
GRMIN: A Heuristic Simpli�cation Algorithm for

Generalized Reed-Muller Expressions

Debatosh Debnath and Tsutomu Sasao

Department of Computer Science and Electronics

Kyushu Institute of Technology

Iizuka 820, Japan

Abstract| A generalized Reed-Muller expression

(GRM) is a type of AND-EXOR expressions. In

a GRM, each variable may appear both comple-

mented and uncomplemented. Networks realized us-

ing GRMs are easily tested. This paper presents GR-

MIN, a heuristic simpli�cation algorithm for GRMs of

multiple-output functions. GRMIN uses eight rules.

As the primary objective, it reduces the number

of products, and as the secondary objective, it re-

duces the number of literals. Experimental results

show that, in most cases, GRMs require fewer prod-

ucts than conventional sum-of-products expressions

(SOPs). GRMIN outperforms existing algorithms.

I. Introduction

Logic networks are usually designed by using AND
and OR gates. However, networks using exclusive-OR
(EXOR) gates have some advantages over conventional
AND-OR networks. First, such networks often require
fewer gates and interconnections than those designed us-
ing AND and OR gates [13]. Examples of such networks
include, arithmetic, telecommunication, and error correct-
ing circuits. Second, they can be made easily testable.
Various classes exist in AND-EXOR expressions [6, 12].

Among them, positive polarity Reed-Muller expressions
(PPRMs) are well known: a PPRM, an EXOR sum-of-
products with positive literals, uniquely represents an ar-
bitrary logic function. Networks based on PPRMs are
easily testable [10], but they often require more prod-
ucts than ones based on other expressions. Generalized
Reed-Muller expressions (GRMs) [4] are generalization of
PPRMs. They never require more products than PPRMs,
and often require many fewer products. GRMs were stud-
ied many years ago [2], but no practical applications have
been reported. Recently, easily testable realizations for
GRMs have been developed [14]. Because GRMs of-
ten require many fewer products than PPRMs and have
very good testability, the GRM based design has prac-
tical importance. An exact minimization algorithm for
GRMs is available [15], but for the functions with more
than six variables it is very time and memory consum-
ing. For heuristic simpli�cation of GRMs, only a few al-
gorithms [3, 9] are available. In this paper, we present
GRMIN, a heuristic simpli�cation algorithm for GRMs

of multiple-output function. Experimental results show
that GRMIN outperforms existing algorithms.

II. Definitions and Basic Properties

2.1. Positional Cube Notation

A positional cube [7] is convenient for manipulation of
logic expressions by computers. In positional cube nota-
tion, an uncomplemented literal such as xi is represented
by 01, a complemented literal �xi is represented by 10, and
a don't care (missing variable in a product) is represented
by 11. 00 represents no value of the variable, and any
cube containing a 00 for any variable position denotes a
null cube.
For m-output functions (f0; f1; : : : ; fm�1) (m � 1), an

m-bit tag �eld is concatenated to the cube to denote the
output. If the ith bit of the tag �eld of a cube is 1, the
ith output is occupied by the cube. In this case, we treat
the outputs as an m-valued variable.
In the positional cube notation, each variable consti-

tutes a part. Them-bit tag constitutes the output part.
Thus, in the representation of an n-variable function there
are n + 1 parts.

De�nition 2.1 A list of cubes is called the OR array

if it represents the OR of cubes, and called the EXOR

array if it represents the EXOR of cubes.

Example 2.1 The three-variable three-output function

f0 = x1�x3 � x2x3; f1 = x2x3; and f2 = x1�x3 is repre-

sented by the four part EXOR array:

x1 x2 x3 f0f1f2
01 � 11 � 10 � 101
11 � 01 � 01 � 110: (End of Example)

From now on, unless otherwise speci�ed, a list of cube
represents an EXOR array.

De�nition 2.2 The c-distance between two cubes is the

number of parts in which they di�er.

