
Logic Recti�cation and Synthesis for Engineering Change

Chih-chang Lin Kuang-Chien Chen

University of California, Santa Barbara Fujitsu Laboratories of America, INC.

David Ihsin Cheng Malgorzata Marek-Sadowska

University of California, Santa Barbara University of California, Santa Barbara

Abstract| In the process of VLSI design, speci-

�cations are often changed. It is desirable that such

changes will not lead to a very di�erent design, so that

a large part of engineering e�ort can be preserved. We

treat this problem as a combination of multiple{error

diagnosis and logic minimization problems. Given a

new speci�cation and an existing synthesized logic

network, our algorithms modify the existing network

minimally such that the new speci�cation can be re-

alized. In this paper, a new algorithm is developed

to identify multiple candidate signals simultaneously

from the existing network, such that appropriate mod-

i�cations of these signals can rectify the speci�cation

change.

I. Introduction

In a typical VLSI design process, speci�cations are of-

ten changed in order to correct design errors, or to meet

certain design constrains such as area, timing and power

consumption. Since a lot of engineering e�ort may al-

ready have been invested (e.g., the layout of a chip may

have been obtained), it is desirable that such changes in

speci�cation will not lead to a very di�erent design and a

large part of the engineering e�ort can be preserved. This

is usually called the engineering change (EC) problem.

As automatic synthesis becomes popular, the issue of

how to handle engineering changes gains even more im-

portance. Since synthesis tools usually perform global

transformations (e.g., sharing of modules) to achieve good

quality results, small and local changes in the speci�cation

could have global e�ects and produce a very di�erent net-

work. Realizing this fact, designers usually have to man-

ually modify the synthesized network to realize changes

in the speci�cation. Such practice not only increases the

chance of introducing inconsistencies between the higher{

level speci�cation (e.g., VHDL) and the �nal network,

but also is an error{prone process that often fails because

the correspondence between the speci�cation and synthe-

sized network cannot be easily identi�ed (e.g., a signal

in the VHDL speci�cation may not appear as a signal in

the synthesized network). Therefore, there is an urgent

need for synthesis algorithms which can handle engineer-

ing changes e�ectively.

Example 1 Figure 1.(a) shows a network which repre-

sents the original speci�cation. In general, a speci�cation

may be given in a high{level description language, but here

for illustration purpose, we simply take the network in

Figure 1.(a) as the initial speci�cation. After applying

logic transformation and optimization procedures [1, 2, 3]

on the network in Figure 1.(a), the resulting network is

shown in Figure 1.(c).

Now suppose the speci�cation in Figure 1.(a) has been

slightly modi�ed by changing p5 from an XOR gate to an

AND gate, as shown in Figure 1.(b). After applying the

same synthesis procedures as before, we obtain a network

shown in Figure 1.(d). As we can see, although the change

in speci�cation arises from a local modi�cation, general

synthesis procedures do not localize such a change and the

networks in Figure 1.(c) and Figure 1.(d) are quite di�er-

ent (i.e. the number of gates is changed from 10 to 9, and

�ve out of the nine gates have di�erent fanins or fanouts).

Another way to handle the speci�cation change is to

modify the network in Figure 1.(c) directly, so that we

can obtain a network similar to Figure 1.(c), yet realizing

the new speci�cation in Figure 1.(b). Such manual EC

technique, however, cannot be easily applied in this case.

This is because after we have applied transformation and

optimization procedures, the signal corresponding to gate

p5 in Figure 1.(a) is no longer available in the optimized

network Figure 1.(c). Therefore, although we know the

change arises from the modi�cation of p5, it is di�cult

to tell in Figure 1.(c) where and how the modi�cations

should be done.

