
A New K-Way Partitioning Approach

for Multiple Types of FPGAs

Bernhard M. Riess, Heiko A. Giselbrecht, and Bernd Wurth

Institute of Electronic Design Automation

Technical University of Munich, 80290 Munich, Germany

Abstract

This paper considers the problem of partitioning
a large, technology mapped circuit onto multi-
ple FPGA devices of a speci�ed device library.
We propose an iterative three-step approach ap-
plying an analytical embedding technique, ini-
tial partitioning, and a k-way ratio cut improve-
ment procedure. We successfully partitioned the
ACM/SIGDA XILINX FPGA Benchmark circuits
obtaining feasible design solutions with lower to-
tal dollar costs than previous methods. Moreover,
our approach simultaneously assigns the FPGAs
to physical locations on the FPGA board.

1 Introduction

In order to reduce time to market, FPGAs have become
an important technology for system implementation and
rapid prototyping. However, since high-level synthesis
methods become widely accepted, the complexity of elec-
tronic systems is rapidly increasing. Thus, the entire de-
sign often cannot be realized on a single FPGA but the
entire circuit has to be partitioned onto a set of single type
or multiple type FPGAs. A partitioning approach for this
application has to consider the special requirements of the
given FPGA device library, which are constraints on the
number of con�gurable logic blocks (CLBs) and on the
number of input/output blocks (IOBs) of the devices.

K-way partitioning over multiple FPGAs can be per-
formed before or after technology mapping. If the gate
level netlist is split before technology mapping, estimation
of chip utilization and routability is di�cult without the
exact count of the CLBs and IOBs. Thus, these estima-
tions are made conservatively to ensure successful execu-
tion of placement and routing. After technology mapping,
accurate CLB and IOB numbers are known, and the CLB
and IOB count of each obtained partition can be com-
pared to the CLB and IOB constraints of the given device
library. Hence, we attack the problem of partitioning a
technology mapped circuit.

Several approaches have been proposed to partition
technology mapped circuits onto multiple type FPGAs.
Ku�znar et al. [1] proposed an algorithm to partition a
mapped netlist onto multiple device types to minimize to-
tal device cost. This method recursively applies a modi�ed
min-cut technique [2]. In subsequent work, Ku�znar et al.
[3] introduced functional replication to reduce the num-
ber of required IOBs and therefore minimized total device
cost. They presented excellent results. Woo and Kim
[4] proposed another modi�cation of the min-cut proce-
dure for k-way partitioning, which tries to satisfy the con-

straints on the number of CLBs and IOBs of the FPGAs in
the device library. Chou et al. [5] addressed the problem
of partitioning a circuit onto a set of single type FPGAs
such that the number of FPGAs is minimized. Their al-
gorithm uses "local ratio-cut" clustering to reduce the cir-
cuit complexity and then derives a disjoint partition using
a set covering approach. Recently, Huang and Kahng [6]
proposed an approach that incorporates vertex ordering,
clustering, and dynamic programming to achieve feasible
design solutions.

In this paper, we address the problem of partitioning a
circuit onto a set of multiple types of FPGAs of a given
library of device types. Our approach iteratively bipar-
titions the given netlist until k subcircuits are obtained.
The proposed k-way partitioning approach applies the fol-
lowing three steps in each iteration. First, we calculate a
2-dimensional embedding for all cells by minimizing a lin-
ear objective function. Next, each partition containing
CLBs to be covered by more than one FPGA is initially
partitioned by a rectangular cut which is based on the
2-dimensional embedding and uses a modi�ed ratio cut
metric. In the �nal step, the number of IOBs of all par-
titions are reduced applying an improved k-way ratio cut
procedure. Reducing the number of IOBs of all partitions
allows to use cheaper devices for the partitions and thus
minimizes the total dollar costs required to implement the
entire design. These three steps are repeated, until k par-
titions are obtained.