Example 2.2 The c-distance between the two cubes in

Example 2.1 is four. (End of Example)

2.2. Logical Expression

An alternate representation of a logic function is a log-
ical expression. In this representation, position of 1's in a
part of the positional cube notation of a cube are shown
as the exponent of the corresponding variable. For ex-
ample, xf0g, xf1g, and xf0;1g is used to represent 10, 01,
and 11, respectively. In Section 3.3, this representation
is used to show the simpli�cation rules for GRMs. From
now on, we will consider the binary outputs as a single
multiple-valued output and represent by z. All the inputs
are two-valued.

Example 2.3 The three-variable multiple-output func-

tion shown in Example 2.1 can be represented by

x
f1g

1 x
f01g

2 x
f0g

3 zf02g�x
f01g

1 x
f1g

2 x
f1g

3 zf01g. Because it is an

EXOR array, the � operator is used. (End of Example)

2.3. PPRM, FPRM and GRM

In this part, we will de�ne three classes of AND-EXOR
expressions. The following lemma is the basis of the
EXOR-based expansion [12]:

Lemma 2.1 An arbitrary logic function f(x1; x2; : : : ; xn)
can be expanded as

f = �x1f0 � x1f1; (2.1)

f = f0 � x1f2; (2.2)

f = f1 � �x1f2; (2.3)

where f0 = f(0; x2; : : : ; xn); f1 = f(1; x2; : : : ; xn); and
f2 = f0 � f1.

(2.1), (2.2), and (2.3) are called the Shannon expan-

sion, the positive Davio expansion, and the negative
Davio expansion, respectively. If we use (2.2) recur-
sively to a function f , then we have the following:

Lemma 2.2 An arbitrary n-variable function

f(x1; x2; : : : ; xn) can be represented as

f = a0 � a1x1 � a2x2 � � � � � anxn

� a12x1x2 � a13x1x3 � � � � � an�1nxn�1xn �

� �

� a12���nx1x2x3 � � �xn; (2.4)

where a's are either 0 or 1.

(2.4) is called a positive polarity Reed-Muller ex-

pression (PPRM). For a given function f , the co-
e�cients a0; a1; a2; : : : ; a12���n are uniquely determined.
Thus, the PPRM is a canonical representation. The num-
ber of products in (2.4) is at most 2n, and all the literals
are positive (uncomplemented).
In (2.4), for each variable xi (i = 1; 2; : : : ; n), if we

use either a positive literal (xi) throughout or a negative
literal (�xi) throughout, then we have a �xed polarity

Reed-Muller expression (FPRM). For each variable
xi, there are two ways of choosing the polarities: positive

(xi) or negative (�xi). Thus, 2n di�erent set of polari-
ties exist for an n-variable function. For a given function
and a given set of polarities, a unique set of coe�cients
(a0; a1; : : : ; a12���n) exists. Thus, an FPRM is a canonical
representation.
In (2.4), if we can freely choose the polarity for each

literal, then we have a generalized Reed-Muller ex-

pression (GRM). Unlike FPRMs, both xi and �xi can
appear in a GRM. Some authors use GRMs to represent
another class of expressions [6], thus the terminology is

not uni�ed. There are n2n�1 literals in (2.4), so 2n2
n�1

di�erent set of polarities exist for an n-variable function.
For a given set of polarities, a unique set of coe�cients
(a0; a1; : : : ; a12���n) exists. Thus, a GRM is a canonical
representation for a logic function.
A GRM for a multiple-output function is de�ned as

follows:

De�nition 2.3 An array represents a multiple-output

GRM, if for each output, the corresponding cubes repre-

sent a GRM.

Example 2.4 Consider an array representing a three-

variable two-output function:

x1 x2 x3 f0f1
10 � 10 � 10 � 10
10 � 01 � 01 � 01
01 � 01 � 11 � 11:

Both f0 = �x1�x2�x3 � x1x2; and f1 = �x1x2x3 � x1x2
are GRMs. Thus, the array represents a multiple-output

GRM. (End of Example)

2.4. PSDRM and ESOP

Before studying the simpli�cation method for GRMs,
it is convenient to de�ne other classes of expressions.
Suppose that we are given a three-variable function

f(x1; x2; x3). When we expand f using the positive Davio
expansion with respect to x1, we have

f = f0 � x1f2:

Next, when we expand f0 and f2 in a similar way with
respect to x2, we have

f0 = f00 � x2f02; f2 = f20 � x2f22:

Furthermore, when we use similar expansions with respect
to x3, we have

f00 = f000 � x3f002; f02 = f020 � x3f022;

f20 = f200 � x3f202; f22 = f220 � x3f222:

The expansion tree in Fig. 2.1 illustrates this process. A
path from the root node to a terminal node represents a
product of an expression, where a label of an edge shows
the literal for the corresponding variable. For example,
the path from the root node to f000 represents the product
1 � 1 � 1 � f000 = f000, and the path to f222 represents
x1x2x3f222. Thus, the tree in Fig. 2.1 shows the PPRM:

f = f000 � x3f002 � x2f020 � x2x3f022 � x1f200

� x1x3f202 � x1x2f220 � x1x2x3f222:

f 002f000 f022f020 f202f200 f222f220

X3

X2

X1

f02f00

f2
f0

f22f20

X2

X3 X3 X3

pD

pD

pD pD pD pD

pD

f

1

1

1

1 1 1 1

Fig. 2.1. Representation of a logic function

using positive Davio expansions.

f 002f001 f022f020 f212f210 f222f221

X3

X2

X1

f02f00

f2f0

f22f21

X2

X3 X3 X3

pD

pD

nD pD pD nD

nD

f

1

1

1

1 1 1 1

Fig. 2.2. Representation of a logic function

using pseudo Reed-Muller expansions.

Each node has a label pD, which shows the positive Davio
expansion. In Fig. 2.1, only the positive Davio expansions
are used. However, if we use either the positive or the
negative Davio expansion for each variable, then we have
a more general tree. Such a tree represents an FPRM. If
we use either the positive or the negative Davio expansion
for each node, then we have a more general tree. Such
a tree represents a pseudo Reed-Muller expression

(PSDRM). For example, in Fig. 2.2, f , f0, f02, and f21
use the positive Davio expansions, while f2, f00, and f22
use the negative Davio expansions. Nodes with label nD
denotes the negative Davio expansion. Note that the tree
in Fig. 2.2 shows the PSDRM:

f = 1 � 1 � 1 � f001 � 1 � 1 � �x3f002 � 1 � x2 � 1 � f020

� 1 � x2x3f022 � x1 � 1 � 1 � f210 � x1 � 1 � x3f212

� x1�x2 � 1 � f221 � x1�x2�x3f222:

Arbitrary set of product terms combined by EXORs is
called an Exclusive-or Sum-of-Products Expression

(ESOP). The ESOP is the most general AND-EXOR ex-
pression. Arbitrary set of product terms combined by
ORs is called a Sum-of-Products Expression (SOP).

Example 2.5

1. x1�x2�x1x2 is a PPRM (all literals are uncomple-

mented).

2. x1 � �x2 � x1�x2 is an FPRM, but not a PPRM (x2
have complemented literals).

3. x2 � x1�x2 is a PSDRM, but not an FPRM (x2 have

both complemented and uncomplemented literals).

4. x1�x2��x1�x2 is a GRM, but not a PSDRM (it cannot

be generated by an expansion tree for a PSDRM).

2.5. Properties of GRMs

In this part, we consider some properties of GRMs, use-
ful for the simpli�cation of expressions.

De�nition 2.4 The variable set of a product p is de-

noted by V (p) = fxi j xi or �xi appears in pg. The vari-

able set of a cube is the variable set of the product

represented by the input parts of the cube.

Example 2.6 V (x1�x2�x4) = fx1; x2; x4g: The variable

sets of the �rst and second cubes in Example 2.1 are

fx1; x3g, and fx2; x3g, respectively. (End of Example)

From the de�nition of GRMs, we have the following
lemma:

Lemma 2.3 An AND-EXOR expression (for single-

output function) is a GRM, i� no two products have the

same set of variables.

Example 2.7 Let f = x4 � x1x2x3 � �x1�x2�x3. Then

V (x1x2x3) = fx1; x2; x3g, and V (�x1�x2�x3) = fx1; x2; x3g.