On the other hand, a good synthesis procedure which

considers engineering changes will be able to modify the

network in Figure 1.(c) minimally, such that the result-

ing network is functionally equivalent to the speci�cation

in Figure 1.(b). In later sections, we will discuss such

EC algorithms. By applying these algorithms on the net-

work in Figure 1.(c), the network in Figure 1.(e) is ob-

tained, di�ering from the network in Figure 1.(c) in that

the gates, k0; k1 and k2, have been removed and a gate k3

x3
x4

x1

x1

x2

x0

p5

y0

y2

y1

x5

x3

x4

y0

y2

y1

x5

x1

x2

x0

x1

(e) a circuit synthesized by applying
 EC algorithm.

x3

x4

y0

y2

y1

x5

x1

x2

x0

x1

p5

x3
x4

x1

x1

x2

x0

y0

y2

y1

x5

x3
x4

y0

y2

y1

x5

(d) a circuit synthesized from the
 new specification in (b).

k1

k2

k3

(b) a new specification.(a) the original specification.

(c) a circuit synthesized from the
 specification in (a).

t

t

k0 p1 x2
x0

x1

Fig. 1. An example of the EC problem.

has been added. Note that the removal of gates is proba-

bly bene�cial for layout and timing, and the change made

here is local. 2

Note that changes made at high levels can potentially

introduce large changes in the �nal design. For exam-

ple, suppose a design is described in terms of a �nite{

state machine, and modi�cations were made resulting in

changes in the number of states and state transitions.

Then, during synthesis, state encoding di�erent from the

original encoding may be used, potentially leading to a

very di�erent network. Therefore, it should not be ex-

pected that engineering changes can always be done with

very few modi�cations. In this paper, we will concentrate

on the core problem of the engineering change, i.e., han-

dling functional speci�cation changes for combinational

networks.

Remainder of this paper is organized as follows. Sec-

tion II provides appropriate background, de�nitions and

reviews related work. Section III, Section IV and Sec-

tion V discusses our approach of logic synthesis for en-

gineering change. Section VI summarizes the overall EC

algorithm. Section VII shows the experimental results.

Finally we give conclusions and discuss the plan for fu-

ture work.

II. Terminology and previous work

Let S
o be the original speci�cation and C

o a corre-

sponding synthesized logic network. Suppose Sn is a new

speci�cation resulting from engineering changes. The goal

of logic synthesis for engineering change is to synthesize

a network C
n such that it realizes Sn and the structural

di�erences between C
o and Cn are minimized. In the re-

mainder of the paper, we shall simply refer to S
o (Sn)

and C
o (Cn) as the old (new) speci�cation and network,

respectively.

There have been several papers on logic synthesis al-

gorithms for engineering change. In [4], Co and C
n are

synthesized independently from S
o and S

n, respectively,

and then a post{processing step is performed to identify

the correspondence between pins and gates of Co and Cn.

This method is e�ective when Co and Cn are structurally

similar, but this is often not the case with existing logic

synthesis algorithms which tend to change substantially

the structure of the networks.

In [5], the idea was to leave the old network C
o to-

tally unchanged, and to rectify the speci�cation changes

by attaching pre{logic and post{logic networks to the pri-

mary inputs and outputs of Co. Boolean relation based

algorithms were developed to derive the functions of the

pre{ and post{logic. It has been shown that any new

speci�cation can be realized in this way if both pre{ and

post{logic networks are allowed. In [6], the application

of Boolean uni�cation techniques to solve the same prob-

lem (i.e., derive the functions of the pre{ and post{ logic)

were discussed. This approach is useful when changes are

made at a later stage of the design process when it may

be desirable to keep the old design unchanged. For exam-

ple, it can be used to patch an existing layout for function

changes, without going through the whole layout process

again. However, the pre{ and post{logic added may still

be too large to be useful, and it is not suitable in situa-

tions where the internal structure of the old network can

be modi�ed.

In [7], a novel approach is proposed which explores the

structural equivalence between the old and new speci�-

cations, and the functional equivalence between the old

speci�cation and the existing synthesized network. Using

these structural and functional equivalence, [7] establishes

a mapping between the signals in the existing network and

the ones in the new speci�cation. Then, this mapping in-

formation is used to guide an ATPG{based logic substi-

tution process. This method is computationally e�cient.

However, its e�ectiveness depends on the amount of the

functional equivalence between the old speci�cation and

the existing synthesized network.

