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Abstract — A new algorithm that generates optimal fixed
polarity Reed-Muller expansions based on user specified
optimization criteria is shown. The algorithm accepts reduced
representation of Boolean functions in form of an array of cubes
and operates on an Algebraic Ternary Decision Tree together
with lookup tables of flexible sizes. Allocation of don't care
minterms is performed in an non exhaustive way by a heuristic
approach based on the properties of Reed-Muller expansions.

I. INTRODUCTION

It has long been known that for some applications, the
logic circuits using EXOR gates are more economical than
the design based on other gates. What is more, circuits built
around the EXOR gates, are easily testable. Fault detection of
any logical circuit by verification of its Reed-Muller (RM)
coefficients was considered in [2]. The problem of finding the
minimal RM expansion of a Boolean function is classical in
logic synthesis and has received various formulations in
terms of coding or graph theory [3]. Such expansions can
always be derived from any logical expression of Boolean
functions by simple manipulations in either modulo 2 algebra
or standard arithmetic [3]. Moreover, there exists
transformation matrices for obtaining any RM expansion
directly from the truth vector of the function [3]. Later, more
attention has been paid to the development of algorithms for
the determination of RM expansions of Boolean functions
from their disjunctive normal form (DNF). Fisher [6] derived
a first algorithm to determine the RM expansions directly
from DNF. Some improvements on this approach with a
suitable cube notation was indicated in |3, §, 11, 17].

The most popular criterion for minimization of RM
expansions is to obtain the expression with the least number
of terms. Saluja and Ong [10] proposed an exhaustive
algorithm to compute all the RM expansions sequentially
using matrix multiplication. Row wise and column wise
construction of the polarity coefficient matrix (PCM) was
also considered in [3]. These algorithms have a space
complexity given by O(4”") when the Boolean function is
initially represented by a truth wvector. Non-exhaustive
minimization methods for RM expansions grounded on the
concept of the extended truth vector were considered in [3].
Those classes of algorithms have a space complexity of O(3")
with the same assumption on the initial truth vector
representation of a Boolean function [3]. Another method for
the construction of PCM of RM expansions without matrix
multiplication was shown by Harking (7). In order to find an
optimal FPRM expansion an exhaustive search of all the
polarity vectors is necessary. Wu, Chen and Hurst [16]

introduced a map method for mapping .coefficients of a
positive polarity RM expansion to find the minimum FPRM
solution without undertaking exhaustive determination of all
possible realizations. However, they pointed in their paper
that the method is not clear for both analysis and synthesis of
all fixed polarity cases. Sarabi and Perkowski [11] presented
an exact and a quasi-minimal algorithms for the
minimization of FPRM expansions. Similarly to three earlier
methods [S, 6, 17] their algorithm is based on the reduced
representation in the form of disjoint cubes. To find an
optimal expansion the total search is necessary which is
performed in Gray code order to minimize the number of
required operations. Unfortunately, their algorithms can
handle only single output completely specified functions.

In this paper, a hybrid approach combining the advantages
of lookup table based methods and efficient data structure in
the form of a decision tree for minimization of FPRM
expansions for large multiple output completely and
incompletely specified Boolean functions is presented.
Contrary to all exact algorithms known from the literature,
our algorithm for the minimization of a system of Boolean
functions, is adaptable to different cost criteria. Based on the
size of the tackled problem, our algorithm can use different
size of the lookup table and decision diagram in order to
trade space complexity for processing time. Since many CAD
methods using RM coefficients require only the knowledge of
some coefficients, such an option is also available in our
algorithm. Hence, the number of operations to be performed
is dependent on the size of the underlying function, chosen
cost criteria, the size of the lookup table, and the required
information : either some spectral coefficient in a chosen
polarity are sought for, or the best fixed polarity RM
expansion based on the chosen criteria is required. The
results of the research summarized here can serve as a basis
for assessing the quality of various heuristic minimizers. The
introduced algorithm also provides mechanism for handling
functions with don't care conditions in a non exhaustive way.
Although absolute minimality can not be guaranteed for all
incompletely specified functions, it generally obtains either
minimal or quasi-minimal RM expansion for most functions.

