Learning Heuristics by Genetic Algorithms

Rolf Drechsler

Department of Computer Science
Johann Wolfgang Goethe-University
60054 Frankfurt am Main, Germany

email: drechsler@kea.informatik.uni-frankfurt.de

Abstract— In many applications of Computer
Aided Design (CAD) of Integrated Circuits (ICs) the
problems that have to be solved are NP-hard. Thus,
exact algorithms are only applicable to small problem
instances and many authors have presented heuristics
to obtain solutions (non-optimal in general) for larger
instances of these hard problems.

In this paper we present a model for Genetic Al-
gorithms (GA) to learn heuristics starting from a
given set of basic operations. The difference to other
previous applications of GAs in CAD of ICs is that the
GA does not solve the problem directly. Rather, it de-
velopes strategies for solving the problem. To demon-
strate the efficiency of our approach experimental res-
ults for a specific problem are presented.

I. INTRODUCTION

During the last decades, the complexity of Integrated
Circuits (ICs) has increased exponentially. In the 1970’s
a typical microprocessor such as the Intel 8080 consisted
of about 5,000 transistors while in 1993 Intel’s state-of-
the-art processor Pentium contains 3.1 million transistors.
To handle the complexity of todays circuits the design en-
gineers are totally dependent on Computer Aided Design
(CAD), i.e., software tools. The capabilities and limita-
tions of CAD tools have crucial impact on the perform-
ance and cost of the produced circuits as well as on the re-
sources required to develop a circuit. Consequently, CAD
for ICs is a very important and increasingly growing re-
search area.

Most problems arising in CAD of ICs are very hard
combinatorial optimization problems. Multiple, compet-
ing criteria have to be optimized subject to a large num-
ber of non-trivial constraints. To handle the complexity,
many problems are artificially divided into a number of
subproblems, which are then solved in sequence. Most
of the subproblems are still both NP-hard and large, and
furthermore, they are mutually dependent. The solution
of a subproblem is based on estimations of the results of
subsequent steps not yet performed. In other words, the
cost functions used are not exact, but are based on the
estimations.

Due to these reasons exact solutions can often not
be determined (within reasonable time bounds). Con-

*This work was supported in part by DFG grant Be 1176/4-2.

*

Bernd Becker

Institute of Computer Science
Albert-Ludwigs-University
79110 Freiburg im Breisgau, Germany
email: becker@informatik.uni-freiburg.de

sequently, in the last few years many authors developed
heuristics to solve these problems. One promising method
is the Genetic Algorithm (GA). GAs are often used in op-
timization and machine learning [7, 1]. In many applica-
tions they are superior to the classical optimization tech-
niques, e.g. gradient-descent. Recently, GAs have suc-
cesfully been applied to several hard problems in CAD,
like routing, placement, test pattern generation and logic
synthesis [5].

The major drawback of these approaches is that in gen-
eral they obtain good results with respect to quality of the
solution, but the running times are often much larger than
that of classical heuristics.

In this paper we present a new approach to apply GAs
to CAD of ICs: GAs are not directly applied to the prob-
lem to be solved. Instead the GA determines a good heur-
istic with respect to given constraints. The designer him-
self can for example give upper bounds for the runtime.
We develop a model for the description of the learning
process.

Finally, we perform experiments with respect to a fixed
problem that has intensively been studied in the past
few years, i.e. we consider minimization of Fized Polarity
Reed-Muller exzpressions (FPRMs) [8]. Several methods
for heuristic minimization have been presented [9, 10, 6]
and also optimization by GAs has been considered [4].
(This application is only to be seen as a (well-suited) ex-
ample for our application, since the problem is well under-
stood. The results directly transfer to problems in other
areas.) We show that we can determine better heurist-
ics than all previously published. The heuristics are still
much faster than the GA-approach from [4].

II. A MoDEL FoR LEARNING HEURISTICS BY GAS

Due to the high complexity of the design process of
CAD of ICs often heuristics are used. These heuristics
are developed by the designer himself. But they also often
fail for specific classes of circuits. Thus it would help a
lot, if the heuristics could learn from previous examples,
e.g. from benchmark examples.

We assume that the problem to be solved has the fol-
lowing property: There is defined a non empty set of op-
timization procedures that can be applied to a given (non-
optimal) solution in order to further improve its quality.
(These procedures are called Basic Optimization Modules

(BOMs) for the rest of the paper.) These BOMs are the
basic modules that will be used in the following. Each
heuristic is a sequence of BOMs. The goal of our ap-
proach is to determine a good (or even optimal) sequence
of BOMs such that the overall results obtained by the
heuristic are improved. This assumption concerning the
problem is valid for all problems that can efficiently be
optimized by greedy or hill-climbing heuristics.