We successfully partitioned 13 circuits of the ACM/-
SIGDA XILINX FPGA Benchmark Suite obtaining feasi-
ble design solutions with 2.3% lower total dollar costs on
an average than previous methods. Compared to the ab-
solute lower total cost bound [1] of this Benchmark Suite,
our approach yields results on the average 21.5% closer to
the absolute minimum than state of the art methods [3].

The remainder of our paper is organized as follows. The
next section gives some basic preliminaries. Section 3 de-
scribes our new k-way partitioning approach. In Section
4, results of the ACM/SIGDAXILINX FPGA Benchmark
circuits are presented and discussed.

2 Preliminaries

Wemodel the circuit as a hypergraphH = (Vpio[Vclb; E
0),

where the vertices Vpio represent the set of primary inputs
and primary outputs of the entire design, the vertices Vclb
represent the set of CLBs, and the hyperedges E0 represent
the nets. A subcircuit is denoted by a subhypergraph
Hp = (Viobp [Vclbp ; E

0

p) with the set of IOBs Viobp , the

subset of CLBs Vclbp � Vclb, and the set of hyperedges E0

p

representing the nets in partition p. Partitioning without

cell replication implies an assignment of each vertex in Vclb
to exactly one of a set of k subcircuits.

We address the problem of partitioning a circuit onto a
set of multiple types of FPGAs, which means to create
a feasible partitioning of the given circuit H onto a set
of devices from a given FPGA library such that the total
device cost is minimized.

A typical FPGA device library is shown in Table 1. It
gives the XILINX XC3000 device family, which is used for
the ACM/SIGDA XILINX FPGA Benchmark Suite and
has been widely used in previous work [1,3,6].

i Device Xi #CLBs #IOBs cost

N$
cost

#CLBs

1 XC3020x-x 64 64 1.00 0.0156
2 XC3030x-x 100 80 1.36 0.0136
3 XC3042x-x 144 96 1.84 0.0128
4 XC3064x-x 224 120 3.15 0.0141
5 XC3090x-x 320 144 4.83 0.0151

Table 1: XILINX XC3000 device library

Table 1 presents for each device Xi the number of CLBs
contained, the number of available IOBs, the price, nor-
malized to the cost of the smallest device, and the cost of
one CLB.

We call a subcircuit Hp feasible on a device Xi if jVclbp j �
#CLBs(Xi) and jViobp j � #IOBs(Xi) hold. A k-way par-
titioning is called feasible if each partition p is feasible on
one device Xi; i 2 f1; :::; 5g of the given device library.

Considering the implementation of the entire circuit on
a FPGA board, we focus on the following target archi-
tecture. The FPGA devices are regularly arranged in an
r� c grid on the FPGA board with r rows and c columns
of FPGA devices. We assume that the primary inputs and
primary outputs have given locations on the board border.
In Figure 1 a 2� 3 grid target architecture is shown.

routing resources

FPGA board

CLB

FPGA

primary I/O

IOB

FPGA

Figure 1: 2� 3 grid FPGA board

The FPGAs used for one design don't have to be of the
same type, but of one of the �ve types given in the device
library. The number of required FPGAs k = r �c to deter-
mine an appropriate target architecture can be restricted
to:�

jVclbj

#CLBs(X5)

�
�k�

�
jVclbj

#CLBs(X1)

�
^

�
jVpioj

#IOBs(X5)

�
�k

(1)
Considering this inequality constraint one can determine
k and an appropriate target architecture with preferably
quadratic grid (r � c). In the following, we will use the
term CLB and cell interchangeably.

3 K-Way Partitioning for FPGAs

3.1 Outline of the Procedure
To solve the k-way partitioning problem, we propose an
iterative three-step approach. Each iteration of this ap-
proach is called a level. On all levels, we calculate a 2-
dimensional embedding for all cells and perform an initial
2-way partitioning of all existing partitions which have to
be partitioned further. The number of required IOBs of
all obtained partitions is reduced by a new k-way ratio cut
procedure with an objective function specialized to FPGA
partitioning.