II. BAsIC DEFINITIONS
Definition 1 : An n-variable Boolean function can be
expressed as a canonical Reed-Muller expansion [3-11,

14-17] of 2" terms as follows :
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where @ denotes the modulo-2 addition, a, €(0, 1) is called a
I_{eed-Muller coefficient and %, €(0, 1) is called the power of
x; such that £k, , ... k, k, is equal to the binary representation
of i. When k = 0, the literal x; is absent in the product term
}3 %’ , otherwise it is present in the product term. When

each literal (x; , i = I, 2, ..., n) throughout the expression (1)
assumes either true or complemented form but not both forms
simultaneously, such an expression is known as a fixed
polarity Reed-Muller (FPRM) expansion.

Let ¥, denote %, x, or I for j = 0, 1, 2 respectively. A
Reed-Muller product term can also be expressed as ‘gxf‘ for j,
€(0, 1, 2). It is convenient to interpret the decimal number j
as the ternary n-tuple <j,j,,...J,j~> whenj = z.‘lj, x 31,

Definition 2 : The polarity number o of an FPRM expansions
is an integer computed by taking the decimal equivalent of
the » bit straight binary code formed by writing a 0 or a / for
each literal according to whether this literal is used in a
positive or negative form in all the terms. The polarity
number o may be written as a binary n-tuple <o, ©,, ... ©,
o,> instead of the decimal form.

Definition 3 : A polarity vector A® is an ordered set of all 2"
FPRM coefficients [azn-) aar-—2 ... a,] in some polarity .
Definition 4 : The polarity coefficient matrix (PCM) of an
n-variable Boolean function F, denoted by PC(F) isa 2" x 2"
binary matrix, where every row corresponds to a polarity
vector A” in a different polarity o.

Property 1 : Every element m, (row i, column ;) of the PCM
describes the coefficient a, of the FPRM expansion with
polarity @ = .

Definition 5 : The Hamming weight of an integer i, denoted
by H(i) is the number of '/" in its binary representation.
Definition 6 : The weight of an FPRM expansion considering
the number of product terms, denoted by w,(®), is the number
of nonzero coefficients in the polarity vector A°. Similarly,
the weight of an FPRM expansion in terms of the number of
literals, denoted by w(w), is the sum of the orders of the
nonzero coefficients in the polarity vector A” . The order of a
coefficient is Hamming weight of the power & of its product
term in (1).

Ordered scts of either all 2" weights w, or w, of PC(F) in

ascending order of the polarity number © are denoted by the
column vector W, or W, respectively. For convenience, the
term weight w without any subscript refers to either w, or w,
when its use in the context is unambiguous.
Property 2 : The optimal polarity of a Boolean function F in
an FPRM expansion happens for A® that has a minimal
weight and is equal to the row number of PC(F) with such a
minimal weight.

II1. LooKup TABLES FOR WEIGHTS OF FPRM EXPANSIONS

Recently, an algorithm has been developed that utilizes
only a subset of Walsh coefficients to reveal all the
information carried by the PCM of any 3 variable Boolean

functions [4]. Each class of the functions is associated with a
specific subroutine that computes the optimal polarities,
optimal weights, optimal FPRM expansions etc. without
resorting to an exhaustive search. Direct extension of the
method in [4] to handle larger Boolean functions with the
number of variables n>3 is unmanageable due to the
increasing number of different classes. Nevertheless, exact
optimal generation of FPRM expansions for large 7 can be
solved by reducing the PCM into submatrices of smaller
dimension such that each submatrix is a PCM of a
subfunction obtained by either Shannon's decomposition or
Boolean difference with respect to some variables.

Lemma 1 : The PCM of an n-variable completely specified
Boolean function F, can be partitioned into four submatrices
of order 2’ as [6, 7] :

_[ pcg® pcgrert)
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where f° and f* are cofactors of Shannon's decomposition of
F(X) evaluated at x, = 0 and x, = ] respectively.