Since the notations used for GAs are not uniquely de-
termined we briefly introduce the notation that is used in
the following. We assume a finite set of finite strings of
fixed length over a given universe. This set is also called
the population. For the considered problem that is to be
solved by the GA an objective function (or fitness func-
tion) is given that measures the fitness of each element.

The main operations of GAs on strings are:

Reproduction: Copying strings according to their fit-
ness.

Crossover: Construction of a new element z from two
parents y; and y,, where the first part up to a cut
position ¢ is taken from y; and the second part is
taken from ys,.

Mutation: Construction of a new element from a parent
by copying the whole element and randomly changing
its value at mutation position 1.

In the following we assume that the reader is familiar with
the basic concepts of GAs. (For more details see [7, 1].)

For simplicity of the description we use multi-valued
strings, i.e. strings that may assume various values from
a fixed finite range. It does not influence the model, if
the strings are considered over a two-valued alphabet. In
this case an encoding must be used and method must be
applied how to handle invalid solutions. (Here standard
methods can be applied [7, 1].)

The set of BOMs defines the set H of all possible heur-
istics that are applicable to the problem to be solved in
the given environment. H may include problem specific
heuristics but can also include some random operators.

To each BOM h € H we associate a cost function cost :
H — R, where R denotes the real valued numbers. cost
estimates the resources that are needed for a heuristic.
(If we aim at fast heuristics a heuristic A with a large
value cost(h) should be avoided (if possible).) We measure
the fitness fit of a string s = (hy, h2,..., i) of length [
(representing a heuristic composed from ! BOMs) by

fit(s) = cc/fitc(s) + Cq- fitq(s)v

where
-1

fit.(s) = Z cost(h;)

t=0

is the cost fitness of string s and

of examples

fity(s) = Y

1=0

quality(example;)

is the quality fitness of string s. c¢. and ¢, are problem
specific constants.

The cost fitness measures the cost for the application
of the string. If this cost is relatively high the resulting
heuristic will take long time. If the heuristic has a low
cost fitness it will terminate quickly.

The quality fitness measures the quality of the heuristic
that is represented by the string s by summing up the
results for a given set of ezamples. Obviously the choice of
the examples largely influences the quality of the resulting
heuristic. Here the designer has to select a representative
set of benchmarks. If this set cannot be determined, the
GA can be run on a large set of arbitrary functions. The
function quality measures the quality of the result with
respect to the given problem. This function is typically
the fitness function that is used in “normal” GAs.

The constants c. and c; are used to influence the
primary goal of the heuristic: If ¢, is set to 0 the GA will
only optimize the heuristic with respect to the quality of
the result, i.e. it will not care about the expenditure of the
BOMs. If ¢g is set to a small value the GA will determine
a very fast heuristic, but the quality of the result will not
be very good. Using these parameters the designer can
influence the trade-off between runtime and quality and
he can determine the primary goal of the GA: Should the
heuristic focus on fast runtime or on good results?

III. APPLICATION OF THE MODEL

As an example we consider the minimization problem
for a subclass of 2-level AND/EXOR-circuits, the so-
called Fired Polarity Reed-Muller expressions (FPRMs).

A. Problem Domain

An FPRM is an exclusive-OR of AND product terms,
where each variable only appears in complemented or un-
complemented form, but not both. FPRMs are a canon-
ical representation of Boolean functions f : B® — B, if
the polarity for each variable is fixed. The choice of the
polarity largely influences the size of the resulting FPRM,
as is shown by the following example:

Example 1 Let f : B® — B, given by f = 1%,..T,.
Thus, only one term is needed, if all variables are comple-
mented. If all variables are uncomplemented the resulting
expression consists of 2" terms, iie. f= 1D x1 D x2 D
RSN T 2 PO o

For the representation of Boolean functions we use a
multi-level data structure, called OFDDs, as defined in
[6]. Using the OFDD it is possible to determine very fast
the number of terms of the corresponding FPRM and to
change the polarity of the FPRM by manipulation of the
OFDD.

We now consider the following problem, that will be
solved using GAs:

How can we determine a heuristic that finds a
polarity for a given Boolean function f such that
the number of terms in the corresponding FPRM
is minimized?