After calculating the 2-dimensional embedding, the cells
are initially partitioned by a rectangular cut. The pos-
sible cut directions (horizontal or vertical) and cut posi-
tions of this cut are selected according to the matrix grid
of the addressed target architecture such that each parti-
tion contains CLBs to be covered by an integer number of
FPGAs. Hence, our approach is driven by the grid of the
addressed target architecture. All cells to the left (top)
of a vertical (horizontal) cut line are assigned to the left
(top) partition and all cells to the right (bottom) of the
cut line are assigned to the right (bottom) partition. Af-
ter this initial partitioning, the solution quality in terms
of required IOBs is improved by applying the k-way ratio
cut method. In doing this, cells can be moved from their
initial partition to any adjacent partition.

On the subsequent levels, the 2-dimensional embedding
is re�ned while the partitions of the previous levels are
maintained. Subsequently, the remaining partitions are
divided again and the obtained partitioning is improved
again by the k-way ratio cut method. When the �nal level
is �nished, each partition corresponds to one device on the
FPGA board.

3.2 Calculating the Embedding

Past partitioning approaches which are based on analyti-
cal techniques use one or several eigenvectors to calculate
an embedding of the cells [7,8]. These spectral approaches
minimize a quadratic objective function, which models
squared wire length. Recently, it has been shown that
minimizing a linear objective function yields improved re-
sults in placement [9,10] as well as in partitioning [11]
since the linear model of the wire length is closer to re-
ality. Therefore, we adopt this strategy and calculate a
2-dimensional embedding of the cells by minimizing a lin-
ear objective function.

To calculate the embedding, the hypergraph H = (Vpio [
Vclb; E

0) is transformed into a graph G = (Vpio[Vclb; E) by
mapping each hyperedge in the set E0 into a set of binary
edges. To perform this mapping, we apply the well-known
clique model [12]. Each hyperedge consisting of h vertices
is represented by a complete graph with edge weights equal
to 1=h. The obtained graph G is described by an n � n
adjacency matrix M = [mij], where n = jVpioj + jVclbj.
The matrix elements mij are calculated as the sum of the
edge weights of all edges connecting the vertices vi and vj .
If eii denotes the degree of vertex vi (i.e., the sum of the
weights of all edges incident to vertex vi) and eij = 0 for
all i 6= j, we obtain the n � n diagonal degree matrix E.
Now the Laplacian C is given by C = E�M.

Since the objective function we want to minimize can
be separated in x- and y-direction, we consider only
the x-component in the following. The vector x =
[x1; : : : ; xi; xj; : : : ; xn]

T 2 Rn contains a coordinate for
each cell. We formulate a linear objective function:

�(x) = xTCx (2)

To minimize a linear objective function we adapt matrixC
during the optimization process according to the adaption
scheme of Sigl et al. [9]. Since �xed primary input and
output cells on the FPGA board border shall be consid-
ered, the coordinates of the �xed primary input and pri-
mary output cells in the vector x are constant and some
quadratic terms in equation (2) give linear or constant
terms. Omitting the constant terms, we rewrite equation
(2) as:

�p(x) = xTC�x+ dTx (3)

Matrix C� is equivalent to matrix C except that the ma-
trix elements of the linear and constant terms are removed.
In the subsequent partitioning steps, the cells are assigned
to partitions. To consider these partitions during the cal-
culation of the next embedding, the center of gravity of
all cells of each partition is �xed to the center of the par-
tition. The centers of the partitions on the lth level form
the constraints Alx = bl on the logic cells, with the vec-
tor bl of the center coordinates of the partitions and the
matrix Al = [api]l containing the assignment of cell vi to
partition p. The matrix elements api are given by:

api =

�
1=jVclbp j if vi 2 Vclbp
0 otherwise

The objective function (3) and this constraint form our
programming problem:

minimize
x2Rn

f�p(x) = xTC�x + dTx j Alx = blg (4)

By solving this problem for x- and y-coordinates, we ob-
tain a 2-dimensional embedding of all cells. This prob-
lem formulation considers the connections of the CLBs
to the �xed primary input and primary output cells and
the assignment of cells to partitions while minimizing the
linearly modeled wire length. Since the embedding of all
cells is calculated simultaneously on all levels, even cells
of di�erent partitions can inuence each other.