By applying (2) recursively, the PCM of order 2" can be
partitioned into p’ submatrices of order 2*, where p = 2™
Each submatrix is a PCM of a k variable subfunction and the
total number of unique subfunctions is equal to 3"*.

A subfunction f/, i = 0, 1, 2 for an n-variable Boolean
function F is defined as : /°= F(0, x, , ..., X,, x,), ' = F(I,
Xy, X, %) and f2 = f°® f'. This definition can be
generalized to more than one variable. In general, a
subfunction of k variables, 0 < k < n, can be formed by
decomposing or taking the Boolean difference of F' with
respect to some n-k variables. Each subfunction f ° of k-
variables is associated with a ternary k-tuple <a, o, ; ... @,
a,> where a, €(0, 1, 2). f o, €(0, 1) for all ] <i S n-k, o is
said to be reducible to a binary k-tuple and f* is a cofactor
formed from F by substituting all the k variables with o, in
the following manner : x, with o, , x,, with o, , etc.. If
there exists an o, = 2 for any I <i < k, then f* = f° @ f7
wheref=<o,a,,..0,,00,, ..., ,>andy=<a, o, ...
o, /o, .. oa,> It is obvious that two or more different
a,, o, etc., i #j, can be equal to 2 in /.

Theorem 1 : The weight vectors of an n-variable Boolean
fanction F can be expressed as [W(f% W() ... WyT 1))
where each subvector W(f") of k-variable subfunction /" in
term of the number of products and number of literals are

given by :

Woll)="% ™) (3a)
Wi ="5 W+ HO W) ab)

where 0 < k <n, r and j are decimal equivalents of binary
(n-k)-tuples <r, , 7,4, ... r> and <, Jouy - Jr. The
operator * : {0, I}* x {0, 1}* - {0, 1, 2}* is defined by the
following componentwise table of operation :

second operand

* 0 1

first operand 0 0 2
1 . 1 2




Proof : The weight vector W(F) of PC(F) for an n-variable
Boolean function F can be obtained in a similar recursive
way from the weight vectors W(/°), W(f') and W(f* @ 1)
corresponding to the FPRM expansions of subfunctions f°, f*
and f? respectively.
_| W+ W)
") [ Wo(l") +We(f?) ]
Wo(f ™)+ Wp () + Wp (/) + Wp(f?)
= Wo () + Wo(f ™) + Wp(f) + Wp(f?)
Wo(f1°) + Wo (') + Wp () + Wp ()
Wo(f"') + Wo(f'2) + Wp (™) + Wp ()
After n—k recursions, there are 2* rows each having 2**
weight vectors #, to be summed. The first weight vector in
the r-th (r=0, 1, ... 2*-1) row is the weight vector W, of the
cofactor generated by decomposing F* with respect to 'gx;‘,,,.

If the cofactor at r-th row is denoted by f’, the subfunction
appearing in the j-th (j = 0, 1, ... 2** -I) weight vector W, of
the same row is given by /™. Hence (3a) is obtained.

" When (2) is expanded recursively n-k times, each
submatrix at the r-th row and j-th column corresponds to a
subfunction f ™. Each such submatrix PC(f ™) has the
dimension of 2* x 2* and its elements are located at the row
number g and column number # where g, h =0, 1, ..., 2*-1.
Any non zero entry in PC(f™) corresponds to a Reed-Muller
product term gx:;, . 'Ie'{x," where u={Z: ISu s kand h= 1},

v={Z: ISv<sn-kandj,= I} and Z is the set of integers. The
number of literals in the product ‘le'lx," has already been

accounted for by W, . Since there are F(j) additional literals
in 'I;I x:, of each Reed-Muller product term, the weight vector