Thus, f is not a GRM because two products have the same

set of variables. (End of Example)

In a GRM for multiple-output function, more than one
cube may have the same set of variables.

Lemma 2.4 An array represents a multiple-output

GRM, if for any output, no two cubes have the same set

of variables.

(Proof) Let the array representm single output functions,
fi (i = 0; : : : ;m�1). If the ith bit of the output part of a
cube is 1, fi contains the corresponding cube. From the
hypothesis of the lemma, no two cubes of fi have the same
set of variables. So, by Lemma 2.3, fi represents a GRM
of single output function. Thus, from the De�nition 2.3,
we have the lemma. (Q.E.D.)

Corollary 2.1 In an array for a multiple-output func-

tion, if cubes having the same set of variables have non-

disjoint output parts, then the array does not represent a

GRM.

Example 2.8 Consider the array in Example 2.4. The

�rst and the second cubes have the same set of variables,

but their output parts are disjoint. Thus, the array repre-

sents a multiple-output GRM. (End of Example)

III. Simplification Algorithm

3.1. Outline of GRMIN

GRMIN has the following features:

1. As an input, it accepts a PSDRM, or quickly gener-
ates good initial solutions from the given SOP.

2. It simpli�es multiple-output functions.

3. It uses eight rules iteratively to reduce the number
of products.

4. It modi�es the cubes repeatedly by replacing a pair
of cubes with another one, while keeping the array to
represent a GRM.

5. When reduction of the number of products become
impossible in the iterative improvement mode, it
temporarily increases the number of products, and
simpli�es again. An increase in the number of prod-
ucts, increases the computation time, but often re-
duce the number of products in the �nal solution [1].

3.2. Initial Solution

As an initial solution, GRMIN accepts any GRMs. Al-
ternatively, one can minimize two GRMs from two di�er-
ent initial solutions and take the one with fewer products.
PSDRMs: PPRMs, FPRMs and PSDRMs are special

classes of GRMs, and any of them can be used as an initial
solution for the GRM. We use a PSDRM as an initial
solution, because minimal PSDRMs are easy to derive and
usually require fewer products than PPRMs and FPRMs.
We used the algorithm in [12] to obtain PSDRMs. For
functions with up to 14-variables the algorithm quickly
produce good initial solutions on an ordinary workstation.
Modi�ed DSOPs: If each pair of products in an SOP

are disjoint, then it is called a disjoint SOP (DSOP). In
a DSOP, the OR operators can be replaced by the EXOR
operators without changing the function represented by
the expression. To obtain an initial solution, from the
given SOP, �rst we obtain a DSOP [13]. Then, we use
some heuristic to remove the cubes having the same set
of variables for a output (Lemma 2.4).

3.3. Simpli�cation Rules

De�nition 3.1 \ and [denote the intersection and

union operation between two sets, respectively. Also `�'

(overline) denotes the complement of a set. If A and B

are sets, A � B = (A \ B) [(A \ B). The symbol � is

also used to denote the EXOR of two logic functions. A

set is null (�) if it contains no element.

For simpli�cation of GRMs, we use eight rules. Let
A;B;C;D � P , where P = f0; 1g. Then, the simpli�ca-
tion rules for GRMs are as follows:

1. X-MERGE

XA
�XB

) X(A�B)

2. RESHAPE

XAY B �XCY D) XAY (B\D) �X(A[C)Y D

if (A \ C = �, B � D)

3. DUAL-COMPLEMENT

XAY B �XCY D) X(A\C)Y B �XCY (B\D)

if (A � C, B � D)

4. X-EXPAND-1

XAY B �XCY D
) XAY (B[D)

�X(A[C)Y D

) X(A[C)Y B
�XCY (B[D)

if (A \ C = �, B \D = �)

5. X-EXPAND-2

XAY B �XCY D) X(A[C)Y B �XCY (B\D)

if (A \ C = �, B � D)

6. X-REDUCE-1

XAY B �XCY D) X(A\C)Y B �XCY (D\B)

if (A � C, B � D)

7. X-REDUCE-2

XAY B �XCY D) X(A\C)Y B �XCY (B\D)

if (A � C, B � D)

8. COMPLEMENT

XA
) XA

�XP

The representation, analysis, and proof of these rules
for multiple-valued input functions can be found in [13].
All the rules except for COMPLEMENT are also used in
EXMIN2 [13] to simplify ESOPs.

