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Abstract|In this paper, we propose a new FPGA

design algorithm, Maple-opt, in which technology

mapping, placement, and global routing are executed

so that the delay of each critical signal path in an

input circuit is within a speci�ed upper bound im-

posed on it. The basic algorithm of Maple-opt is top-

down hierarchical bi-partitioning of regions. Technol-

ogy mapping onto logic-blocks of FPGAs, their place-

ment, and global routing are determined simultane-

ously in each hierarchical process. This simultaneity

leads to less congested layout for routing. In addi-

tion to that, Maple-opt computes a lower bound of

delay for each path with a constraint value and deter-

mines critical paths based on the di�erence between

the lower bound and the constraint value dynamically

in each hierarchical process. Two delay reduction pro-

cesses are executed for the critical paths; one is rout-

ing delay reduction and the other is logic-block delay

reduction. Routing delay reduction is realized such

that, when bi-partitioning a region, each constrained

path is assigned to one subregion. Logic-block delay

reduction is realized such that each constrained path

is mapped onto fewer logic-blocks. Experimental re-

sults for some benchmark circuits show its e�ciency

and e�ectiveness.

I. Introduction

In designing FPGAs (Field-Programmable Gate Ar-
rays), one of the greatest concerns is that designers cannot
always realize required speed of circuits. Delay by blocks
realizing logic functions (logic-blocks) and signal propaga-
tion delay by routing are main factors that limit the speed
of FPGAs. Between them, the propagation delay by rout-
ing has greater in
uence on circuit speed since routing
is realized by switch elements such as pass-transistors or
anti-fuses [2],[6],[13]. To consider and reduce the delay by
those factors explicitly is essential for designing FPGAs.

The following two points are important in such design.

(1) Reduction of delay by routing and delay by logic-
blocks should be considered simultaneously. There-
fore, technology mapping and layout design are re-
quired to interact with each other.

(2) Most conventional performance-driven layout algo-
rithms divide signal paths into several nets and put
restrictions on the length of each net [5],[10]. They
are not su�cient, however, since switch elements
cause larger routing delay in FPGAs. Delay along
signal paths should be handled directly.

The algorithm proposed in [3] aims at reduction of de-
lay during both technology mapping and layout design.
However, it executes placement only as layout design and
then it is di�cult to obtain delay based on accurate rout-
ing information. We have proposed Maple, which exe-
cutes technology mapping, placement, and global rout-
ing simultaneously for Lookup Table-based (LUT-based)
FPGAs [12]. By executing mapping and layout simulta-
neously in recursive process, Maple utilizes unused logic-
blocks e�ectively and generates less congested layout. It
is insu�cient for practical FPGA design, however, since
it takes no account of delay reduction. In this paper, we
extend Maple and propose an FPGA design algorithm,
Maple-opt, in which technology mapping, placement, and
global routing are executed so that the delay of each crit-
ical signal path in an input circuit is within a speci�ed
upper bound imposed on it. In addition to the process of
Maple [12], Maple-opt executes the following processes so
as to satisfy Points (1) and (2) mentioned above.

� A lower bound of delay of each path with a constraint
value is computed in each level of hierarchical pro-
cess. Critical paths are detected based on the dif-
ference between the lower bound and the constraint
value, and delay reduction process is executed for the
paths.



� Since technology mapping, placement, and global
routing are executed in each hierarchical process,
Maple-opt can control both logic-block delay and
routing delay in constrained paths.

� To reduce routing delay, when partitioning a region
into two subregions, Maple-opt assigns nodes in each
critical path to the same subregion.

� To reduce logic-block delay, Maple-opt is executed
so that nodes in each critical path are covered with
fewer logic-blocks.

This paper is organized as follows: Section II de�nes
path delay constraints and a technology mapping, place-
ment and global routing problem; Section III describes
the proposed algorithm; Section IV demonstrates exper-
imental results compared with conventional approaches;
and Section V gives concluding remarks.