for the number of literals for any submatrix PC(/™) is given
by W™ + H(j))W, (f™). Hence (3b) follows. QED.
In order to use the subfunction as an index to the lookup
tables, each subfunction is assigned a unique integer value
whose decimal equivalent is <mai) mar_3 --- my mo > where
m,e(0, I) is the binary value of the i-th minterm of the k-
variable subfunction /. We call this integer value the row
index and denote it as R(/*). Clearly,®(7%) =27 ~1- R(*).
Three lookup tables in the form of two dimensional integer
arrays Exp[R/2][C], P[R]}[C] and L[R/Z]'[C] are created for
any k-variable subfunction where R = 2% and C = 2*. For k
= 3, R = 256, C = 8 and the lookup tables can be generated
from the algorithm in [4]. The polarity number o is used as
the column index to all three arrays. R(f*) is used as the row
index to the array P and the smallest integer between R(f )
and m(]‘) , i.e., min(R(f "), ‘.R(f_“) ) is used as the row index
to arrays Exp and L. Each entry of Exp is an integer whose
binary representation is <a, a, ... a, a, > where g, is the
(i+D-th coefficient of the polarity vector A of the
subfunction f* or f* whichever has the lower row index. If
R(7=) < R, 420 %) = 1 ©, Exp[R(]7) o] where ©, is
the symbol for dyadic addition between two integers. Each
entry in P is the weight w, of the polarity vector A® for the

=..e€fC.

subfunction f ® and each entry in L is the weight w, of the
polarity vector A° for the subfunction f*or f* whichever has
the lower row index. Notice that w{f%) = w(f ® since
A"(F) and A®°(f*) differ only in the constant term a, .

Corollary 1 : The exact weight of any n-variable completely
specified Boolean function in polarity o is given by :
#,(©) = & PR} mod 2] (42)

w{o) =‘§ {L[min(R(r ), 22" —1-R(FH))][0 mod 2] +

H(j) PIR{)] [0 mod 21} (4b)
where "® >> k" is the right shift operator of the binary
number o by k positions, M = 2"* and ® mod 2* is the
remainder of ® divided by 2*. The proof of (4a) and (4b) is
straightforward by replacing r in Theorem 1 by o>>k.
Corollary 2 .

A= ‘,g 2{C,®, Exp[min(R( ), 2 ~1-R( )] [0 mod

2 )
where C, = 1 if R(f @2 2%~ and C, = 0 otherwise.

In Corollary 2, the polarity vector A° of the n-variable
Boolean function is represented by a decimal integer whose
binary equivalent is equal to < azn-; a»-2 ... a, g, >. In fact,
A" is formed as a concatenation of the binary representations
of C, ®, Exp| min (@), 2% - 1- R@>*) |[@ mod 2]
forj = 0, 1, ..., M-1. The proof of Corollary 2 is a trivial
extension from the proof of Theorem 1.

Example 1 : Consider the 5-variable Boolean function F(x,,
X, X5 X5, X)) =Zm(8, 10, 11, 16, 17, 19, 23, 24, 26, 27). This
example is taken from [16]. Using the 3-variable lookup
tables, i.e., k = 3, the number of Reed-Muller products in
polarity @ = <01110> = 14 can be calculated as follows :

M=2°7=4. ©>>3=<00001>. 14 mod 8=6. For j=0, f<>*%>
=f<0>=<00001101>; For j=I, f<0>*<0P= f<0 = f<00> @ f<0P>=
<00000000>®,<00001101>=<00001101>; For j=2, Joreio>
=[P =g [1=<(000] 101>D,<00001101>=<00000000>
; For j=3, fol>‘<11.>=f”>=f”>$ df<21>=j<w>e JHb@ dfzb =<00
000000>®,<1000101 1>®,<00000000>=<10001011>. As R(
<00001101>)=13, R(<00000000>)=0 and R(<10001011>)=
139, by (4a), w,=2P[13][6]+P[0][6]+P[139][6}=2x2+0+3 =7.

The number of literals for polarity ® = 14 can be
calculated by (4b) as follows : Since only /39 > 127 and
min(139, 255-139) = 116, w,= L[13][6] + H(0)P[13][6] +
L[13][6] + H(1)P{13][6] + L[0][6] + H(2)P[0][6] + L[116][6]
+H(3)P[139][6] =4+0+4+2+0+0+5+2x3=2].