3.4. Examples of Simpli�cation

Example 3.1 Consider the following array:

x1 x2 f0f1
10 � 11 � 01
01 � 10 � 01
11 � 10 � 10:

X-MERGE is inapplicable to this array, but RESHAPE is

applicable to the �rst two cubes, and we have the following

array: x1 x2 f0f1
10 � 01 � 01
11 � 10 � 01
11 � 10 � 10:

By merging the last two cubes, we have a GRM with two

cubes:
x1 x2 f0f1
10 � 01 � 01
11 � 10 � 11: (End of Example)

3.5. Properties of the Simpli�cation Rules
1

To simplify GRMs we use the eight rules of Section 3.3.
Among them, X-MERGE is the only rule that reduces
the number of cubes. When X-MERGE becomes inap-
plicable, other rules are used to modify the shape of the
cubes so that X-MERGE becomes applicable. For a pair

1The proof of the lemmas can be found from the authors.

of cubes, the rules (1-7) are applicable only when the c-
distance between them is one or two. The COMPLE-
MENT operation is used to increase the number of prod-
ucts. During simpli�cation, the array is kept to represent
a GRM.

Lemma 3.1 In an array for a GRM, if the output parts

of two cubes di�er, then RESHAPE is inapplicable.

Lemma 3.2 For a pair of cubes in an array for GRM, if

two input parts di�er, then X-EXPAND-1 is inapplicable.

Lemma 3.3 For a pair of cubes in an array for GRM, if

they are disjoint in an input part, and di�er in the output

part, then X-EXPAND-2 is inapplicable.

Lemma 3.4 In an array for GRM, if a pair of cubes dif-

fers in two input parts, then X-REDUCE-1 is inapplica-

ble.

Rules 2-8 of Section 3.3 may produce cubes with new
variable sets and modi�ed output parts. Therefore, be-
fore applying these rules, we check if the resultant array
represents a GRM or not. If it is non-GRM, we discard
the operation to keep the array to represent a GRM.

Example 3.2 Consider an array for a GRM:

x1 x2 x3 f0f1f2
10 � 10 � 11 � 110
10 � 01 � 01 � 110
01 � 11 � 10 � 011:

By applying RESHAPE to the �rst two cubes, we have

x1 x2 x3 f0f1f2
10 � 10 � 10 � 110
10 � 11 � 01 � 110
01 � 11 � 10 � 011:

The last two cubes of this array have identical variable

sets, i.e., fx1; x3g, and the outputs are non-disjoint.

Thus, the array no longer represents a GRM, and we

discard this operation and keep the array to represent a

GRM. (End of Example)

Lemma 3.5 In an array for a GRM, if a rule does not

change the variable set of a cube, and produces outputs

which are a subset of the original outputs, then the cube

can be modi�ed without checking the array.

Example 3.3 Consider an array of k (k > 3) cubes for
a GRM. Let three of the cubes in the array be:

x1 x2 x3 f0f1f2
01 � 10 � 01 � 101
01 � 10 � 11 � 001
10 � 01 � 11 � 110:

By applying DUAL-COMPLEMENT to the �rst two

cubes, we have

x1 x2 x3 f0f1f2
01 � 10 � 10 � 101
01 � 10 � 11 � 100
10 � 01 � 11 � 110:

In the �rst cube, the variable set remains the same and the

outputs are the subset of the original outputs (equal here).

Thus, we can modify the �rst cube without checking the

array. Note that the polarity of the literal x3 has been

changed.

In the second cube, the variable set remains the same

but the outputs are not a subset of the original outputs.

So, we have to check if the resultant array represents

a GRM or not. The second and third cube have the

same set of variables and the outputs are non-disjoint.

