
Improved Computational Methods and Lazy Evaluation

of the Ordered Ternary Decision Diagram

Per Lindgren

Division of Computer Engineering

Lule�a Institute of Technology

S-971 87 Lule�a, Sweden

pln@sm.luth.se

Abstract| We investigate the properties of the Or-

dered Ternary Decision Diagram (OTDD) in order

to develop an e�cient general OTDD package. The

OTDD is a three-branched three-terminal diagram

based on Kleenean strong ternary logic. The OTDD

can represent functions having nontrivial don't-care

sets in a single diagram and is capable of provably

correct evaluation in the presence of unknown input

values. We propose a number of improvements to

both OTDD computational methods and data struc-

tures. Furthermore we introduce the purged form

OTDD which uni�es the abbreviated and full form

OTDD into a single diagram. A package exploiting

these OTDD speci�c properties is presented and we

show the computational advantages of this improved

package for LGSynth93 standard benchmarks.

I. Introduction

In computer engineering applications we are often con-
fronted with complex Boolean functions containing non-
trivial don't-care sets. Furthermore to accurately and ef-
�ciently handle unde�ned logic input values is another
problem related to logic simulation applications, synthe-
sis and testability, see [JIL94], [CP89] and [CA87]. The
Ordered Ternary Decision Diagram (OTDD) as proposed
in [Jen95] solves the accurate evaluation problem in the
presence of unknown inputs, and is capable of represent-
ing functions having nontrivial don't-care sets in a single
diagram. The OTDD is based on Kleenean strong ternary
logic permitting well de�ned logical operations on OTDD
functions. For any number of unde�ned input logic val-
ues the output can be evaluated in O(n) time, where n

is the number of inputs. In [Jen95] the basic algorithms
for building and processing OTDDs are de�ned. However,
e�ciency and optimization of the actual implementation
are only briey discussed.
This paper discusses our experience from implementing

a general OTDD package. Based on our observations we
propose a number of improvements to the basic compu-
tational methods proposed in [Jen95]. We introduce the
purged form OTDD which supports lazy evaluation of the

OTDD. To evaluate our re�nements of the original OTDD
computational methods, a number of experiments were
performed on standard benchmarks (LGSynth93). The
experiments involve both building the OTDDs from the
PLA-descriptions in LGSynth93 and performing logical
operations on them. Our results show that the proposed
improvements reduce memory requirements and increase
computational speed.
The paper is organized as follows: Section II gives a

short tutorial on the basic properties of the OTDD. In
Section III we discuss the properties of the basic OTDD
package, and propose a number of improvements exploit-
ing OTDD speci�c properties. Section IV motivates our
choice of experiments and contains a detailed description
of these. SectionV shows and discusses the results ob-
tained from computations run on a Sun SPARC ELC.

II. A Short Tutorial on the OTDD

This section gives a short tutorial on the OTDD. For an
in depth description we refer the reader to [Jen95] where
the theoretical aspects of the OTDD are discussed.
The OTDD was introduced to satisfy the following

criteria. First: representing functions having nontriv-
ial don't-care sets in a single diagram; second: allow-
ing evaluation of these functions even when given (any
number of) unde�ned logic input values; and third: al-
lowing operations to be performed on the functions. The
OTDD is an ordered decision diagram with terminal val-
ues f`0',`1',`U'g, where `U' represents a don't-care out-
put value corresponding to the �rst criterion. From
the second criterion follows that any nonterminal must
be able to handle an unde�ned logic input value `U'.
This problem was solved by giving the nonterminals chil-
dren `low', `high' and `und' corresponding to input values
f`0',`1',`U'g.
Removal of all nonterminals where `low' = `high' yields

a reduced form OTDD. If `und' is removed from all non-
terminals an abbreviated form OTDD is obtained. Al-
though the resulting abbreviated OTDD can not directly
handle `U' input values, all necessary information to re-
trieve a full form OTDD is preserved. The last crite-

rion, to allow operations on the functions represented as
OTDDs, is addressed by using the semantics of Kleenean
strong logic for evaluation. The abbreviated form is suit-
able for representing intermediate results during calcula-
tion on OTDDs, since it requires less space and compu-
tations to obtain. Note that the abbreviated form OTDD
is still capable of representing functions having nontrivial
don't-care sets.
Figure 1 shows the identity function for variable xi (to

the left) and the function ((x1 and x2) or x4) as a full

form OTDD (to the right). Evaluation is done by travers-
ing the OTDD from the root, for example the input vector
x1 = `U'; x2 = `U'; x4 = `1' corresponding to ((`U' and
`U') or `1'), traverses x1, x2, x4 and �nally arrives at the
terminal `1'. Though the input vector contains unde�ned
logic values, the output will be correctly evaluated.