The FPRM expansion in polarity ® = /4 can be calculated
by (5) as follows : A’ =8(1 ®, Exp[116](6]) + 4Exp[0][6] +
2Exp[13)[6] + Expl131[6] =8 x (1 ©,75) + 4 x 0+ 2 x 144 +
144=[74|0| 144 | 1441 =[01001010 100000000

| 10010000 ) 10010000] =3 ®%:%x,O%%:0
XaX3%ox DxsEax) BxsXaX2x1 O x5¥4%3%2.

As noticed by Fisher {6], the minimization of FPRM
expansions can be divided into two steps. The first step is to
find an optimal polarity and the second is to realize the
FPRM expression of the switching function with this polarity.



Most approaches to the first problem, though exhaustive, are
formidable to varying cost functions and usually identify only
one out of the many possible optimal polarities. With an
appropriate data structure, Corollary 1 provides efficient and
flexible means for the identification of all optimal as well as
suboptimal polarities based on different criteria if necessary.
Once the optimal polarities have been identified, realization
of the FPRM expansions at those polarities is straightforward
" by applying Corollary 2.

IV. MINIMIZATION OF MULTIPLE OUTPUT FUNCTIONS

In order to obtain an exact global minimization for a
system of completely specified functions, common terms for
each polarity must be sought. Theorem 2 gives a method for
determining the exact weight of the FPRM expansion in any
polarity with product terms shared by more than one output
counted only once.

Theorem 2 : Let f, , f; , ..., /., be the outputs of an n-variable
m-output function F, then the weight of the FPRM expansion
of F in any polarity o is given by :

W=k S IV S Iw(/ S+ + I/ &0...81)] (6)
whereg, h,j€{l, 2,...,m}.g#h h#j,g#]

Proof : Consider any arbitrary polarity o, 0 Sos 2"-1. Let the
polarity vectors of m outputs be 4,, 4,, ..., 4,. Any non zero
RM coefficient a, that appears in at least one of 4,, 4,, ..., 4,
contributes a weight of / to w,(F) or H(i) to w{F). Let p, be
the contribution of the non zero coefficient a, to w,(F) and /,
be the contribution of a,to w{F). p,= 0iff a, =0 in all the
polarity vectors 4,, 4,, ..., 4, and I otherwise. /, = 0iff r= 0
or a, = 0 in all the polarity vectors 4,, 4,, ..., 4, and H(r)
otherwise. Since H(0) =0, 1,=H(") p,.

Define y,,, ¥,5---» Ym€(0,1) to be the variables representing
the logical value of any RM coefficient a, in 4,, 4,, ..., 4,
respectively. Then p,= y,, v y,, V...V y,,. It can be shown by
induction that for any Boolean variable x,, 2™ (S/lx,) =§l x +

Z(all combinations of EXORing of two variables) + Z(all
combinations of EXORing of three variables) + ... + Z(all
combinations of EXORing of m-1 variables) + (EXORing of
m variables), where £ means arithmetic 2summation. Thus,
221 -1 21 n_|
W)= £ prpr (5 Lyt B 20,800% § 20,89,y
-1 -1 271 -1
5V, @, 0 8y=2i L Tyt B 0,OVIE E 0y
2°-1 m
OBy, )+t L Vo, 8. By )= { LW (DY IW,Oh)+
. 27-1
Iw (DO W ([ &f,O...8))}. Similarly, w(F)= :_zo H(r)
P P W WO Ew SO0t A w(f,SfD...®
fJ}. Hence w(Fy=m{ .g W)+ EW( D) I BB+ +

w(/,®f,©®...®f)} for any polarity. QE.D.
Corollary 3 : For a system of m n-variable completely
specified Boolean functions F, the weight of the FPRM
expansion in polarity o is given by :

W)= 3 (S T PO RAo mod 21) ()

wio) = 2 (£ E @min(@ BRI, 2% -1-@ AU

[0 mod 2] + H) PI®, Rl mod 29} (To)

where s is the decimal number and s, isthe i-th (i = 1, 2, ...,
m) bit in binary m-tuple of s. ] is the i-th output of F.