In the last few years, there have been much work on

the problem of error diagnosis [8, 9, 10, 11, 12]. The error

diagnosis problem can be viewed as an engineering change

problem if the appropriate networks are interpreted as fol-

lows. C
o is supposed to implement the speci�cation S

n

and contains an implementation error such that it actually

implements So and So 6= S
n. Therefore, the correct spec-

i�cation Sn is now the new speci�cation, and our goal is

to modify Co into another network Cn which implements

S
n correctly. In [8, 9, 10, 11], error correction techniques

were proposed based on a single{error model which as-

sumed that the structural di�erence between C
o and C

n

can be characterized as a single gate type change or a

single wire mis{connection.

The error diagnosis problem has a strong relationship

to the EC problem. However, in EC problems, changes

in speci�cation can potentially result in diverse changes

in a network, and it is often necessary to make multiple

changes in the old network in order to realize a new spec-

i�cation. As a result, single{error model does not su�ce.

An extension of single{error model for the EC problem

is shown in [13] which modi�es multiple signals sequen-

tially in the following steps:

1) Identify all erroneous outputs, POerror.

2) Identify a single candidate signal which can rectify

as many erroneous outputs as possible, and also de-

rive the new function of this signal.

3) Synthesize the new function by utilizing existing logic

of the old network.

4) Remove the corrected outputs from PO
error. If

PO
error is not empty, then loop back to Step 2.

To realize the new speci�cation with minimal modi�ca-

tions, the above process should identify as few signals as

possible, and the synthesis procedures in Step 3 have to be

powerful enough so that the new functions can be realized

using as few gates as possible.

In this paper, following the framework of [13], we de-

velop a new algorithm which identi�es multiple signals

simultaneously for Step 2 based on the concept of co-

observable domain. As a result, the new algorithm can

search a larger solution space and the experimental results

are competitive.

III. Observable and co{observable domain

In the EC problem, given an existing network and a

new speci�cation, we are interested in modifying the net-

work minimally to realize the new speci�cation. It is the

modi�cation of internal signals' logical functions that al-

lows the new speci�cation can be realized. Therefore, we

should have a way to detect and measure the e�ects of

internal signals on the network's functionality. Based on

the concept of observability don't care [1] and Boolean re-

lation[14, 15, 16], we de�ne observable domain for a

single signal and co{observable domain for multiple

signals, respectively. They completely characterize the

e�ects of internal signals on the network's functionality.

For simplicity, in the following Section A and Section B,

we assume the existing network C
o has a single output

realizing f(X) where X is the set of primary inputs. The

extension to multiple outputs is discussed in Section C.

f(X) is assumed to be di�erent from the new speci�cation

f
s(X) and the error minterm set is de�ned as

Ef (X) = f(X) � fs(X);

where Ef (X) can be viewed as a set of minterms or a

Boolean function.

De�nition 1 A set of signals t1; � � � ; tk in the network Co

is a candidate location set if there exists a new func-

tion t
n
i (X) for each ti, such that after substituting ti(X)

(the original function of ti with respect to the primary

inputs X) by tni (X), f(X) is equal to fs(X).

A. Observable domain

Given a signal ti, the observable domain (OD) of ti
is de�ned as follows:

De�nition 2 Let f ti (X; ti) be a representation of f(X)

by treating ti as an input. The observable domain of ti
with respect to f is a set of minterms, where

OD
f
ti
(X) = fX1 j f

ti(X1; ti) 6= 0 or 1;

for X1 2 2
X
g:

For a given minterm X1 in OD
f
ti
(X), when its applied

to f ti (X; ti), it will make ti observable at the output. In

other words, under the input minterm X1, the value ti
controls the value of f ti . On the other hand, if X1 is not

in OD
f
ti
(X), then the value of ti has no control on the

value of f ti (i.e., X1 is an observability don't care of the

signal ti [1]).