III. OTDD Computational Methods

We started out by implementing a basic OTDD pack-
age as described in [Jen95]. From this exercise we gained
insight into some of the properties unique to the OTDD.
Exploitation of these properties resulted in the optimiza-
tions proposed in the following sections.

A. The Basic OTDD Package

Our �rst OTDD package implemented the computa-
tional methods suggested in [Jen95]. The package in-
cludes Kleenean AND, OR, XOR and COMPOSE as
well as the OTDD speci�c operations OR B TO U, TER-
NATE and ALIGNMENT. The COMPOSE operation
Gjvi=F replaces the input variable vi of function G

with the function F , and yields a single (full form)
OTDD. The operation OR B TO U is used to create an
abbreviated form OTDD from ON and DC set OTDDs.
The TERNATE operator transforms an abbreviated form

X i

0 1 U

0
1

U

X 1

X 2

X 4

0 1 U

X 4

1

1
0

0
U U

0

0

0

1

11

U

U
U

X 2

Fig. 1. Simple Ordered Ternary Decision Diagrams. To left: the
identity function for variable xi. To right: the function ((x1 and
x2) or x4).

node {

index: int

val: {0,1,U,X}

low,high,und: *node }

Fig. 2. OTDD node description, `U' represents a don't-care
terminal.

OTDD into a full form OTDD by recursively visiting
each node, and deriving their `und' branches by applying
ALIGNMENT on that node's `low' and `high' branches.
We refer the reader to [Jen95] for detailed description and
pseudocode for these operations.
The node description used in our basic package can be

found in Figure 2. The `index' �eld indicates to which
input variable this speci�c node applies. Note that value
`X' is given to all nonterminals and that the value `U'
indicates a don't-care terminal. All nodes are cached in a
unique-table as described in [BRB90].
To perform operations on the OTDDs, the Apply step

routine �rst described by [Bry86] and adapted for the
OTDD in [Jen95] is used. Apply step is called recur-
sively, traversing the operands towards their terminals.
Apply step uses an \Op" function, which given the `val'
�elds of the top node operands, can determine termi-
nal and controlling cases, the latter preventing further
traversal. In [Jen95] a ag is used to indicate whether
Apply step will calculate a full or an abbreviated form
OTDD. In our package Apply step yields an abbreviated

form OTDD, a full form OTDD can be derived postfacto

by an explicit TERNATE operation. A memory function
proposed in [BRB90] insures that each unique operation
is only performed once.

B. Re�nement of the \Op" Function

The \Op" function in our basic package forces evalua-
tion of the operands all the way down to the terminals if
no controlling cases are found. We seek a way to prevent
that kind of exhaustive evaluation.
Under Kleenean logic (f and f) = f , which intrigues us

to consider isomorphic operands. In these cases we might
be able to prevent further traversal of the operands.
The OTDD has a strong canonical form, proven in

[Jen95]. This together with the unique-table representa-
tion of OTDDs allows us to detect isomorphism between
OTDDs as pointer equality, that is, in constant time.
Based on these observations an improved \Op" function

exploiting isomorphism is proposed in [Jen95]. The mod-
i�ed \Op" function is shown in pseudocode in Figure 3.
The iso ag indicates that the two operands are isomor-
phic. The OR operation is modi�ed to handle (f or f) =
f by adding (iso) => return`F ', the AND operation is
modi�ed to handle (f and f) = f in the same way. The

char Op(a, b, opcode, iso) {

(opcode == OR):

((a == `1')||(b == `1')) => return `1' else

((a == 'X')||(b == 'X')):

(iso) => return 'F' else

(a == `0') => return 'G' else

(b == `0') => return 'F' else

return 'X';

((a == `0')&&(b == `0')) => return `0' else

return `U';

(opcode == AND):

((a == `0')||(b == `0')) => return `0' else

((a == 'X')||(b == 'X')):

(iso) => return 'F' else

(a == `1') => return 'G' else

(b == `1') => return 'F' else

return 'X';

((a == `1')&&(b == `1')) => return `1' else

return `U';