II. Path Delay Constraints and Problem

Formulation

A. Preliminaries

In this paper, a symmetric layout model depicted as in
Fig. 1 is employed as an FPGA [6],[12]. Each logic-block
is connected with switch-blocks through terminals. Logic-
blocks on the periphery of the layout model are I/O blocks
and each of them has input and output terminals for all
of the adjacent switch-blocks. Other logic-blocks contain
LUTs and realize any combinational logic up to four in-
puts. They are connected with adjacent switch-blocks as
in Fig. 2. Switch-blocks connect among tracks and ter-
minals. The position for placing a logic-block is called
a slot and a set of tracks which connects two adjacent
switch-blocks is called a channel.
The input of Maple-opt is a Boolean network. If the

number of incoming edges to each node of a Boolean net-
work is less than or equal to four, the network is called
feasible. For a node s in a Boolean network, a set of s and
transitive fanins 1 of s is called a cover of s. If the number
of nodes which have outgoing edges to a cover of s is less
than or equal to four, the cover is called feasible. Each fea-
sible cover of s is realized by one logic-block. Technology
mapping is to obtain covers for an input feasible boolean
network such that (a) each of primary inputs and outputs
corresponds to one logic-block (cover), (b) each of other
nodes belongs to at least one cover, and (c) inputs of any
cover are outputs from other covers or primary inputs.

B. Path Delay Constraints

Delay of signal paths in an FPGA is composed of delay
by logic-block and delay by routing among logic-blocks
[2],[6],[13].

1If there exists a directed path from s to t, s is called a transitive

fanin of t and t is called a transitive fanout of s.
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Fig. 1. FPGA model.
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Fig. 2. Terminal positions of a logic-block (i1; i2; i3; i4: input

terminals, o: output terminals).

Since an LUT can be viewed as a memory, logic-block
delay is given by a constant Ld.
Routing delay depends on the number of switch ele-

ments connecting tracks, which is determined by the num-
ber of switch-blocks in a signal path. Let Sd be delay by
one switch-block. Let Ln be the number of logic-blocks
and Sn be the number of switch-blocks in a signal path.
Path delay d(p) for a signal path p is de�ned as

d(p) = Ln � Ld + Sn � Sd

Note that start and end logic-blocks in a path are excluded
in Ln. Fig. 3 shows an example of path delay where a
signal propagates a path from one logic-block x to the
other w. Given a signal path p and its upper bound of
path delay dmax(p), a path delay constraint is de�ned as
d(p) � dmax(p).
In FPGA design, the numbers of logic-blocks and

switch-blocks in a path are determined by technology
mapping and global routing, respectively. Therefore, if a
simultaneous technology mapping, placement, and global
routing process is executed so as to reduce the num-
bers of logic-blocks and switch-blocks in each constrained
path, the path delay must be maintained within its upper
bound.
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Fig. 3. Path delay.

C. Problem Formulation

We consider the following problem by adding path delay
constraints to the problem de�ned in [12].

De�nition Technology mapping, placement, and global
routing problem is, for given

(1) a feasible Boolean network,

(2) slots and terminal positions of logic-blocks, and

(3) path delay constraints,

to determine

(a) covers for the input Boolean network (technology
mapping),

(b) a slot position where each logic-block is placed, with
considering each cover to be one logic-block (place-
ment),

(c) a terminal position where each terminal of each net
is connected (pin assignment), and

(d) channels through which each net passes (global rout-
ing)

so as to satisfy the path delay constraints and minimize
channel density (the maximum number of tracks per chan-
nel for global routing) within given slots. Note that I/O
blocks are needed to be placed on the outermost slots.

Fig. 4 shows an example of an input Boolean network
with a path delay constraint and its layout.

III. The Maple-opt Algorithm

A. Basic Algorithm

Maple-opt is an extended version of Maple [12] and in-
herits the algorithm of Maple as a basic algorithm. There-
fore, it has basic performance of Maple. Fig. 5 shows the
basic algorithm (Maple) under the following terminology.

Unit-cell: A room partitioned by the grid (broken lines)
of Fig. 1.
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d(p)=2*3+4*1=10 ≤ dmax(p)

Fig. 4. Boolean network with a path delay constraint and its

layout.

Subregion: A rectangular region composed of adjacent
unit-cells.

Cut-line: A horizontal or vertical line partitioning one
subregion into two pieces. It is drawn along the grid
of Fig. 1.

Pseudo-block: A �ctitious block placed on a cut-line to
maintain the connection of a net divided by the cut-
line. Every pseudo-block is assigned in a channel.

Block set: A set of logic-blocks and pseudo-blocks. Each
block set is assigned on a subregion boundary.

Node set: A set of nodes of a Boolean network. Each
node set exists inside a subregion.