3.3 Initial Partitioning

After the embedding is calculated, each partition contain-
ing cells to be covered by more than one FPGA is di-
vided into two parts. Driven by the matrix grid of the
addressed FPGA board, this is done in the direction (hor-
izontal or vertical) in which the partition has to be further
partitioned, whereby both cut directions may be possible.
Possible cut regions in a partition are located between the
rows or columns of the devices on the FPGA board. The
centers of these cut regions are de�ned by the cut lines
which would lead to absolutely equisized partitions at the
end of the procedure.

Since FPGA devices of di�erent size are available, toler-
ance intervals allowing some deviation from equisized par-
titions can be speci�ed. If jVclbj CLBs have to be mapped
on k = r � c FPGAs, the average number (AV G) of CLBs
per device equals:

AV G =
jVclbj

k
(5)

To ensure that a partition contains at most as many cells
as available CLBs on the largest device X5, the tolerance
� is set to the relative deviation of the number of available
CLBs on a device of type X5 from the average number of
CLBs per device, limited by 1:

� = min(
#CLBs(X5)�AV G

AV G
; 1) (6)

Multiplying the relative tolerance � by the actual aver-
age number of CLBs of the FPGAs covering partition p

jVclbp j

#FPGAs(p)
we obtain the absolute width of the cut regions

2�. The number of FPGAs covering partition p is denoted
by #FPGAs(p).

In Figure 2 a 2 � 3 tar-
get architecture with 6
FPGAs is given. Imag-
ine the set of cells spread
out all over the entire
FPGA board. On the
�rst level, the circuit
may either be initially
partitioned in horizon-
tal or vertical direction.
There exist one hori-
zontal cut region and
two vertical cut regions.
Overall, we obtain 3 cut
regions shown in dark
gray. Dashed lines de-
note the centers of the
cut regions which would
lead to absolutely equi-
sized partitions.

jVclbp1
j

jVclb j
1

3

2

3

1

2
1

FPGA FPGA FPGA

FPGAFPGAFPGA

2�

2�2�

Dorg

D

D(Vclbp1
)

Figure 2: Cut regions and the
new denominator functions

At one cut position in these cut regions the set of nodes
Vclbp of partition p with Gp = (Viobp [Vclbp ; Ep) is di-
vided into two disjoint subsets Vclbp1 � Vclbp , and Vclbp2 =

Vclbp � Vclbp1 , with Vclbp1 6= ;, Vclbp2 6= ;. (On the �rst

level Vclbp equals Vclb.) Cp1p2 denotes the number of nets
connecting the partitions p1 and p2. The determination
of the actual cut position is based on the ratio cut metric
by computing a ratio cut diagram for each cut region.

According to Wei and Cheng [13] the ratio cut (RC) is
de�ned by:

RC =
Cp1p2

jVclbp1 j � jVclbp2 j
(7)

This original ratio cut objective (7) favors balanced par-
tition sizes. This is achieved by the parabola

Dorg(Vclbp1)= jVclbp1 j�jVclbp2 j = jVclbp1 j�(jVclbp j � jVclbp1 j)

withjVclbp j= jVclbp1 j+ jVclbp2 j = const:
(8)

in the denominator, which reaches its maximumwhen the
partition sizes are absolutely equal. The dotted curve in
Figure 2 gives this denominator function.

In our approach however, intermediate partitions do not
have to meet this relation but may be quite unbalanced.
Using the original ratio cut objective would favor cut re-
gions with size relations close to 1:1. To provide equal
chances for all possible cut regions, we move the vertex

of the parabola in the denominator to the point de�ned

by the desired size ratio �12 = #FPGAs(p1)

#FPGAs(p)
for each cut

region.