Example 2 Figure 2 shows a network with the out-

put function f(a; b; c). To compute the observable do-

main of the signal t1, �rst of all, f is re-expressed

as f
t1 (a; b; c; t1) = �ab + t1(b + c) by considering t1 as

an extra input. Then, based on the above de�nition,

we can �nd that among all the 8 di�erent minterms,

the minterms f�abc; �ab�cg make f
t1 become 1, while the

minterms fa�b�c; �a�b�cg make f
t1 become 0. As a result,

ODt1 is fabc; ab�c; �a
�bc; a�bcg or we can express it more con-

veniently as ab+ ac+ �bc. 2

Based on the notion of observable domain, we have the

following su�cient condition for a set of signals to be a

candidate location set.

Lemma 1 A set of signals, t1; � � � ; tk, is a candidate lo-

cation set, if

Ef (X) �

k[

i=1

OD
f
ti
(X):

Proof. Given an error minterm in Ef (X), we can �nd

at least a ti such that if we switch ti(X)'s value for

that minterm, then the output is recti�ed for that er-

ror minterm. Since each error minterm can be recti�ed

independently, the lemma follows.

b
c

a
f

t2

t1

Fig. 2. Example of the observable domain and co{observable

domain. The observable domain of the signal t1 is ab+ ac+�bc and

the co{observable domain of signal t1 and t2 is �a+ b+ c.

B. Co-observable domain

The condition of Lemma 1 is su�cient but not neces-

sary because it does not consider the interaction of mul-

tiple signals. We introduce the concept of co-observable

domain to handle such a case. Given two signals ti and tj ,

their co-observable domain (COD) is de�ned as follows:

De�nition 3 Let f ti;tj (X; ti; tj) be a representation of

f(X) by treating ti and tj as inputs. The co-observable

domain of ti and tj with respect to f , is

COD
f
ti;tj

(X) = f X1 j f
ti;tj (X1; ti; tj) 6= 0 or 1;

for X1 2 2
X
g:

Since COD considers the interaction of signals, we have

the following lemma.

Lemma 2 Given two signals ti and tj , their COD is a

super set of the sum of ODi and ODj , i.e.,

OD
f
ti
(X)

[
OD

f
tj
(X) � COD

f
ti;tj

(X):

Example 3 We use Figure 2 again to show the concept of

co{observable domain. To compute the co{observable do-

main of the signals t1 and t2, �rst of all, f is re-expressed

as f t1;t2(a; b; c; t1; t2) = t2�a+t1(b+c) by considering t1; t2
as two extra inputs. Then, we �nd that among all the 8

di�erent minterms, no minterms can make f t1;t2 become

1, while the minterm in fa�b�cg makes f t1;t2 become 0. As

a result, CODt1;t2 is �a+ b+ c. 2

We can also extend the de�nition of co-observable do-

main to more than two signals. Using the concept of

COD, we have the following necessary and su�cient con-

dition for a set of signals to be a candidate location set.

Theorem 1 A set of signals t1; � � � ; tk is a candidate lo-

cation set, i�

Ef (X) � COD
f
t1;���;tk

(X):

C. Handling multiple outputs

Here, we show how to extend the de�nition of OD and

COD to multiple{output networks. Assume the network

has outputs f1; � � � ; fm, and the new speci�cations are

f
s
1
; � � � ; f

s
m. We construct a single output network Z(X)

as follows:

Z(X) =

m_

i=1

fi(X) � f
s
i (X);

where Z(X) is not equal to the zero function (otherwise

the network has already implemented the new speci�ca-

tion). Then, the problem of rectifying multiple outputs

becomes the problem of rectifying a single output network

Z(X), where its new speci�cation Zs(X) is the zero func-

tion. Note that here we are only allowed to modify the

signals in the fanin cones of f1; � � � ; fm.

IV. COD Computation and search of candidate

location set

In this section, given a signal ti or a set of signals

t1; � � � ; tk, we show how to compute ODti and CODt1;���;tk

e�ciently based on BDD manipulations [17]. Then, we

show how to use ODti e�ectively to guide the search for

a candidate location set while using Theorem 1 to verify

its candidacy.