The algorithm is based on recursive bi-partitioning of
subregions in the same way as the min-cut placement
method [1] (cf., Fig. 6). In each recursive bi-partition,
technology mapping (Step 6), partitioning of block sets
and node sets, and their assignment to subregions (Steps
4 and 7) are executed. Those steps proceed with a�ecting
each other. Finally, we obtain logic-blocks generated by
technology mapping, their placement, and global routes
represented by sequences of pseudo-blocks.

B. Incorporation of Path Delay Constraints

Now, let us consider how to extend the basic algorithm
described in the previous subsection to satisfy path delay
constraints. We employ the strategy that reduces path
delay in each recursive process by (1) detecting paths with
tight path delay constraints (which we call critical paths),
and (2) reducing the numbers of logic-blocks and switch-
blocks in the detected paths.
Let Ln and Tn be the number of logic-blocks and the

number of tracks in a path, respectively. Then, the num-
ber of switch-blocks Sn in the path is written by

Sn = Ln + Tn + 1



Step 1. Assume each of primary inputs and outputs of an

input Boolean network to be an I/O block. I/O blocks

are placed on four sides and four corners of the layout

region. Put the entire layout region as a subregion

into a queue Q.

Step 2. Pick a subregion R from Q. If Q is empty, halt.

Step 3. Partition R into two subregions R1 and R2 by

a cut-line. The cut-line is drawn in such a way that

longer sides of subregion boundary ofR are partitioned

so as to make the partitioned subregions closer to a

square.

Step 4. Corresponding to the partition of R, partition

each of two block sets placed on vertical (horizontal)

sides of the subregion boundary into three sets. Then,

assign each of sets to the upper or lower (left or right)

side of the cut-line, or on the cut-line (cf., Fig. 6).

Step 5. For nodes inside R, let candidate nodes for tech-

nology mapping be the nodes which are expected to

be assigned on the cut-line.

Step 6. Execute covering process for the candidate nodes

(technology mapping).

Step 7. Place the covers generated by Step 6 on the cut-

line (each cover becomes one logic-block). Assign each

uncovered node inside R to the upper or lower (left or

right) side of the cut-line.

Step 8. For the logic-blocks on the cut-line, assign nets to

their terminals.

Step 9. Generate pseudo-blocks on the cut-line. If R1

and/or R2 can be further partitioned, put them (it)

into Q. Return to Step 2.

Fig. 5. Basic algorithm.

Therefore, reduction of Sn can be equivalent to reduc-
tion of both Ln and Tn. Since each pseudo-block cor-
responds to a track, reduction of Tn means reduction of
pseudo-blocks inserted in a path. From the above discus-
sion, in order to satisfy path delay constraints, we must
develop an algorithm which reduces the numbers of logic-
blocks and pseudo-blocks generated in each recursive bi-
partitioning, and apply it to critical paths with higher
priority.
In the rest of this section, we discuss detection of critical

paths (Section III-C), reduction of pseudo-blocks (Section
III-D), and reduction of logic-blocks (Section III-E).

C. Detection of Critical Paths

Since Maple-opt is based on a hierarchical process, el-
ements which compose a path (logic-blocks and switch-
blocks) are determined gradually as it proceeds. Based
on those elements, a lower bound of delay in each level
of hierarchy can be computed for each constrained path.

cut-line

R

A B C

R1

R2

A, C : block sets, B : node sets
R, R1, R2 : subregions

candidates for 
mapping

: nodes : logic-blocks

R1

R2

pseudo-block

mapped 
logic-block

Fig. 6. Recursive bi-partition of subregions.

We detect paths with tighter path delay constraints dy-
namically in every hierarchy by computing the di�erence
between a lower bound and a constraint value.
The lower bound of path delay is computed as follows.

Let Lnb(p) and Pnb(p) be the number of logic-blocks and
the number of pseudo-blocks which have already been gen-
erated in a path p so far in the recursive process. When-
ever uncovered nodes of a Boolean network exist between
a pair of the generated blocks in p, at least one logic-block
is necessary to cover those nodes (Fig. 7). In other words,
if B(p) is the number of such parts in p, at least B(p)
logic-blocks will be generated besides already generated
Lnb(p) logic-blocks. Then, d(p), i.e. path delay of p after
global routing satis�es

d(p) � dlow(p) = [Lnb(p) +B(p)] � Ld
+ [Pnb(p) + [Lnb(p) +B(p)] + 1] � Sd

where dlow(p) is the lower bound of path delay in p in this
level of hierarchy.
Using a delay constraint value dmax(p) and its lower

bound dlow(p), slack(p) is de�ned as

slack(p) = dmax(p)� dlow(p)

The smaller slack(p) is, the tighter path delay constraint
imposed on p is. Paths with small slacks are regarded
as critical paths. slack(p) is computed every time when
picking a subregion (Step 2).