We construct a denominator function D(Vclbp1) consisting
of 2 parabola branches with one common point and gra-
dient in the vertex at �12 � jVclbp j. Considering these con-
straints, we get the following continuously di�erentiable
denominator:

D(Vclbp1) =

8>>>>><
>>>>>:

jVclbp j�jVclbp1
j

2�12
�

jVclbp1
j
2

4�212

if 0 < jVclbp1 j � �12 � jVclbp j

jVclbp j
2(1�2�12)+2�12jVclbp j�jVclbp1

j�jVclbp1
j
2

4(�12�1)2

if �12 � jVclbp j < jVclbp1 j < jVclbp j

(9)

The denominator functions D(Vclbp1) for both vertical cut
regions of the 2 � 3 example are shown in Figure 2. By
substituting the original denominator by this denomina-
tor, we obtain the adapted ratio cut objective (ARC):

ARC =
Cp1p2

D(Vclbp1)
(10)

Finally, we identify the minimum adapted ratio cut value
within all cut regions of both possible cut directions and
initially partition the set of cells Vclbp in two subsets at
this optimal cut. Figure 3 presents the cut regions, two
adapted ratio cut diagrams, and the minimum adapted
ratio cut de�ning the optimal cut position for the vertical
cut regions of the example shown in Figure 2.

2
3

� = �
jVclbp j

3

jVclbp1
j

jVclbp j�
jVclbp

j
�

jVclbp
j

�
jVclbp

j
�

jVclbp
j

cut regions

cut

ARC

optimal

minimum
ARC

1
3

Figure 3: Cut regions, adapted ratio cut diagrams, mini-
mum adapted ratio cut, and the optimal cut

3.4 Iterative Partitioning Improvement
3.4.1 The K-Way Ratio Cut Approach

On all levels of our approach, the number of required IOBs
of each partition obtained after initial partitioning is re-
duced by applying our new k-way ratio cut algorithm.
This approach combines the two-way ratio cut [13] and the
Quadrisection algorithm [14] with special requirements for
multiple FPGA partitioning.

The algorithm starts by selecting the partition with the
largest number of required IOBs per device as central par-
tition. All partitions adjacent to the central partition
are called neighbor partitions. Cells can either be moved
from the central partition to any neighbor partition or vice
versa in the same sequence.

As proposed for the two-way ratio cut [13], we use a bucket
list data structure [2] to maintain cell gains. The gain

(GA) of a cell is the number of nets by which the cut-
size would decrease if the cell is moved from its current
partition to a destination partition. From all cells with
the highest gain (GA) in the bucket lists, the cell with
the highest ratio cut gain (RCG) is selected, preliminar-
ily moved to its destination partition, and locked. The
ratio cut gain is calculated by a special FPGA-speci�c
objective function as described in Section 3.4.2. Updat-
ing the bucket lists and repeating the previous step, we
obtain a sequence of cells to be moved from their source
partition to a destination partition. When either all cells
are locked or any further move would violate the parti-
tion size speci�cations, the cells of the partial sequence
which achieves the minimum cutsize are actually moved
to their destination partitions. This moving of cell groups
is applied until no further improvement can be obtained
[2]. Subsequently, of all remaining partitions, the partition
with the highest cutsize is selected as the next central par-
tition. The iterative improvement procedure terminates,
when each partition has been selected as central partition
exactly once. Finally, the center of gravity of all cells in
each partition is assigned to the center of the partition to
maintain the partitioning during the next embedding step.
Figure 4 shows one step of the k-way ratio cut algorithm
with the current central partition, all neighbor partitions,
and the possible move directions for the 2� 3 example.

primary I/O

central partitionmove direction

neighbor partitions CLB

FPGA

Figure 4: Overview of the k-way ratio cut

The main advantage of this approach is that not only the
number of required IOBs of two partitions just obtained
from one initial partitioning step can be reduced, as pro-
posed by recursive min-cut, but also previously divided
partitions can exchange cells if they are adjacent.

3.4.2 A New FPGA-Speci�c Objective Function

The ratio cut gain is calculated by a new FPGA-speci�c
objective function, derived from the adapted ratio cut ob-
jective (10).

Since the total size jVclbp1 j+ jVclbp2 j of two adjacent par-
titions p1 and p2 may di�er for each participating pair of
partitions, the adapted ratio cut (ARC) will be di�erent
for a cell to be moved to partitions of di�erent size. This
e�ect is illustrated in Figure 5.