V. DATA STRUCTURE AND IMPLEMENTATION
In this section, we introduce a new data structure called
the Algebraci Ternary Decision Tree (ATDT). It is analogous
to the generation tree [8] and EXOR Ternary Decision

Diagram (ETDD)[13] with the following distinctive features :

1. There are n—k+1 levels instead of n+/ levels as compared
with the generation tree or ETDD. k is the number of
variables of the subfunctions for-the lookup tables.

2. Each leaf of the tree consists of a pointer to an array of
integers as oppose to the use of multi-place decision
diagram for multiple output functions.

ATDT is a rooted directed acyclic graph with vertex set ¥
comprising of two basic types of vertices. A non terminal
vertex v has as attribute an index(v)e{n-k, n-k-1, ..., 1} and
three children low(v), high(v) and A(v)eV. A terminal vertex,
commonly called a leaf v has as attributes an index(v)=0 and
a pointer value(v) to an integer array S, where S[i] €{0, /, ...,

22 -]} for 1 S i < m, is the row index of the i-th output of

the m output functions. For readability, we denote the integer

S[i] by value(v)—i in the description of the algorithms. In

addition, the edges connected to low(v), high(v) and A(v) are

called the 0-, /- and 2-edges of v respectively. f..,, and fiu)
are cofactors generated by decomposing f, with respect to ¥;
and x, respectively where i = index(V) + K, f,= fiwtn'® Juightsy
If the function F is represented by a binary n-tuple with
the i-th bit representing the presence or absence of a specific
truth minterm m,_,, the subfunction f* is a binary (n—I)-tuple
obtained from the most significant half of F and f” is a binary
(n—1)-tuple obtained from the least significant half while f* =
/?® . Continuing in this manner, the subfunctions at each

‘level are represented by binary (/+k)-tuples where the index /

= n-k, n-k-1, ..., 1, 0 is decremented level by level.

Each path from the root to the leaf is represented by a
ternary (n—k)-tuple path where the i-th digit of path is formed
by taking the edge value of the vertex at level i. If path is
reducible to a binary (n—k)-tuple, value(v)—; of the leaf v can
be obtained directly by decomposing the j-th output function
with respect to path using the procedure decompose(f;, path).
Procedure decompose(f, path) computes R(f“) directly from
a reduced representation such as a sum-of-product (SOP)
form without requiring the truth table representation of the
function f; . The system of Boolean functions is given initially
in the form of an array of cubes, not necessary disjoint. Each
-cube C has an input part J(C) = <c, c,, ... ¢, > and an output
part O(C) = <Cpip Croms -+ Coer” Wherefor I <i<n, ;= 0, 1,
~ corresponding to the presence of a positive, negative or the
absence of x,variable in a SOP term respectively, ¢, = 0, I for
n+l < i < n+m corresponding to the presence or absence of
the term /(C) in the (i-n)-th output. After creating the ATDT,



the row index R(/®>>%") in Equations (4a), (4b) and (5) can
be casily obtained by traversing the tree. The Procedure
traverse(o, /) returns a leaf v and Hamming weight H().

To search for the optimal polarities, an object consisting of
two components w and o is defined. An array of 2" such
objects is generated according to the following procedure. For
cach® = 0, 1, 2 to 2"-1, the algorithm loops throughj = 0, 1,

to M-1 where M = 2** and executes traverse(o, j) to
reach the appropriate leaf v. Since R(/>"7) is equal to
value(v)-[i}, (7a) or (7b) can be applied to calculate the
weight w for polarity @ of each object depending on the
primary cost criterion. Once all 2" objects are created, the
array of objects are sorted in ascending order of the
component w. All polarities of objects, having the same w as
the top object, are optimal. The FPRM expansions of each
output can be calculated using (5) for these optimal
polarities. If there is a secondary cost criterion, further
optimization among these polarities is carried out'in a similar
procedure as before with a reduced search space. If only one
of the optimal polarities is required, in place algorithm can
be used to avoid sorting of an array of objects.