D. Reduction of Pseudo-Blocks

The number of pseudo-blocks generated in each recur-
sive process is determined in the partition of block sets
and node sets and their assignment to subregions (Steps
4 and 7). Since block sets can be treated in the same way
as node sets in the partition and assignment process, a
node set is focused on in this subsection with respect to
a horizontal cut-line.
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Fig. 7. Computation of a lower bound of path delay.

Nodes inside a subregion are partitioned based on la-
bels associated with them. A label of a node v, label(v)
(0 � label(v) � 1), is designed such that the closer to 1
(resp., 0) label(v) is, the more likely v is assigned to the
upper (resp., lower) side of the cut-line. The label of each
node is determined in Step 5, i.e. selection of candidate
nodes for technology mapping. In Maple [12], the labels
re
ect only overall connection between nets. Those labels
are, however, insu�cient for satisfying path delay con-
straints. In Maple-opt, we compute label(v) for a node
v by adding the conventional label re
ecting overall con-
nection between nets (labelc(v)) and a new label aiming
at satisfaction of path delay constraints (labelp(v)).
In order to reduce the number of generated pseudo-

blocks, nodes in a constrained path should be assigned to
the same side of the cut-line. By adding labelp to labelc,
the labels of those nodes should be kept in as equal a value
as possible according to tightness of the constraints.
In Maple-opt, if all of the nodes inside a subregion and

the blocks on subregion boundary which compose a path
p can be assigned to the upper side of the cut-line (in case
of a path p1 in Fig. 8) or to the lower side of the cut-line
(in case of a path p2 in Fig. 8), labelp(v) for v (2 p) is
computed as

labelp(v) =

8><
>:
+1=[slack(p) + 1]
(in case p can be assigned to the upper side)

�1=[slack(p) + 1]
(in case p can be assigned to the lower side)

Otherwise, labelp(v) = 0.
If a node v belongs to more than one constrained paths,

labelp(v) is computed for the tightest constrained path.
The smaller slackp(v) is, the closer to 1 (or -1) labelp(v)

becomes and then the more it a�ects label(v). When
slack(p) = 0, label(v) for a path p is set to be 1 (or 0)
and nodes in p are forced to be assigned to the upper (or
lower) side of the cut-line.
Fig. 9 shows an overview of selection process of can-

didate nodes for technology mapping (Step 5) in which
the labels of nodes are computed. Based on the label val-
ues which include consideration of path delay constraints

cut-line

path p1

path p2

Fig. 8. Path classi�cation for reduction of pseudo-blocks.

Step 5. Computation of labels and selection of candidate

nodes for technology mapping.

(1) For each node v inside the given subregion, compute

labelc(v).

(2) For each node v, compute labelp(v).

(3) For each node v, compute label(v) as follows:

label(v) =

�
minflabelc(v) + labelp(v); 1g (if labelp(v) � 0)

maxflabelc(v) + labelp(v); 0g (if labelp(v) < 0)

(4) Sort the nodes inside the subregion in the descending

order of label(v) and assign them to the upper side

of the cut-line, on the cut-line, and to the lower side

of the cut-line in proportion to the number of slots

in their area. Let nodes assigned on the cut-line be

candidate nodes for technology mapping.

Fig. 9. Selection of candidate nodes for technology mapping for

the purpose of reducing pseudo-blocks.

computed in Step 5, the partition of a node set and as-
signment to subregions are executed in Step 7.

E. Reduction of Logic-Blocks

The number of logic-blocks generated in each recursive
process is determined by Step 6, i.e. covering process for
the candidate nodes 2. First, terminology used in this
subsection is de�ned.

Ns; Bs: A node set inside a subregion R and a block set
on region boundary, respectively.

Ncand: A candidate node set for technology mapping. Let
lmin = min

v2Ncand

label(v), and lmax = max
v2Ncand

label(v).