Thus, the array no longer represent a GRM, and we have

to discard this operation to keep the array represent a

GRM. (End of Example)

Lemma 3.6 In an array for GRM, if a pair of cubes dif-

fers in two input parts, and DUAL-COMPLEMENT is

applied, then the cubes can be modi�ed without checking

other cubes in the array.

3.6. Algorithm

For many functions, the order of the simpli�cation rules
inuences the �nal solution. Currently, we are using the
following heuristic algorithm.

Algorithm 3.1 (GRMIN: Simpli�cation of GRMs)

1. Obtain an initial solution from the given SOP (Sec-

tion 3.2).

2. For each pair of cubes, check if X-MERGE is applica-

ble. If so, X-MERGE them. Continue this step while

reductions of the number of cubes are possible.

3. For each pair of cubes, check if RESHAPE, DUAL-

COMPLEMENT, X-REDUCE-1, or X-REDUCE-2

are applicable. If so, apply that.

4. For each pair of cubes, check if X-MERGE is applica-

ble. If so, X-MERGE them. Continue this step while

reductions of the number of cubes are possible.

5. If the number of cubes is reduced in step 4, then go

to step 3.

6. For each pair of cubes, check if X-EXPAND-1, X-

EXPAND-2, RESHAPE, or DUAL-COMPLEMENT

are applicable. If so, apply that.

7. For each pair of cubes, check if X-MERGE is applica-

ble. If so, X-MERGE them. Continue this step while

reductions of the number of cubes are possible.

8. If the number of cubes is reduced in step 7, then go

to step 6.

9. If the number of cubes is reduced between steps 3-8,

then go to step 3.

10. Temporarily increase the number of products by

COMPLEMENT, and simplify using steps 2-9. Con-

tinue this step while reductions of the number of cubes

are possible.

TABLE 4.1

Comparison with Cannes [3]

Data In Out Cannes GRMIN Improvement

5xp1 7 10 60 35 42%
con1 7 2 12 9 25%
misex1 8 7 20 13 35%
rd53 5 3 20 20 � 0%
rd73 7 3 63 63 � 0%
sao2 10 4 52 28 46%
squar5 5 8 22 19 14%
sym9 9 1 131 126 � 4%
xor5 5 1 5 5 � 0%

� Exact minimum GRM.

11. For each pair of cubes, check if X-REDUCE-1,

X-EXPAND-2 (when two input parts di�er), RE-

SHAPE, or DUAL-COMPLEMENT (when two in-

put parts di�er), are applicable. If so, apply that.

Continue this step while reductions of the number of

connections are possible.

12. Check that the simpli�ed cubes represent a GRM, and

verify that it is functionally equivalent to the given

SOP.

In steps 2, 4, and 7, more than one merging passes
are often required. In our implementation, we used ad-
ditional �elds for each cube. Using these �elds, we can
avoid many redundant computations. One of these �elds
stores when the cube was modi�ed. For example, during
the �rst merging pass in step 4 of Algorithm 3.1, it checks
two cubes if at least one of them was modi�ed in step 3.
As stated in Section 3.5, before applying a rule, the al-
gorithm checks the array to determine if it represents a
GRM. Another �eld is used to make this checking easier
by storing variable set information.

IV. Experimental Results

We coded GRMIN in C. As an initial solution, it accepts
a PSDRM, or generates an initial GRM from the given
SOP. Table 4.1 compares the number of products gener-
ated by GRMIN with that of Cannes [3], another heuristic
simpli�cation program for GRMs. It shows that GRMIN
outperforms Cannes, and the improvement is up to 46%.
For rd53, rd73, sym9, and xor5, GRMIN produced exact
minimum solutions (denoted by �). To show the minimal-
ity, we obtained lower bounds on the number of products
in GRM [15].
Table 4.2 compares the number of products required

to realize di�erent arithmetic functions by various AND-
EXOR expressions. In this experiment, PPRMs, FPRMs,
and PSDRMs were minimized by a program in [12];
ESOPs were simpli�ed by EXMIN2 [13]; and GRMs were
simpli�ed by GRMIN. For adr4, inc8, sym9, and wgt8,
GRMIN produced exact minimum solutions. This table
also shows that GRMs for arithmetic functions often re-
quire many fewer products than SOPs.