(opcode == XOR):

((a == 'X')||(b == 'X')):

/* (iso) => return `0' NON-KLEENEAN */

return 'X';

((a == `1')&&(b == `1')) => return `0' else

((a == `1')&&(b == `0')) => return `1' else

((a == `0')&&(b == `1')) => return `1' else

((a == `0')&&(b == `0')) => return `0' else

return `U';

(opcode == OR_B_TO_U):

((b == `1')||(b == `U')) => return `U' else

((a == 'X')||(b == 'X')) => return 'X' else

return a;

(opcode == ALIGNMENT):

((a == `U')||(b == `U')) => return `U' else

((a == 'X')||(b == 'X')):

(iso) => return 'F' else

return 'X';

(a == b) => return a else

return `U'; }

Fig. 3. The improved \Op" function, (iso) indicates that the

operands are isomorphic.

ALIGNMENT operator (used to create the `und' branch),
conforms to (f alignment f) = f , see [Jen95]. This allows
the same modi�cation of the ALIGNMENT operation as
described for the OR operation.
Under Kleenean-strong logic the XOR operation does

not conform to (f xor f) = `0', hence adding (iso) =>
return`0' would violate the Kleenean semantics.

C. The Purged form OTDD

At this point we made two critical observations.
First observation: the OTDD is canonical with respect

only to the `index' of the input variable and its `low' and
`high' branches.
Second observation: the `und' branch can be derived for

any node at any time by computing the ALIGNMENT of
that node's `low' and `high' branches.
The �rst observation immediately leads to the conclu-

sion that the very same node pointed out in the unique-

table can hold both the abbreviated and full formOTDD.
We introduce the purged form OTDD allowing any mix
of abbreviated and full form OTDD nodes in a single dia-
gram. By using this new form we hope to reduce both the
number of unique OTDD nodes allocated, and the size of
the unique-table. The reader must notice that although a
node might contain a de�ned `und' pointer it is not to be
considered as a full form OTDD, because the `low' and
`high' branches are in no way guaranteed to be of full
form. Note that the ALIGNMENT operation will e�ect
all OTDDs that contain the aligned node.
To implement the purged form OTDD some modi-

�cations of the basic package are necessary. We pro-
pose a modi�ed `uniqueness' criterion to be used for
the unique-table (involving only `index', `low' and `high'
branches, opposed to the criteria used in [Jen95] which
involves the `und' branch). Furthermore we propose a
\ut insert" function, see [Jen95], which provides `und'
branch updating of existing abbreviated OTDD nodes.
These modi�cations cause Apply step to produce purged
form OTDDs rather than abbreviated OTDDs.
The second observation is to some extent exploited in

[Jen95]. The Apply step function, as proposed in [Jen95],
takes a parameter that indicates if the result is to be calcu-
lated as an abbreviated or a full form OTDD. Intermedi-
ate calculations can be performed producing abbreviated

OTDDs (which require less memory and CPU resources)
and the �nal result can be expanded to the full form
OTDD. However Apply step calculates either a full form
OTDD or else a fully abbreviated OTDD.
Furthermore the second observation leads to the con-

clusion that the ALIGNMENT operation should not be
issued until absolutely necessary, i.e. when required to
perform an operation. If done earlier, `und' nodes might
be computed which are neither required for the computa-
tion, nor part of the �nal result. All such work is wasted !
The Compose algorithm, suggested in [Jen95], requires

the downstream function to be represented as a full form
OTDD (though Jennings briey discusses the possibility
of expanding the `und' branches only when needed). This
means we would expect signi�cant improvements by using
the new purged form OTDD for lazy evaluation.
As a result of our observations we propose an improved

package including the new unique-table criteria, a node
update function, and a new Compose algorithm, see Fig-
ure 4. The pseudocode actually holds both the origi-
nal compose step as proposed in [Jen95], shown as (1),
and our proposed optimized function, shown as (2). Ob-
serve that (1) excludes lines corresponding to (2) and
vice versa. The optimization can be broken down in
several steps. To prevent unnecessary computation of
`und' branches we allow both functions to be represented
in purged form, relaxing the full form assumption in
[Jen95]. If and only if the `und' branch `vu1' is required,
see (1b), we derive it from `vl1' and `vh1' by applying
ALIGNMENT, see (2a). This operation derives `vu1' as

node *compose_step(vl1, vh1, vu1, v2) {

/* v1|m = v2 */

(vl1.index == m) => vl1 = vl1.low

(vh1.index == m) => vh1 = vh1.high

1a) (vu1.index == m) => vu1 = vu1.und

/* terminal in v1 */

(v2.val==`0') and (vl1.val terminal) =>return(vl1.val)