Notice once more that we do not optimize FPRMs by
GAs. Instead we optimize the heuristic that is applied to
FPRM-minimization.

B. Genetic Algorithm

In this section we briefly describe the Genetic Algorithm
(GA) that is applied to the problem given above.

Representation: In applications of GAs, often the en-
coding problem is one of the most difficult. In our applic-
ation we use a multi-valued encoding, for which the prob-
lem can easily be formulated. Each position in a string
represents an application of a heuristic. Thus a string
represents a sequence of heuristics. If a string has n com-
ponents at most n applications of basic elements are pos-
sible. (This upper bound is set by the designer and limits
the runtime of the heuristic.) Thus, each element of the
population corresponds to an n-dimensional multi-valued
vector. Using this multi-valued encoding each string rep-
resents a valid solution.

In the following we consider a three-valued vector: 0
means that no operation is performed. 1 (2) represents the
heuristic H1 (H2) from [6]. (We restrict to these simple
alternatives, so that the concept of the algorithm becomes
clear and not too many details are needed.)

Objective Function and Selection: As an objective func-
tion that measures the fitness of each element we apply the
heuristics to several benchmark examples. Obviously the
choice of the benchmarks largely influences the (quality
of the) results. On the other hand the designer can create
several different heuristics for different types of circuits,
e.g. a fast but simple heuristic for very large problems or a
very “time consuming” heuristic for small examples. The
function quality was calculated on OFDDs and determ-
ines the number of terms in the FPRM. (For simplicity
we only describe the case that c. is set to 0, since cost
functions for the heuristics from [6] can easily be determ-
ined.)

The selection is performed by roulette wheel selection,
1.e. each string is chosen with a probability proportional
to its fitness. Additionally, we also make use of elitarism
[1]: A part of the best elements of the old population is
included in the new one anyway. This strategy guarantees
that the best element never gets lost and that a faster
convergency is obtained. GA practice has shown that
this method is usually advantageous. Additionally we use
steady-state reproduction, i.e. the size of the population is
constant after each iteration.

Initialization: At the beginning of each GA run an ini-
tial population is randomly generated. The fitness is as-
signed to each element. This fitness is calculated using
the operations described in [6].

Genetic Operators: As genetic operators we used repro-
duction, crossover and mutation as described in Section
II. and some slightly modified operators. (The details
are left out, since they are of no relevance for the under-
standing of the paper.) All operators are directly applied

genetic_algorithm (benchmark) {
generate_random_population () ;
calculate_fitness () ;

apply_operators_with_corresponding_probabilities () ;
calculate_fitness () ;
update_population () ;

} while (improvement obtained) ;

return ;

}

Fig. 1. Sketch of basic algorithm

to multi-valued strings of finite length that represent ele-
ments in the population. The parent(s) for each operation
is (are) determined by the mechanisms described above.
All genetic operators only generate valid solutions, if they
are applied to the multi-valued strings.

Algorithm: Using the genetic operators our algorithm
works as follows:

1. Initially a random population of multi-valued finite
strings is generated.

2. The better half of the population is copied in each
iteration without modification. Then the genetic op-
erators reproduction and crossover are applied to an-
other Z2¥ elements. The elements are chosen accord-
ing to their fitness as described above. The newly cre-
ated elements are then mutated by one of the three
mutation operators with a given probability. After
each iteration the size of the population is constant

(steady-state reproduction).

3. The algorithm stops if no improvement is obtained
for 5 iterations.

A sketch of the algorithm is given in Fig. 1.

C. Experimental Results

In this section we present results of experiments that
were carried out on the OKFDD-package presented in [3,
2] on a SUN Sparc 1+ workstation.

We first applied our GA to a small example: We tried
to determine the best heuristic for the benchmarks co1/,
rd53, root and sao2. The population size was chosen small,
1.e. we only considered three elements. The length of the
strings was fixed to five.