TABLE 4.2

Number of products to realize arithmetic functions

Data PPRM FPRM PSDRM GRM ESOP SOP

adr4 34 34 34 34 � 31 75
inc8 16 16 16 15 � 15 37
log8 253 193 163 105 96 123
mlp4 97 97 90 71 61 121
nrm4 216 185 150 96 69 120
rdm8 56 56 46 31 31 76
rot8 225 118 81 51 35 57
sqr8 168 168 164 121 112 178
sym9 210 173 127 126 � 51 84
wgt8 107 107 107 107 � 58 255

�Exact minimum GRM.

TABLE 4.3

Number of products to realize randomly

generated functions

n jf j PPRM FPRM PSDRM GRM ESOP SOP

4 8 6 5 4 4 � 3 4
5 16 16 10 7 5 � 5 6
6 32 36 17 13 10 � 10 13
7 64 64 54 30 19 19 24
8 128 122 101 56 36 36 46
9 256 236 226 112 66 64 86
10 512 528 459 235 142 142 167
11 1024 1021 956 458 275 274 331
12 2048 1996 1925 909 542 539 611
13 4096 4136 3923 1813 1098 1045 1157
14 8192 8210 7924 3617 2205 2150 2234

�Exact minimum GRM.

Table 4.3 compares the number of products to realize
randomly generated functions. For each value of n, an n-
variable pseudo-random function with 2n�1 minterms was
generated and minimized. Here jf j denotes the number of
true minterms of the function. For up to 6-variable func-
tions, we veri�ed that GRMIN produced exact minimum
solutions by using an exact minimization program [15].
In this experiment, SOPs were simpli�ed by MINI II [12],
and other data were obtained by the same programs as
mentioned above. This table shows that for randomly
generated functions, GRMs require fewer products than
SOPs.

Table 4.4 compares the number of products to realize
other benchmark functions.2 This table shows that, in
many cases, GRMs require fewer products than SOPs.
For adders and some other functions, GRMIN produced
exact minimum GRMs. By solving a recurrence relation
generated from the experimental results, we found that
the minimum number of products required by GRM for
adrn is 2n+1 + n� 2.

2In this table adrn is an n-bit adder without carry input,

incn increments an n-bit binary number, and wgtn counts

the number of 1-bits in an n-bit binary number.

TABLE 4.4

Number of products to realize other benchmark functions

Data In Out GRM ESOP SOP

5xp1 7 10 35 32 63
adr4 8 5 34 � 31 75
adr5 10 6 67 � 63 167
adr6 12 7 132 � 127 355
adr7 14 8 261 � 255 535
adr8 16 9 518 � 511 1499
adr9 18 10 1031 � 1023 3031
adr10 20 11 2056 � 2047 6099
al2 16 47 69 68 66
alu1 12 8 16 16 19
amd 14 24 71 58 66
b12 15 9 28 28 44
b9 16 5 81 81 119
chkn 29 7 151 145 141
clip 9 5 117 67 117
cps 24 109 175 137 172
duke2 22 29 87 81 86
gary 15 11 116 102 107
in2 19 10 122 108 134
inc12 12 13 23 � 23 79
inc13 13 14 25 � 25 92
intb 15 7 375 327 629
life 9 1 51 49 84
log8mod 8 5 30 30 38
luc 8 27 34 28 26
m181 15 9 29 29 41
m3 8 16 57 51 62

Data In Out GRM ESOP SOP

m4 8 16 95 84 101
max1024 10 6 324 165 262
max128 7 24 86 63 78
max46 9 1 47 41 46
max512 9 6 151 84 133
misex2 25 18 27 27 28
misex3 14 14 764 553 696
mlp6 12 12 1277 862 1870
newbyte 5 8 8 8 8
newcpla1 9 16 34 33 38
newxcpla 9 23 34 30 41
radd 8 5 34 � 31 75
rckl 32 7 32 32 32
rd53 5 3 20 � 14 31
rd73 7 3 63 � 35 127
rd84 8 4 107 � 58 255
risc 8 31 27 26 27
sao2 10 4 28 28 58
sqr6 6 12 35 34 47
sym10 10 1 110 82 210
sym9 9 1 126 � 51 84
t1 21 23 94 90 103
t481 16 1 13 13 481
ts10 22 16 128 128 128
wgt10 10 4 310 � 143 1023
wgt12 12 4 1068 � 445 4095
z4 7 4 32 � 29 59

�Exact minimum GRM.