(v2.val==`1') and (vh1.val terminal) =>return(vh1.val)

1b) (v2.val==`U') and (vu1.val terminal) =>return(vu1.val)

2a) (v2.val==`U') => {vu1 = apply_step(vl1,vh1,ALIGNMENT) =>

and (vu1.val terminal) =>return(vu1.val)}

u.index=Min(vl1.index,vh1.index,vu1.index,v2.index)

(v2.index==u.index) =>{v2low=v2.low; v2high=v2.high}

else =>{v2low=v2; v2high=v2}

(vl1.index==u.index) =>{vll1=vl1.low; vlh1=vl1.high}

else =>{vll1=vl1; vlh1=vl1}

(vh1.index==u.index) =>{vhl1=vh1.low; vhh1=vh1.high}

else =>{vhl1=vh1; vhh1=vh1}

1a) (vu1.index==u.index) =>{vul1=vu1.low; vuh1=vu1.high}

else =>{vul1=vu1; vuh1=vu1}

u.low = compose_step(vll1, vhl1, vul1, v2low)

u.high = compose_step(vlh1, vhh1, vuh1, v2high)

r = ut_insert(u.index, u.low, u.high)

1c) r.und = apply(u.low, u.high, ALIGNMENT, FULL)

return (r);

}

node *Compose(v1, v2) {

return compose_step(v1, v1, v1, v2);

}

Fig. 4. The optimized compose step function. (1) shows the

original function, (2) shows the optimized function.

a purged form OTDD, which is exactly what we need at
that time.
Furthermore we bene�t from neglecting the incoming

`vu1' branch and from avoiding unnecessary calculations
of `vul1' and `vuh1' by eliminating (1a). The second ob-
servation is further exploited by eliminating (1c), thus the
result of compose step will be a purged OTDD.

IV. Description of the Experiment

In order to measure the e�ciency of our package
with respect to memory usage, CPU usage etc we used
test cases consisting of PLA-function descriptions from
LGSynth93. The PLA descriptions contain both the ON
set which evaluates to logic one and the explicit DC set
(if any) which evaluates to logic `U'. The strong Kleenean
`U' means a valid logic one or logic zero, but we don't
know or don't-care which.

A. Building of the abbreviated form OTDDs

During parsing we initially represent the ON and DC
sets as OBDDs, see [Bry86]. Building the OBDDs in-
volves both AND and OR operations. To represent both
ON and DC set in one OTDD is done by applying the
OR B TO U operator to the ON and DC sets. The re-
sult of the OR B TO U operation is an abbreviated form
OTDD.
Several properties are measured during the procedure:

� memory usage { the total number of nodes allocated

� wasted nodes { the number of nodes allocated that
are not part of the result

� CPU time used when performing logical operations

By this experiment we hope to gain insight in the per-
formance of the basic OTDD and furthermore to evaluate
the improved \Op" function.

B. Expansion to full form OTDDs

This is done by applying the unary operator TER-
NATE, which recursively applies the ALIGNMENT op-
erator to all nodes in the abbreviated form OTDD, the
result is a full form OTDD. The ALIGNMENT opera-
tor processes the output of the `low' and `high' branches
into the `und' branch. We refer the reader to [Jen95] for
further details.
The same measurements of memory usage and CPU

load, as described above, are taken during the operations.
By this experiment we seek further understanding of the
properties regarding the basic and improved \Op" func-
tion.

C. Retrieval of the full form OTDDs

Now we can apply any logic function (AND, OR, NOT
or XOR) to the OTDDs, and study the performance of our
package. For this experiment we chose the NOT operator
(implemented as F XOR `1'). We performed two consec-
utive NOT operations, thus yielding the original function.
We will be able to probe the package's ability to retrieve a
full OTDD from an abbreviated form OTDD in the case
that TERNATE already has been applied to the original
function, see B.