VI. INCOMPLETELY SPECIFIED FUNCTIONS

Let D, be the set of don't care minterms such that D, =

{d, {0, 1}"|f(d)=—forany 0<i< 21, ] <j Sm}. Our
algorithm, hke those of Fisher and Varma [6, 17], decouples
the effect of don't cares one at a time. Unlike their algorithms
where the don't care minterms are stepped through in a fixed
decimal order, we improve the final result by assigning the
most influential don't care first. The following Property and
Proposition are used as the basis for the new algorithm.
Property 3 : Any minterm can be transformed into a RM
product in polanty ® by replacing each literal x; by - if X =
% and @, if x; =x; where o, €{0, 1} and — represents the
absence of variable x,in the RM product.
Proposition 1 : The don't care minterm that forms the largest
RM product in the current optimal polarity is assigned first.
If the assignment results in a new optimal polarity, the don't
care minterm that forms the largest RM product in the new
optimal polarity is then assigned, else the one that forms the
next larger product in the same polarity is assigned.

The philosophy behind the above proposition is twofold :
(1)at least half of the RM coefficients in polarity @ are
affected by the assignment of a don't care minterm d, if i = ©.
(2)it is more likely to improve the weight of the current
optimal or near optimal polarity expansion than one that is
closer to the worse case polarity by assigning a don't care
minterm.

In ATDT, among all the paths that lead to a leaf
containing some don't care minterm, the path, if any, with its
edge values matching the most significant n—k bits of the
current optimal polarity is traversed first, followed by the
path that differs in only /, 2, ..., n—k edge values. If there
exists more than one don't care minterms in the designated
leaf, the don't care minterm d, with the lower Hamming

weight of H(i ®, ©,,,) is assigned first. The optimal polarity
can change at any point depending on whether the
assignment leads to an improvement, thus the order of
traversing the tree changes dynamically.
The procedure for dealing with incompletely specified
system of functions is given as follows :
1. Assign all don't cares to 0, i.e., f(d)=0 for all deD,, Isj
<m. Apply the algorithm given in the previous section to
obtain a minimal weight w,, and its associated polarity o,,,, .
2. According to Proposition 1, assign the most influential
don't care minterm d, eD,, 0 S i < 2"-1 to ] and change each
row index R(f) that is affected by such an assignment to
RG'=R()D, 2 where u is the decimal equivalent of <i iy ,
.. i,>and jf is an output that contains the minterm d,. The
leaves containing the pointer to the affected row indices are
traversed by Procedure traverse(i, #) for t = 0to 2**-1. '
3. Calculate the new weight w and its associated polarity o in
place for each polarity o from 0 to 2" —1. At any time if w 2

w,,, within the loops ‘g T (refer to (7a) and (b)), the

computation for that polarity is pruned and the weight for the
next polarity is calculated. If w < w,,, for some polarity o,
assign w_,, = w and o,,, = ®. Repeat the above process until
the weight of all polarities have been calculated.

4. If w,,, remains unchanged after Step 3, reassign the don't
care minterm d, to 0 for f; and remove d, from D,. Restore the
tree before Step 2 by replacing all affected row indices R(f)’
back to R(/"). If w,,, has improved, remove d, from D, .

5. If D, is not empty, go to Step 2.

VII. EXPERIMENTAL RESULTS
The algorithm has been implemented on the Sun Sparc
IPC workstation with 22 mega bytes of system memory. The
current implementation uses 3 variable lookup tables, i.e., k=
3 and allows on the calculation of minimal FPRM expansions
based on different cost criteria. Theoretically, any cost

functions of the form aw+bw, where a, b are integer

constants are allowed. For convenience, our algorithm
attempts to search for all the optimal FPRM expansions that
meet the user specified primary optimization criterion based
on the requirements of a specific target device. Among those
optimal polarities, further minimization is performed
according to the secondary criterion if there is any. The
primary and secondary criteria may be any of w, or w,. There
is also an option to allow the user to specify some upper
bounds on w, and w,. To the best of our knowledge, an exact
algorithm having flexible user specified criteria has been
proposed for the first time by us. Our program will search for
such polarities that fulfill the requirements and produce
FPRM expansions of those polarities. Since the number of
vertices in ATDT for the current implementation is equal to
13! -1) and each of the 3™* leaves points to an array of
size m, the space complexity of our algorithm is O(22= x3™).
On the average ATDT is traversed 2"/ times, thus the time
complexity is O(2™! x 37-#1),