�13 � (jVclbp1
j+ jVclbp3

j)

p3

p2p1

move directionsCLB (jVclbp1
j+jVclbp3

j)2

4

(jVclbp1
j+jVclbp2

j)2

4

jVclbp1 j

D(Vclbp1
)

�12 � (jVclbp1
j+ jVclbp2

j)

Figure 5: The e�ect of di�erent partition sizes

Assume that the CLB �lled black would yield exactly the
same reduction of the cutsize and reach the maximum of
the denominator D(Vclbp1) when either moved from parti-
tion p1 to partition p2 or moved to p3. Then, the adapted
ratio cut for a move of the CLB to partition p3 will be
smaller than the adapted ratio cut for the move to parti-
tion p2, as the denominator D(Vclbp1) has di�erent maxi-
mum values for the two move directions since the total size
jVclbp1 j+jVclbp2 j of the partitions p1 and p2 is much smaller

than the total size jVclbp1 j+jVclbp3 j of the partitions p1 and
p3. To provide equal chances for all move directions, we
scale the denominator with jVclbp j

2 and obtain the scaled
ratio cut objective (SRC):

SRC =
Cp1p2

D(Vclbp1
)

jVclbp j
2

(11)

Minimizing the cutsize does not necessarily lead to an even
distribution of the IOBs. The di�erence between reduc-
ing the cutsize of two partitions (Cp1p2) and reducing the
number of required IOBs is shown in Figure 6.

2-pin net

p1 p2

p1 p2

2-pin net

CLB

Before Move

After Move

p1 p2

p1 p2

3-pin net IOB

IOB3-pin net

Cp1p2 = 1

Cp1p2 = 0 jViobp1
j + jViobp2

j = 1

jViobp1
j + jViobp2

j = 2

partition

partition

Cp1p2 = 0 jViobp1
j + jViobp2

j = 0

Cp1p2 = 1 jViobp1
j + jViobp2

j = 2

Figure 6: The di�erence between reducing the cutsize and
the number of IOBs

In the left example, the cutsize decreases by one and the
number of IOBs also decreases by one if one CLB is moved
to the other partition. In contrast to that, in the right ex-
ample, the cutsize also decreases by one if one of the CLBs
is moved to the other partition, but the number of IOBs
decreases by two. Thus, the reduction of the cutsize is the
same in both cases, but the reduction of the number of
required IOBs is higher in the right case. To favor a re-
duction of the number of IOBs, we substitute the cutsize in
the numerator of equation (11) by the sum of the number
of required IOBs in the source and destination partition
scaled by the total number of FPGAs currently covering
partition p and obtain the IOB count driven scaled ratio

cut objective (ISRC):

ISRC =

jViobp1
j+jViobp2

j

#FPGAs(p)

D(Vclbp1
)

jVclbp j
2

(12)

Finally, we calculate the ratio cut gain (RCG) by sub-
tracting the IOB count driven scaled ratio cut (ISRCA)
after the cell is moved from the IOB count driven scaled
ratio cut (ISRCB) before the cell is moved and obtain:

RCG = ISRCB � ISRCA (13)

This objective is used by our approach to select the cell
with the maximal RCG from all cells in the bucket list
data structures with the highest gain (GA).

4 Experimental Results

The results of our new k-way FPGA partitioner called
EBRC are compared to the results of the k-way.x approach
of Ku�znar et al. [3]. We compare to the best results
obtained by this approach [3] setting the threshold repli-
cation potential T=2. This recursive min-cut approach
minimizes the total dollar cost and interconnect allowing
functional cell replication. Though we do not explicitly
minimize the dollar cost of used devices and do not per-
form any cell replication techniques, we compare our ap-
proach to k-way.x. We compare both approaches applying
the circuits of the ACM/SIGDA XILINX FPGA Bench-
mark Suite [15]. The characteristics of these circuits are
summarized in Table 2.