D. Composing OTDD functions

Any two functions F and G represented as OTDDs can
be composed, Gjvi=F , where input variable vi of down-
stream function G is replaced by the function F . Since
the PLA descriptions in LGSynth93 correspond to func-
tions F with di�erent numbers of outputs Fi, we chose
only to compose the �rst output F1 with the �rst input of
the downstream function, G1jv1=F1 . Of course any other
combination would do as well, but this choice serves our

purposes. The ability to handle upstream functions hav-
ing nontrivial don't-care sets is examined by PLAs `spla',
`misex3c' and `ex1010'. This forces the proposed lazy
compose step algorithm to derive the `und' branch while
composing the functions, see (2a) in Figure 4. The in-
put vectors to functions F and G can have any number
of common variables. We test the ability to handle both
completely disjoint sets of input variables as well as the
case of maximum possible common variables.

V. Results of the experiments

We present our re�nements of the OTDD package from
our �rst implementation towards the �nal version. To
probe the e�ciency gain of the separate improvements
and how they a�ect each other our package allows us to
turn the features on and o�.
During the experiments several measurements were

taken. Table I shows the number of nodes wasted when
consecutively performing experiments IVA, B and C, as
well as the total number of nodes allocated during the
suite. When building the abbreviated form OTDD, see
IVA, we typically get an improvement of more than 30%
(peak at 75%) with respect to the number of wasted
nodes. When expanding to full form, see IVB, the total
improvement varies from 10% to 50%. After performing
the two consecutive NOT operations, see IVC, the total
improvement varies from 5% to 50%.
These results ful�ll our expectations for the improved

\Op" function. We successfully prevent exhaustive eval-
uation of the OTDDs by detecting isomorphic operands
and utilizing the evaluation under Kleenean strong logic.
Table II compares the total CPU time when the experi-

ments IVA, B and C are executed on a Sun SPARC ELC.
The columns marked `lazy' indicates that our unique-
table criterion proposed in Section III C is used. The
purged form OTDD increases computational speed by up
to 30%.
From the results we conclude that the critical section

is the building of the OTDDs, this result also applies to
Table I. When the abbreviated OTDD is calculated once
and for all, operations on the OTDDs are performed al-
most instantly. This proves the usability of the OTDD in
practical applications.
Table III compares our improved Compose (Gjvi=F)

function to the basic implementation suggested in
[Jen95].The input vectors to functions F and G can have
any number of common variables. For test purposes the
input sets are either disjoint or have the maximum possi-
ble common variables, see column `disjoint inputs'. The
next column `abbrev' shows the number of nodes allo-
cated to build the purged form OTDDs. The next two
columns show the total number of nodes allocated and
the number of ALIGNMENT entries in the memory func-
tion after performing the compose step operation. The
results after expanding the purged form OTDD to a full

OTDD are shown in the next two columns. Finally the
two rightmost columns show measurements taken on the
basic OTDD package for comparison. Note that only full
form OTDDs can be obtained from the original package.
When presented upstream functions having nontriv-

ial don't-care sets, our proposed compose step de-
rives the required `und' branches under lazy evaluation.
`alu4j1=spla1' and `misex3cj1=ex1010' show that compo-
sition deriving the purged form only requires a fraction
of the ALIGNMENT operations necessary for obtaining
the full form. Our experimental results show that our
proposed compose step can derive a purged form OTDD
mainly by using already allocated memory resources. The
new compose step compares favorably to the basic imple-
mentation even when expanding the purged form OTDD
to full form. However, the essence of this paper is to
show the advantages of using the purged form represen-
tation for all intermediate computations. The presented
results verify this.

VI. Conclusions

We investigate the properties of The Ordered Ternary
Decision Diagram (OTDD) in order to develop an e�-
cient general OTDD package. We exploit OTDD speci�c
properties into both improvements of the computational
methods and data structures. We propose the purged

form OTDD which allows any mixture of abbreviated and
full form OTDD nodes in a single diagram, and can fur-
thermore be utilized for lazy evaluation of the OTDD.
A package exploiting these OTDD speci�c properties has
been presented and we have demonstrated the computa-
tional advantages of this improved package on LGSynth93
standard benchmarks.

References

[BRB90] Karl S. Brace, Richard L. Rudell, and Randal E. Bryant.

E�cient Implementation of a BDD Package. In Proceed-
ings 27th DAC, pages 40{45, June 1990.

[Bry86] R. E. Bryant. Graph-Based Algorithms for Boolean Func-
tion Manipulation. IEEE Transactions on Computers, C-
35(8):677{691, August 1986.

