
until the `-th step. This is useful for formal veri�cation.
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Fig. 4. ZBDD for the sequence \abcab"

From now on, when we do not refer to the length con-
straint, we assume it is a non-negative integer `.

B. Representation of Permutation

The way of representing repetitions and permutations
in ZBDDs is another problem. We introduced the length
constraints above and considered only the subset of se-
quences of regular expression. However, this subset can-
not be dealt with by using ZBDDs as it is, because it is a
set of permutations including repetitions of symbols.
We propose preparing ` items (x1,� � � ,x`) for each sym-

bol (x 2 �). When dealing with more than one sort of
symbol, such as x, y, and z, we prepare respective ` items,
i.e. x1, � � � , x`, y1, � � � , y`, z1, � � � , z`. The sequence \ab-
cab" is \abc" in Boolean algebra, but now \abcab" is ex-
pressed as a combination of items \a5b4c3a2b1" (Fig. 4).
Item xi stands for the existence of symbol x at the i-th
position of the sequences in reverse order. (We can rep-
resent \abcab" as \a1b2c3a4b5", but for implementation
we adopt the reverse order. And also for implementa-
tion, variable ordering of ZBDDs is based on a rule that
item A whose subscript is bigger than item B has a higher
position in ZBDDs than item B.)
This technique enables us to represent sets of sequences

as sets of combinations of the items. Now we can use
ZBDDs to represent them.

C. Data Structure

With the above representation methods, we can repre-
sent regular expressions by using ZBDDs. We provide a
method of handling a set of sequences e�ciently in ZB-
DDs. Our idea is to divide the set of sequences into an
array of subsets. To put it more concretely, for regular
expression R and length constraint `, we divide the set
of sequences L(R) into the array of (`+1) subsets L(R)0,
L(R)1, � � �, L(R)`. Then we represent them by using the
array of ZBDDs. From now on, we use Z(R)i as a repre-
sentation of L(R)i by using a ZBDD, and use the array
[Z(R)0, Z(R)1, � � �, Z(R)`] to represent regular expression
R.
For example, we represent the regular expression

\ab*+a*b" under the length constraint ` = 3. The set of
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sequences which \ab*+a*b" expresses is fa, b, ab, aab,
abb, aaab, abbb, � � �g. Because of the length constraint,
let us consider only the subset of the sequences whose
lengths are shorter than or equal to 3, i.e. fa, b, ab, aab,
abbg. Fig. 5 shows the representation of this subset as
it is. As we explained above, we use the array of ZB-
DDs. fa, b, ab, aab, abbg is divided into L(ab*+a*b)0
= fg, L(ab*+a*b)1 = fa, bg, L(ab*+a*b)2 = fabg and
L(ab*+a*b)3 = faab, abbg according to their length, and
these subsets are represented by using a ZBDD. Fig. 6
shows the array of ZBDDs which represents the regular
expression \ab*+a*b" under the length constraint ` = 3.

IV. Algorithms of Regular Expression

Operations

Regular expressions can be manipulated by three oper-
ations, such as union, concatenation, and closure. Based
on this knowledge, we �rst generate ZBDDs for trivial ex-
pressions that consist of a single symbol, and then apply
these operations to construct more complicated regular
expressions.
An example is shown in Fig. 7, 8, and 9. To generate
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a ZBDD for the expression \ab*+a*b", we �rst generate
graphs for \a" and \b"(Fig. 7). Then we apply union,
concatenation, and closure operations according to the ex-
pression. Fig. 8 shows the representation of \b*", which
is the closure of \b", and the representation of \ab*",
which is the concatenation of \a" and \b*". Fig. 9 shows
the representation of \a*", which is the closure of \a",
and the representation of \a*b", which is the concatena-
tion of \a*" and \b". Finally, we compute the union of
\ab*" and \a*b", and we get the array of ZBDDs shown
in Fig. 6.
After generating ZBDDs, we can immediately check the

equivalence between two regular expressions under length
constraints. Moreover, we can easily evaluate, for in-
stance, the regular expressions in terms of the number
of sequences of the set.
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In this section we present e�cient algorithms for the
three regular expression operations of union, concatena-
tion and closure using ZBDDs.

A. Union

We �rst show the algorithm for union. For regular ex-
pressions S and T, we assume that we will get a regular
expression R as a result, i.e., R = S+T. This operation
is a basic part of other operations. Regular expressions
S and T are represented as an array Z(S)0, Z(S)1, � � �,
Z(S)`, and an array Z(T)0, Z(T)1, � � �, Z(T)` respectively
by using ZBDDs. Computing a union of Z(S)i and Z(T)i
by using the ZBDD union operation, we can get Z(R)i.
The computing time of union operation is proportional to
number of ZBDD nodes.

B. Concatenation

Concatenation is the most signi�cant regular expression
operation. In order to implement it e�ciently, we adopt
the array of subsets of sequences as the data structure.
We assume a regular expression R is a concatenation of

regular expressions S and T. A ZBDD Z(R)i for a subset
of sequences L(R)i is obtained by

� computing concatenations Z(S)jZ(T)k, where j+k =
i, 0 � j � i, 0 � k � i, and

� computing the union of (i+1) concatenations we get
above, i.e. a union of Z(S)0Z(T)i, � � �, Z(S)jZ(T)k,
� � �, Z(S)iZ(T)0.

A concatenation Z(S)jZ(T)k is computed by using the
shift operation and Cartesian product operation of ZB-
DDs. All items of Z(S)j are shifted up by k steps, then the
Cartesian product with all items of Z(T)k is produced. To
put it more concretely, a concatenation of Z(S)2 = fa2b1,
b2a1g and Z(T)1 = fa1, b1g is computed by

� shifting fa2b1, b2a1g up by 1 step to get fa3b2, b3a2g.