A range of benchmark examples have been tested and the
results compared favorably with well known previous
algorithms. Some two level examples from MCNC
benchmarks minimized with w, as the primary cost criterion
and w, as the secondary criterion have been summarized in
Table I. Column 6 provides the number of FPRM expansions
fulfilling both criteria. Our results for all completely specified
functions agree with the exhaustive search routine of Cannes
[1] and for the incompletely specified function inc, the
number of terms generated by our algorithm is only one more
than that of the exhaustive routine of Cannes. However, our
results for all completely specified functions agree with the
results given in {1, 15]. Unfortunately, no timing information
is given in [1]. In order to compare the execution time with
MINGRM, an exact minimizer which deals only with single
output completely specified functions [11], the execution time
of the same benchmark functions with selected output as
published in [11] is reproduced in Table II. Though the
results of MINGRM are obtained from a Sequent S27
machine with two processors, our program implemented on a
non parallel machine is able to execute and produce optimal
results for the complete system of functions much faster than
MINGRM which minimizes only one selected output.

VIII. CONCLUSION

An efficient algorithm for the exact minimization of
FPRM expansions of multiple output completely specified
Boolean functions has been presented. The data structure
employed for exploring the search space of the minimizer is
an Algebraic Ternary Decision Tree modified from Ternary
Decision Diagram [13]. Base on this data structure, a non
exhaustive heuristic method is developed to optimally
allocating the don't care outputs for incompletely specifed
functions. Besides being exact, the proposed algorithm is also
adaptable to various cost functions which is what lack in
many exisiting minimizers. Since some ESOP minimization
techniques start from a near minimal FPRM expansion {9,
14] followed by the search for mixed polarity reduction, our
algorithm can be used as an effective preprocessor for those
algorithms to improve both the execution time and quality of
the results. The time and space complexity of the algorithm
presented can be improved by collapsing the ATDT to a
Reduced Algebraic Ternary Decision Diagram with attributed
edges [13].
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TABLE 1

MINIMIZATION WITH W, AS PRIMARY CRITERION
AND W, AS SECONDARY CRITERION

[ Wy Wip| # 0pt [ Time (sec) Examples of
Sxpl |7]10/ 61 ]224] 1 | 153 ] 0.1 0
9sym |9]1[173]636] 252 | 5.5 | 0.2 85, 86, 89, 90,91, ...
conl |7]2(17]|48)] 2 01 | 0.1 1,5
inc [7]/9]48([174] - [522.2} 0.5 31 with dc,, of f, = 1
misex1(8|7|20[68| 8 7.5 | 0.1 |31,63,95,127,159,191,223,225
rd53 [S{3]20[45 1 00 ] 0.1 0
rd73 | 71363 ]189] 1 03 | 0.1 0
rd84 | 814 1107|352 1 1.5 ] 0.1 0
sa02 [10{4 1100|707 2 188 ] 03 820, 868
squarS| 5|8123 56| 1 02 | 0.1 0
xorS |S|1]| S| 5 16 | 0.0 | 0.1 0,3,5,6,9,10,12,15,18,20,...
Z9sym|9|1]173|636| 252 | 5.6 | 0.2 | 92,93,94,171,172,173,174,...
clip [9[5]206]995] 2 | 82 | 0.2 33,452
TABLE II
ExecutioN TiIME oF MINGRM
FUNCTION MINGRM TIME (sec)

9sym 1,851.3

conl2 1.2

rd$32 1.1

rd732 49.6

rd842 364.2

88022 642.1

82023 905.9
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