G(t): A graph which is composed of t (2 Ncand), transi-
tive fanins of t (nodes and blocks) in a subregion R,
and a �ctitious node s (start node). The start node
s is connected to blocks in G(t) as in Fig. 10(a).

NG(t): A node set of G(t).

2Some non-candidate nodes could be covered in order to obtain

feasible covers.



Np(u! v): A node set from u to v in a path p. We
assume u; v 2 Np(u! v).

GR(t): A graph with capacity generated from G(t) (see
Fig. 10(b)). For each node v in G(t) besides s and
t, two nodes v1 and v2 are associated with v and
connected by a directed edge (v1; v2) with capacity
of one in GR(t). Incoming edges of v correspond
to those of v1 and outgoing edges of v correspond
to those of v2. Those edges have capacity of 1 in
GR(t).

N s
GR(t)

: A node set including s when bi-partitioning

GR(t).

N t
GR(t)

: A node set including t when bi-partitioning

GR(t).

Nodes in each constrained path are required to be cov-
ered with as few logic-blocks as possible. Maple-opt cov-
ers candidate nodes by computing a cut in GR(t) of a
maximum-
ow and minimum-cut technique repeatedly.
At that time, it executes covering such that one cover
includes more nodes in the constrained path.
For instance, let us consider covering of a candidate

node t for mapping with respect to an LUT with three
inputs. Figs. 10(a) and (b) show G(t) and GR(t), re-
spectively. Bold lines in Fig. 10(a) indicate a constrained
path. For simplicity, we assume Ncand = Ns.
According to the maximum-
ow and minimum-cut the-

orem [9], a maximum 
ow from s to t in GR(t) gives a
minimum cut with the size of two (Fig. 10(b)). Then,
cover(t) is de�ned as

cover(t) = ftg [ fv 2 NG(t) j v1; v2 (2 NGR(t))
associated with v s.t. v1 2 N t

GR(t) ^ v2 2 N t
GR(t)g

The number of inputs for cover(t) is equal to the cut size
and cover(t) gives a feasible cover to t. In Fig. 10(b), the
number of inputs for cover(t) is two.
In this case, since the number of inputs for the cover

is less than three, the cover could include more nodes
with maintaining its feasibility. Maple-opt augments an
amount of a 
ow in GR(t) so that cover(t) can include
more nodes in a path with a tight path delay constraint.
Let v be a node in p with the tightest constraint satisfying

Np(v ! t) � NG(t) ^ v1; v2 (2 GR(t))
associated with v s.t. v1 2 Ns

GR(t)
^ v2 2 N t

GR(t)

Maple-opt selects the node v and augments an amount of
the 
ow from s to v1 in GR(t). Finally, the 
ow from s to
v1 is �lled and its amount becomes three. v1 is included
in N t

GR(t)
and cover(t) satis�es

Np(v ! t) � cover(t)

We obtain one logic-block which covers a path from v to t
as in Figs. 10(c) and (d). The tighter the constraint of a

1
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critical path
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1
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Fig. 10. Covering a critical path.

path is, the fewer logic-blocks the path is expected to be
covered with, and therefore delay for the path is expected
to be reduced.
Fig. 11 shows a covering process for candidate nodes for

technology mapping. Note that we use the augmenting
path method [9] in order to compute a maximum 
ow
and Steps (7) and (8) in Fig. 11 are executed in the same
way as in [12].

F. Computational Complexity

Since Maple-opt is based on top-down hierarchical bi-
partitioning, each subregion has a level of the hierarchy.
The level of the entire layout region is one. If a subregion
with level of i is bi-partitioned, each of bi-partitioned sub-
regions has the level of (i+1). If the number of slots on an
FPGA chip is L�L, the level of unit-cells is O(logL). Let
Nn, Ncp, andNp be the number of nodes of a Boolean net-
work, the number of constrained paths, and the number
of pseudo-blocks generated in the whole process, respec-
tively. If T is the maximum number of tracks per channel,
Np is at most O(L2 � T ). Let N be Nn +Np.
At each level of hierarchy, time complexity without con-

sideration of path delay constraints is O(N �(logN+Nn))
[12]. In addition to that, both reduction process of
pseudo-blocks and that of logic-blocks require O(1) time
for each node in constrained paths at each level of hier-
archy. Therefore, the time complexity for incorporating
path delay constraints is at most O(Ncp �N) at each level.
From above discussion, since O(N � (logN +Nn+Ncp))

time is required at each level, the time complexity of



Step 7. Covering process

(1) Let t(2 Ncand) be an uncovered node with the largest

level 3.