[CA87] Hongtao P. Chang and Jacob A. Abraham. The Complex-

ity of Accurate Logic Simulation. In Proceedings, IEEE
Int'l Conf. on CAD (ICCAD '87), pages 404{407, Novem-

ber 1987.

[CP89] Susheel J. Chandra and Janak H. Patel. Accurate Logic

Simulation in the Presence of Unknowns. In Proc. Intl.
Conf. on Computer-Aided Design (ICCAD '89), pages
34{37, November 1989.

[Jen95] G. Jennings. Symbolic Incompletely Speci�ed Functions
for Correct Evaluation in the Presence of Indeterminate
Input Values. InTwenty-Eighth Annual Hawaii Int'l Con-
ference on System Sciences, HICSS-28, Volume I: Archi-

tecture, pages 23{31, January 1995.

[JIL94] G. Jennings, J. Isaksson, and P. Lindgren. Ordered

Ternary DecisionDiagramsand theMultivaluedCompiled
Simulation of Unmapped Logic. In Proceedings, 27th An-
nual Simulation Symposium, pages 99{105, April 1994.

PLA ! abbreviated OTDD abbreviated ! full OTDD 2*XOR

P
nodes

out basic \Op" basic \Op" basic \Op" basic \Op"

9sym 9 2700 1765 2675 1740 2784 1849 2817 1882

5xp1 10 794 532 879 617 1157 895 1245 983

duke2 29 6294 3921 19335 16962 28327 25954 29303 26930

table5 15 6797 3867 28716 25768 42295 45225 45909 42979

alu4 8 46810 34547 66979 54716 86730 74467 88082 75819

spla 46 160711 134587 163435 137311 166374 140250 167059 140935

misex3c 14 40861 29719 58231 47089 66380 55238 68507 57365

ex1010 10 61930 57435 65134 60639 69742 65247 71669 67174

TABLE I
The number of wasted nodes (nodes allocated but not part of the result) during the experiments,
see Section IVA, B and C. The total number of allocated nodes is found in the rightmost column.

abbreviated full OTDD 2*XOR retrieve full

out basic \Op" lazy basic \Op" lazy basic \Op" lazy basic \Op" lazy

9sym 1 0.16 0.17 0.15 0.16 0.18 0.16 0.16 0.19 0.16 0.16 0.19 0.16

5xp1 7 0.06 0.03 0.04 0.09 0.07 0.06 0.10 0.07 0.08 0.10 0.07 0.08

duke2 29 0.39 0.26 0.37 2.02 2.01 1.59 2.13 2.12 1.65 2.13 2.12 1.65

table5 15 0.62 0.63 0.57 3.53 3.61 2.59 3.61 3.69 2.66 3.61 3.69 2.66

alu4 8 2.64 2.07 2.36 6.19 5.66 4.80 6.33 5.78 4.88 6.33 5.79 4.89

spla 46 22.32 21.84 21.89 22.86 22.33 22.25 22.93 22.41 22.30 22.93 22.41 22.30

misex3c 14 2.20 2.05 2.05 4.17 4.13 3.55 4.34 4.30 3.70 4.34 4.30 3.70

ex1010 10 9.14 9.13 8.57 9.91 9.88 9.13 10.08 9.97 9.28 10.08 10.04 9.28

TABLE II
CPU times in seconds for consecutive experiments, see Section IVA, B and C, run on a Sun SPARC ELC.

disjoint abbrev purged compose full compose basic compose

inputs alloc nodes mem a alloc nodes mem a alloc nodes mem a

alu4j1 = 5xp1 no 183 235 0 648 911 705 1029

alu4j1 = spla no 471 520 104 634 379 711 506

splaj1 = alu4 no 471 516 0 534 185 563 245

misex3cj1 = ex1010 no 10176 10424 413 10663 3328 10815 5014

alu4j1 = 5xp1 yes 183 183 0 384 378 384 378

alu4j1 = spla yes 471 471 18 669 383 671 385

splaj1 = alu4 yes 471 471 8 500 67 500 67

misex3cj1 = ex1010 yes 10176 10176 272 10433 3385 10441 3476

TABLE III
Composition of functions, see Section IVD, where `spla', `misex3c' and `ex1010' have nontrivial don't-care sets.

`abbrev' shows the number of nodes allocated to build the abbreviated form OTDDs. `alloc nodes' shows the total number
of nodes allocated, corresponding to each operation. `mem a' shows the number of ALIGNMENT entries in the memory

function.

	ASP-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