In Table 2 the results of our EBRC approach are compared
to the results of k-way.x. It shows the total dollar cost and
computation time of the k-way.x approach as published in
[3] as well as the FPGA board grid, the device distribu-
tion, the total dollar cost, and the computation time of
our EBRC approach. Furthermore, it gives the relative
improvement of our approach to k-way.x in terms of total
dollar cost and computation time. All computations in
[3] were executed on a SUN SparcStation 1+. Our plat-
form was a DEC 3000 Model 600 AXP. All circuits where
the results of k-way.x are not available are denoted with
n.a.. Only the 9 benchmarks reported by Ku�znar et al.
[3] contribute to the shown total and average values.

We obtained feasible multiple FPGA partitionings for all
13 circuits and our approach outperforms k-way.x in all
but four cases. The total dollar cost of the required de-
vices for the circuits is reduced up to 20%. Although our
approach does not explicitly minimize the total dollar cost
of devices used and does not allow cell replication, we im-
proved the cost by 2.3% on an average over k-way.x. Over-
all, we save $3.72 total cost which equals a total reduction
of 2.8%. Considering that the absolute lower total cost
bound for this Benchmark Suite is $113.72 [1] our method
is 21.5% closer to the absolute minimum than k-way.x.

Since our approach assigns the partitions to FPGA de-
vices during partitioning, we already obtain a placement
of the FPGAs on the FPGA board. Thus, the task of
assigning the FPGAs to positions on the FPGA board as
required by previous approaches is already solved during
partitioning. Moreover, the length of the inter-device con-
nections is minimized during the embedding step. Thus,
when considering the proposed FPGA placement, we ex-
pect that the signal delays of the inter-device signals will
be small compared to previous approaches.

#CLBs #PIOs k-way.x EBRC Improvement
circuit Total CPU Grid Device- Total CPU Total CPU

[$] [s] Distribution [$] [s] [%] [%]

c2670 150 221 n.a. n.a. 2x2 f2,2,0,0,0g 4.72 1.7 { {

c3540 283 72 4.56 32.0 3x1 f1,1,1,0,0g 4.20 3.8 7.9 88.1

c5315 377 301 6.92 102.2 5x1 f0,3,2,0,0g 7.76 8.1 -12.1 92.1

c6288 833 64 13.76 292.7 6x1 f0,0,6,0,0g 11.04 14.6 19.8 95.0

c7552 489 313 7.36 82.7 1x5 f0,2,3,0,0g 8.24 10.1 -12.0 87.8

s1238 158 30 n.a. n.a. 2x1 f0,2,0,0,0g 2.72 1.2 { {

s5378 381 86 6.19 142.4 2x1 f0,0,0,2,0g 6.30 4.7 -1.8 96.7

s9234 454 43 7.98 201.2 3x1 f0,1,1,1,0g 6.35 16.9 20.4 91.6

s13207 915 154 18.12 364.7 5x2 f0,5,3,1,1g 20.30 172.6 -12.0 52.7

s15850 842 102 14.97 402.3 2x3 f0,2,1,3,0g 14.01 104.5 6.4 74.0

s35932 2 153 357 n.a. n.a. 7x4 f5,10,10,3,0g 46.45 2 001.0 { {

s38417 2 221 136 n.a. n.a. 2x10 f2,3,14,1,0g 34.99 1 382.8 { {

s38584 2 901 292 51.19 3 832.0 6x4 f1,7,9,7,0g 49.13 2 243.2 4.0 41.5P
/avg 131.05 5 452.2 127.33 2 578.5 2.3 79.9

Table 2: Comparison of partitioning results of k-way.x and EBRC

5 Conclusions

We developed an e�cient k-way partitioning method for
multiple type FPGA partitioning. Our research leads to
the following conclusions:
� The combination of the analytical embedding tech-
nique with the iterative improvement procedure is a
promising approach for k-way FPGA partitioning.

� The k-way ratio cut method with our new FPGA-
speci�c objective function allowing each partition to
exchange CLBs with all adjacent partitions yields im-
pressive partitioning quality.

� Partitioning results for a large set of benchmark cir-
cuits demonstrate that our approach outperforms
previous methods.