(2) Generate GR(t) for t. Let v1 = t.

(3) In GR(t), augment an amount of a 
ow from s to v1
and compute a cut. If the size of the cut is four (i.e.

the number of inputs for an LUT), go to (6).

(4) For u1; u2 (2 GR(t)) associated with u 2 Ns \NG(t),

N
c
GR(t) = fu1ju1 2 N

s
GR(t) ^ u2 2 N

t
GR(t)g

If N c
GR(t) = ;, go to (6).

(5) Let v be a node in a path p with the tightest path

delay constraint satisfying the following equation.

v 2 Ncand ^ Np(v ! t) � NG(t) ^

v1 (2 GR(t)) associated with v s.t. v1 2 Nc
GR(t)

For v1 2 Nc
GR(t) associated with v, go to (3). If there

exist no such nodes, select a node whose label is closest

to the range between lmin and lmax and go to (3).

(6) For an obtained cut, compute cover(t).

(7) Attempt to exclude non-candidate nodes for technol-

ogy mapping from cover(t).

(8) Replace cover(t) with a logic-block t and execute repli-

cation. Give labels to generated blocks and nodes as

in Step 5 (Section III-D) and go to (1).

Fig. 11. Covering process for reducing logic-blocks.

Maple-opt is O(N � (logN +Nn +Ncp) � logL).
The space complexity of Maple-opt is clearly O(Ncp �

N).

IV. Experimental Results

Maple-opt has been implemented on Sun Sparc Station
2 (28.5 MIPS) in C language and applied to MCNC bench-
mark circuits in Table I. We have compared three algo-
rithms; Maple [12], a simultaneous placement and global
routing algorithm for FPGAs [11], and the proposed al-
gorithm, Maple-opt.

(1) Maple: First, we apply a decomposition command
xl split in mis-pga(new) [7] for each benchmark cir-
cuit and obtain a feasible Boolean network as input
for Maple. Then, Maple is executed. In this case,
path delay constraints are not treated.

(2) A simultaneous placement and global routing algo-
rithm: First, we use mis-pga(new) for each bench-

3First, the level of each node with no incoming edges is set to

be 0. The level of other nodes is the largest level of the fanin nodes

plus one.

TABLE I

Benchmark Circuits.

circuit #primary inputs #primary outputs #slots

alu2 10 6 16 � 16

alupla 25 5 9 � 9

bw 5 28 11 � 11

duke2 22 29 16 � 16

f51m 8 8 9 � 9

misex1 8 7 7 � 7

misex3 14 14 17 � 17

misex3c 14 14 17 � 17

rd73 7 3 6 � 6

rd84 8 4 8 � 8

term1 34 10 12 � 12

vg2 25 8 10 � 10

mark circuit and obtain a net-list including logic-
blocks. Then, placement and global routing [11] are
executed. In this case, path delay constraints are
treated in a layout level.

(3) Maple-opt: For the same input circuits as (1), Maple-
opt is executed.

The number of slots of the FPGA model in (1) { (3)
is the same as that of [12] (Table I). Delay per logic-
block Ld and delay per switch-block Sd are set to be three
and one, respectively [6],[13]. Each path delay constraint
dmax is de�ned as 85% of the maximum delay obtained by
executing the algorithm (1), i.e. Maple, based on [3],[5],[8].
Constraints are given to paths with the maximum logic
level in each input circuit. In (2), since we give constraints
at the level of net-lists including logic-blocks, the number
of paths with constraints of (2) is di�erent from that of
(1) or (3).
Tables II { IV show experimental results for path de-

lay constraints and channel density. From those tables,
Maple-opt can solve violations of path delay constraints
except for two circuits. In case with consideration of path
delay only in a layout level [11] or with no consideration
of it [12], path delay cannot be maintained within given
constraint values.
Channel density (the maximum number of tracks per

channel for global routing) by Maple-opt increases by at
most one track per channel compared with Maple (Table
II). It is an average of 20% less than that of the case in
which technology mapping and layout are executed sep-
arately (Table III). Maple-opt spends approximately 2.8
times more in CPU time compared with Maple.
From the experimental results, Maple-opt can reduce

path delay to 85% by means of incorporating path de-
lay constraints into Maple. Since delay reduction by
15% is greater or equal to the results in conventional
performance-driven CAD [3],[5],[8], Maple-opt is e�cient
and e�ective in design of FPGAs where delay reduction
is necessary. Moreover, since Maple-opt inherits the basic
algorithm of Maple, channel density obtained by Maple-
opt remains small by making good use of unused logic-