V. Conclusion

In this paper, we presented GRMIN, a heuristic simpli-
�cation algorithm for GRMs of multiple-output functions.
GRMs have easily testable realizations. Experimental re-
sults show that, in most cases, GRMs require fewer prod-
ucts than SOPs. Also, we showed that GRMIN outper-
forms existing algorithms. For adders and some other
functions, GRMIN produced exact minimum solutions.

Acknowledgement

This work was supported in part by a Grant in Aid
for the Scienti�c Research of the Ministry of Education,
Science and Culture of Japan.

References

[1] D. Brand, and T. Sasao, \Minimization of AND-EXOR

expressions using rewrite rules," IEEE Trans. Comput.,

vol. 42, No. 5, pp. 568-576, May 1993.

[2] M. Cohn, \Inconsistent canonical forms of switching func-

tions," IRE Trans., EC-11, pp. 284-285, Apr. 1962.

[3] L. Csanky, M. A. Perkowski, and I. Sch�afer, \Canonical

restricted mixed-polarity exclusive-OR sums of products

and the e�cient algorithm for their minimisation," IEE

Proceedings-E, vol. 140, No. 1, pp. 69-77, Jan. 1993.

[4] M. Davio, J-P Deschamps, and A. Thayse, Discrete and

Switching Functions, McGraw-Hill Int., New York, 1978.

[5] H. Fujiwara, Logic Testing and Design for Testability, The

MIT Press, Cambridge, 1985.

[6] D. Green,Modern Logic Design, Addison-Wesley Publish-

ing Company, Wokingham, England, 1986.

[7] S. J. Hong, R. G. Cain, and D. L. Ostapko, \MINI: A

heuristic approach for logic minimization," IBM J. Res. &

Develop. pp. 443-458, Sept. 1974.

[8] A. Mukhopadhyay, and G. Schmitz, \Minimization of Ex-

clusive OR and Logical Equivalence switching cir-

cuits," IEEE Trans. Comput., vol. C-19, pp. 132-140,

Feb. 1970.

[9] M. A. Perkowski, L. Csanky, A. Sarabi, and I. Sch�afer,

\Fast minimization of mixed-polarity AND-XOR canon-

ical networks," Proc. International Conference on Com-

puter Design 1992, pp. 33-36, Oct. 1992.

[10] S. M. Reddy, \Easily testable realizations for logic func-

tions," IEEE Trans. Comput., vol. C-21, No. 11, pp. 1183-

1188, Nov. 1972.

[11] T. Sasao, and P. Besslich, \On the complexity of MOD-2

sum PLA's," IEEE Trans. Comput., vol. 39, No. 2, pp.

262-266, Feb. 1990.

[12] T. Sasao, \AND-EXOR expressions and their optimiza-

tion," in (Sasao e.d.) Logic Synthesis and Optimization,

Kluwer Academic Publishers, 1993.

[13] T. Sasao, \EXMIN2: A simpli�cation algorithm for

exclusive-OR sum-of-products expressions for multiple-

valued input two-valued output functions," IEEE Trans.

CAD., vol. 12, No. 5, pp. 621-632, May 1993.

[14] T. Sasao, \Easily testable realizations for generalized

Reed-Muller expressions," Proc. IEEE The Third Asian

Test Symposium, pp. 157-162, Nov. 1994.

[15] T. Sasao, and D. Debnath, \An exact minimization al-

gorithm for generalized Reed-Muller expressions," Proc.

IEEE Asia-Paci�c Conference on Circuits & Systems, pp.

460-465, Dec. 1994.

	ASP-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