The results are given in Table I. in (out) denotes the
number of inputs (outputs) of benchmark name. The res-
ults of the most powerful heuristic from [6] are given in
column H2!e". In [6] OFDD-based heuristics have been
compared to several other approaches. There it has been
shown that with this method the best results were ob-
tained. This heuristic obtains in general good results.
But for some examples it badly fails, since the greedy al-
gorithm gets stuck very early (see benchmark co14). The

TABLE I
EXAMPLE WITH SMALL BENCHMARKS

name in out exact H2Y*" GA-heuristic

cold 14 1 14 8192 14

rdb3 5 3 20 20 20

root 8 b 118 118 118

sao2 10 4 100 100 100
TABLE II

EXAMPLE WITH LARGE BENCHMARKS

name in out exact H 2},2" GA-heuristic
apex7 48 37 - 604 515
bc0 26 11 - 1118 1117
cps 24 109 - 293 293
chkn 29 7 - 900 900
exh 8 63 113 120 119
gary 15 11 349 350 350
ibm 48 17 - 1220 1181
mish 94 43 - 57 54
tial 14 8 3683 4039 3683

heuristic obtained by the GA-approach is given in the
last column. By a comparison with the exact solutions
(column ezact) it follows that it determined the optimal
results for all examples. For the whole GA-run only 150
CPU seconds were needed.

In a second series of experiments we applied our GA to
larger benchmarks from LGSynth93. For some of these
benchmarks the optimal result cannot be determined.
The results in comparison with the heuristics from [6]
are given in Table II. (A dash symbolizes that the exact
algorithm could not determine the solution due to its ex-
ponential behaviour.) For this experiment the population
size was set to five elements. The length of the strings
was fixed to seven. For all benchmarks the newly created
heuristic obtained the same or even better results than
the heuristic from [6]. The heuristic generated by the GA
takes the best results on average. On the other hand it
may happen that the optimal result is not determined (see
benchmarks ez and gary). The GA-run took less than
10 CPU hours. In contrast the runtime of the resulting
heuristic is fast, i.e. it needs less than 1 CPU minute for
the large benchmarks on average.

Finally, we applied the heuristic generated by the GA
to other functions that were unknown during the optim-
1zation process. The results are given in Table III. The
newly generated heuristic outperforms the heuristic from
[6] on average. In only one out of six examples the GA-
heuristic obtained a (slightly) worse result.

TABLE III
APPLICATION TO NEW BENCHMARKS

name in out exact H2Y®" GA-heuristic
cmb 16 4 - 192 136
log8mod 8 5 53 70 66
ts10 22 16 - 432 440
cordic 23 2 - 6438 6438
ml181 15 9 67 71 67

IV. CoNCLUSIONS

We presented a method to learn heuristics for CAD
of ICs using Genetic Algorithms. The method is very
general, since it applies to all problems for which greedy
and hill-climbing heuristics can be applied.

We demonstrated the efficiency of our approach by an
application to a problem from the area of logic synthesis.
The GA-approach developed more efficient heuristics than
previously known.

It is focus of current work to apply this approach to
other problems in CAD of ICs.

REFERENCES

[1] L. Davis. Handbook of Genetic Algorithms. van Nostrand
Reinhold, New York, 1991.

[2] R. Drechsler and B.Becker. Dynamic minimization of

OKFDDs. In Int’l Conf. on Comp. Design, 1995.
[3] R. Drechsler and B. Becker. PUMA: An OKFDD-package

and its implementation. In FEuropean Design & Test
Conf., 1995. University Booth.

[4] R. Drechsler, B. Becker, and N. Gockel. A genetic al-
gorithm for minimization of fixed polarity reed-muller ex-
pressions. In Int’l Conf. on Artificial Neural Networks and
Genetic Algorithms, pages 392-395, 1995.

[5] R. Drechsler, H. Esbensen, and B. Becker. Genetic
algorithms in computer aided design of integrated cir-
cuits. Technical report, J.W.Goethe-University, Frank-
furt, 17/94, 1994.

[6] R. Drechsler, M. Theobald, and B. Becker. Fast OFDD
based minimization of fixed polarity reed-muller expres-
sions. In European Design Automation Conf., pages 2-7,
1994.

[7] D.E. Goldberg. Genetic Algortithms in Search, Optim-
ization & Machine Learning. Addision-Wesley Publisher
Company, Inc., 1989.

[8] LI.S. Reed. A class of multiple-error-correcting codes and
their decoding scheme. IRE Trans. on Inf. Theory, EC-
3:6-12, 1954.

[9] A. Sarabi and M.A. Perkowski. Fast exact and quasi-
minimal minimization of highly testable fixed-polarity
and/xor canonical networks. In Design Automation
Conf., pages 30-35, 1992.

[10] C.C. Tsai and M. Marek-Sadowska. Efficient minimiza-

tion algorithms for fixed polarity and/xor canonical net-
works. In Great Lakes Symp. VLSI, pages 76-79, 1993.

	ASP-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