TABLE II

Experimental Results (Maple[12]).

circuit #cp dmax #v max(d) dens. #lb #wl CPU time [s]

alu2 4 177 4 209 13 192 1740 5.7 + 3.58

alupla 12 48 12 57 7 78 386 0.8 + 0.82

bw 18 122 5 145 8 105 602 1.6 + 1.12

duke2 4 87 4 103 12 235 2264 4.7 + 4.90

f51m 30 101 14 119 7 63 323 1.3 + 0.81

misex1 4 24 4 28 4 34 79 0.4 + 0.28

misex3 16 206 7 236 11 236 2145 6.2 + 4.14

misex3c 3 218 3 257 11 231 2101 6.0 + 4.86

rd73 20 31 10 37 4 23 60 0.6 + 0.16

rd84 3 38 3 45 6 41 156 0.7 + 0.38

term1 25 82 10 97 9 136 838 1.9 + 1.54

vg2 4 29 4 35 5 69 297 0.9 + 0.48

total 143 1149 80 1368 97 1443 10991 30.8 + 23.07

#cp: number of constrained paths, dmax: constraint value given to constrained paths, #v: number of violated paths for

constraints, max(d): maximum path delay among constrained paths, dens.: channel density, i.e. maximum number of used

tracks per channel, #lb: number of generated logic-blocks, #wl: total wire length, i.e. total number of tracks occupied by

nets, CPU time: time for xl split + Maple

TABLE III

Experimental Results (mis-pga(new)[7] + a simultaneous placement and global routing algorithm[11]).

circuit #cp dmax #v max(d) dens. #lb #wl CPU time [s]

alu2 8 177 8 209 16 152 1562 431.4 + 3.95

alupla 32 48 22 59 7 68 385 50.5 + 1.44

bw 36 122 2 124 10 91 665 25.1 + 4.03

duke2 9 87 9 105 17 192 1924 341.2 + 3.63

f51m 60 101 60 122 7 51 251 33.9 + 4.32

misex1 3 24 3 32 4 28 80 7.9 + 0.08

misex3 4 206 0 185 16 190 1985 430.9 + 3.80

misex3c 6 218 6 286 15 189 1940 248.9 + 5.55

rd73 16 31 0 31 5 23 83 36.9 + 0.20

rd84 86 38 0 37 6 33 165 98.1 + 1.41

term1 6 82 6 100 12 110 839 72.6 + 1.45

vg2 12 29 12 49 6 59 358 10.9 + 0.91

total 278 1149 128 1339 121 1186 10237 1791.0 + 30.77

CPU time: time for mis-pga(new) + time for a simultaneous placement and global routing algorithm

TABLE IV

Experimental Results (Maple-opt).

circuit #cp dmax #v max(d) dens. #lb #wl CPU time [s]

alu2 4 177 0 171 13 190 1945 5.7 + 10.92

alupla 12 48 1 52 7 75 382 0.8 + 1.17

bw 18 122 0 122 9 102 633 1.6 + 2.97

duke2 4 87 0 87 12 230 2144 4.7 + 5.65

f51m 30 101 1 105 8 61 319 1.3 + 3.07

misex1 4 24 0 24 4 37 90 0.4 + 0.35

misex3 16 206 0 200 11 231 2282 6.2 + 18.22

misex3c 3 218 0 218 11 235 2204 6.0 + 15.48

rd73 20 31 0 31 4 23 65 0.6 + 0.20

rd84 3 38 0 38 6 39 162 0.7 + 0.43

term1 25 82 0 82 10 137 888 1.9 + 4.03

vg2 4 29 0 29 5 67 334 0.9 + 0.71

total 143 1149 2 1159 100 1427 11448 30.8 + 63.20

CPU time: time for xl split + time for Maple-opt



blocks. Maple-opt can realize given circuits inside given
FPGA chips and satisfy performance requirement.

V. Conclusion

We have proposed Maple-opt, a simultaneous technol-
ogy mapping, placement, and global routing algorithm
for FPGAs incorporating path delay constraints. Exper-
imental results demonstrate that it reduces path delay
su�ciently.
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