� making a Cartesian product with fa1, b1g to get
fa3b2a1, a3b2b1, b3a2a1, b3a2b1g.

The Cartesian product is a basic operation of ZBDDs
and its computing time is proportional to the number of
ZBDD nodes. So is the shift operation. As we explained
above, the concatenation operation is implemented by ap-
plying the union and shift and the Cartesian product, the
number of times of which is proportional to the second
power of the length constraint. Therefore the computing
time of concatenation operation is O(N � `2), where N is
the number of nodes of ZBDDs and ` is the length con-
straint. In practice, the cache function of ZBDDs makes
the computing time shorter.

C. Closure

Using two operations above, we can compose a regu-
lar expression closure algorithm. The closure of regular
expression R is � + R + RR + � � � � � �. Under length con-
straints we consider only � + R + RR + � � � + R� � �R(`)
because sequences whose length is greater than ` are out
of consideration. This expression can be factorized as �
+ R(� + R(� + � � � R(� +R)))� � �). Applying operations

of union and concatenation by turns, we can represent a
regular expression closure by using ZBDDs. If an interme-
diate result is saturated during calculation, we can stop at
that time and get the result. For example, when calculat-
ing \(a*)*", we can �nd \� + a*(� + a*)" = \� + a*" i.e.
saturation. We then immediately get the representation
of \(a*)*" without calculating ` times.
The closure operation is implemented by applying

union and concatenation, the number of times of which is
proportional to the length constraint. Therefore the com-
puting time of the closure operation is O(C �`) = O(N �`3),
where C is the number of concatenations, ` is the length
constraint, and N is the number of ZBDD nodes.

D. Miscellaneous

When we represent regular expressions using ZBDDs,
they are represented in canonical form, and we can easily
perform various operations by using the functions of ZB-
DDs. For example, checking the equivalence of two regu-
lar expressions can be done by only comparing two ZBDD
arrays. Checking implication is easily implemented by us-
ing the subtraction operation of ZBDDs. The number of
sequences can be enumerated by checking the number of
ZBDD paths, and the computation time is proportional
to the number of nodes. These operations are useful in
various areas, including formal veri�cation techniques for
�nite state machines.

V. Implementation and Experiments

Based on the techniques described above, we imple-
mented a program for manipulating regular expressions
under length constraints. Our program is written in C++
language on a SPARC Station 2 (SunOS 4.1.3, 64MByte
Memory). To evaluate our method, we constructed ZB-
DDs for several regular expressions and for several length
constraints.
The results are shown in Table I, where ` shows the

length constraints, cardinality shows the number of se-
quences, nodes shows the number of the nodes in the
ZBDDs, and time shows the total time for generating
the ZBDDs. As shown in Table I, within a feasible time
and space, we can generate ZBDDs for regular expressions
which have extremely large-scale sets of sequences, some
of which consist of millions of words. This has never been
practical in conventional representation. Our method re-
quires a memory space proportional to the number of
words. With a careful look at the time column, it is appar-
ent that computing time for regular expressions is O(`3),
where ` is the length constraint. This is in agreement
with the fact that the closure operation shown in section
4 requires a computation time that is proportional to the
third power of the length constraint.
Our method greatly accelerates the operation of reg-

ular expressions and enlarges the scale of applicability.
It is especially e�ective when dealing with many sorts of
variables, a feat that has been di�cult with conventional
methods.

VI. Conclusion

We have proposed an elegant way to represent regular
expressions under length constraints using ZBDDs and



TABLE I
Results for Regular Expressions.

Regular Expression ` cardinality nodes time

a*b*c* 32 6,545 96 7.53

64 47,905 192 58.77
96 156,849 288 199.8

(a+b+c)* 32 2:8� 10
15

96 2.56

64 5:2� 10
30

192 19.2

96 2:8� 10
45

288 65.65

((a*+b)*+c)* 32 2:8� 10
15

96 17.62

64 5:2� 10
30

192 146.35

96 2:8� 10
45

288 498.3

(a+bb)*(b+(aa)*)*cc 32 21,919,487 197 11.89

64 (> 2
32
) 421 90.15

96 (� 2
32
) 645 291.58

a*+a*bb(b+aa*bb)*(�+aa*) 32 109,870,575 124 17.15

64 (> 2
32
) 252 134.78

96 (� 2
32
) 380 457.71

(bbb*+a)* 32 109,870,575 124 10.3

64 (> 2
32
) 252 81.45

96 (� 232) 380 278

have shown e�cient algorithms for manipulating those ex-
pressions. The experimental results show that we can im-
plicitly manipulate regular expressions under length con-
straints with large-scale sets of sequences in a feasible
time and space. An important feature is that our rep-
resentation provides us with the canonical form of regular
expressions under length constraints. As the regular ex-
pressions calculus is a basic model for manipulating �nite
state machines, our method is very useful in LSI CAD,
especially in the formal veri�cation of LSIs. Under length
constraints `, we observe all strings whose length are less
than or equal to `, and so we can con�rm all behaviors of
the �nite state machine until the `-th step. Therefore we
can verify sequential circuits. For example, we can check
whether or not a microprocessor runs the same way as
speci�ed until the `-th step.
Our method veri�es �nite state machines until a cer-

tain ` step, but cannot give the complete validation for
in�nite behavior. However, there are many cases where
constraints that are long enough bring the same results
as formal veri�cation. In the future we will consider the
relation between length constraints and the complexity of
regular expressions. Moreover, we will try to speed up
the manipulation of regular expressions and to manipu-
late them without length constraints.
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