Acknowledgment

The authors would like to thank K.Antreich and
F. Johannes for continuous support as well as A. Schoene,
M.Hermann, and C. Legl for many fruitful discussions.
This work was supported in part by the German National
Science Foundation (DFG) under Grant An 125/11-1.

References

[1] R. Kuznar, F. Brglez, and K. Kozminski, \Cost Minimiza-
tion of Partitions into Multiple Devices," Proceedings 30th

ACM/IEEE Design Automation Conference, pp. 315{320,
1993.

[2] C. M. Fiduccia and R. M. Mattheyses, \A Linear-Time
Heuristic for Improving Network Partitions," Proceedings 19th

ACM/IEEE Design Automation Conference, pp. 175{181,
1982.

[3] R. Kuznar, F. Brglez, and B. Zajc, \Multi-way Netlist Parti-
tioning into Heterogeneous FPGAs and Minimization of Total
Device Cost and Interconnect," Proceedings 31th ACM/IEEE

Design Automation Conference, pp. 238{243, 1994.

[4] N.-S. Woo and J. Kim, \An E�cient Method of Partition-
ing Circuits for Multiple-FPGA Implementation," Proceedings
30th ACM/IEEE Design Automation Conference, pp. 202{207,
1993.

[5] N.-C. Chou, L.-T. Liu, C.-K. Cheng, W.-J. Dai, and R. Linde-
lof, \Circuit Partitioning for Huge Logic Emulation Systems,"

Proceedings 31th ACM/IEEE Design Automation Conference,
pp. 244{249, 1994.

[6] D. J.-H. Huang and A. B. Kahng, \Multi-Way System Parti-
tioning into a Single Type or Multiple Types of FPGAs," Pro-

ceedings 1995 ACM Third International Symposium on Field-

Programmable Gate Arrays, 1995.

[7] P. K. Chan, D. F. Schlag, and J. Y. Zien, \Spectral K-

Way Ratio Cut Partitioning and Clustering," Proceedings

30th ACM/IEEE Design Automation Conference, pp. 749{754,
1993.

[8] C. J. Alpert and A. B. Kahng, \Multi-Way Partitioning Via

Space�lling Curves and Dynamic Programming," Proceedings

31th ACM/IEEE Design Automation Conference, pp. 652{657,

1994.

[9] G. Sigl, K. Doll, and F. M. Johannes, \Analytical Placement: A
Linear or a Quadratic Objective Function?," Proceedings 28th

ACM/IEEE Design Automation Conference, pp. 427{432, 17.-

21. jun 1991.

[10] L. Hagen and A. B. Kahng, \Improving the Quadratic Ob-
jective Function in Module Placement," Fifth Annual IEEE

International ASIC Conference and Exhibit, pp. 42{45, 1992.

[11] B. M. Riess, K. Doll, and F. M. Johannes, \Partitioning
Very Large Circuits Using Analytical Placement Techniques,"
Proceedings 31st ACM/IEEE Design Automation Conference,
pp. 646{651, 1994.

[12] L. Hagen and A. B. Kahng, \Fast Spectral Methods for Ratio
Cut Partitioning and Clustering," Proceedings IEEE/ACM In-

ternational Conference on Computer-Aided Design, pp. 10{13,
1991.

[13] Y.-C. Wei and C.-K. Cheng, \Ratio Cut Partitioning for Hier-
archical Designs," IEEE Transactions on Computer-Aided De-

sign, vol. 10, pp. 911{921, July 1991.

[14] P. R. Suaris and G. Kedem, \An Algorithm for Quadrisection
and Its Application to Standard Cell Placement," IEEE Trans-

actions On Circuits And Systems, vol. 35, pp. 294{303, Mar.
1988.

[15] F. Brglez, D. Bryan, and K. Kozminski, \Combinational Pro-
�les of Sequential Benchmark Circuits," Proceedings IEEE In-

ternational Synposium on Circuits and Systems ISCAS 1989,
vol. 3, no. 3, pp. 1929{1934, 1989.

	ASP-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