A. COD Computation

Since OD is a special case of COD, we only discuss

how to compute COD. Given a set of signals t1; � � � ; tk,

we �rst construct BDDf , which is a BDD for f in term

of X and t1; � � � ; tk. Then we apply the consensus oper-

ator and smoothing operator on BDDf with respect to

the BDD variables t1; � � � ; tk to obtain BDD
c
f and BDDs

f

separately. BDDc
f contains all the minterms which make

BDDf 1 and BDD
s
f contains all the minterms which

make BDDf not equivalent to 0. Since COD is the set

of minterms which make BDDf not equivalent to 1 or 0,

the di�erence between BDD
s
f and BDD

c
f is COD. The

pseudo code for computing co-observable domain is as fol-

lows:

COD(f;X; t1; � � � ; tk)

f

BDDf = build bdd(f;X; t1; � � � ; tk)

BDDcod = Smootht1;���;tk(BDDf) �

Consensust1 ;���;tk(BDDf)

return(BDDcod)

g.

B. Search of a candidate location set

Since there are huge combinations of signals, we have

to develop heuristics to guide the search for a candidate

search candidate location set(Ef ; k)

f

compute OD foreach signal()

T = ;

C = sorted candidate signals by OD coverage

loop f

t = �rst candidate(C)

if (t is not dominated by sigals in T)

T = minimal dominating set(T + ftg)

COD = compute COD(T)

end

C = C � ftg

if (Ef � COD)

return(T)

g until (size of(T) > k) or (C is ;)

return(;)

g

Fig. 3. The pseudo code for searching a candidate location set

guided by observable domain. The parameter k is the size

constraint of T .

location set. This can also be considered as a multiple{

error diagnosis problem [12]. In our approach, we utilize

the information extracted from OD to guide the search.

Moreover, to avoid redundant computation, topological

information can be utilized. For example, given a set of

signals t1; � � � ; tk, ifCODt1;���;tk is not a candidate location

set, then any combinations of signals in the fanin cones of

t1; � � � ; tk are not either.

The overall searching procedure is shown in Figure 3.

First, the observable domain of each signal ti (ODti) is

computed and stored. Then the signals are sorted accord-

ing to their coverage of Ef , i.e., the number of minterms

in ODti ^Ef . After that, the algorithm sequentially adds

one signal to the set T until its COD satis�es Theorem 1.

Theoretically, without size constraint, given enough time,

the algorithm should be able to �nd a candidate loca-

tion set T which satis�ed Theorem 1, but for practical

purpose, we set a size constraint k as shown in Figure 3

to avoid the memory explosion due to BDD operations.

Note that, by setting the size constraint to 1, the algo-

rithm proposed in [13] becomes a special case of this new

approach.

V. Synthesizing functions for signals in a

candidate location set

Given a set of signals t1; � � � ; tk, if its COD covers all the

error minterms, there exists a new function tni (X) for each

ti, such that by replacing each ti by t
n
i (X) simultaneously,

all the error minterms can be corrected. In this section, we

discuss the freedom we have and the methods for deciding

the new functions of these signals. After the new functions

of these signals are decided, we apply the substitution

methods [13] to realize these new functions by utilizing

the existing gates of the network.

Like many problems in logic minimization, it's di�cult

to formulate an exact cost function for deciding what new

functions the signals ti's should have. Here, the ultimate

goal is to make the new functions easier to be synthe-

sized by utilizing the existing gates of the network. We

developed two heuristic procedures to decide the on{set

and o�{set of tni (X). Both of them are designed such that

the synthesis procedures (Step 3 in Section II) can take

advantage of the freedom of Boolean relation. These two

heuristics are

1) minimize the sum of the numbers of minterms

changed between ti(X)'s and t
n
i (X)'s.

2) minimize the number of tni (X)'s BDD nodes.

A. Freedom of choosing new functions for a candidate lo-

cation set

As discussed in Section C, we assume the multiple{

output network and the new speci�cation have been

merged into a single{output network Z(X). The on{set

of Z(X) denotes the error minterms, while Zs(X) is the

zero function.

The freedom for determining the on{set and o�{set of

t
n
i is completely characterized by the following character-

istic function which represents a Boolean relation among

t
n
1
; � � � ; t

n
k :

K = Z
t1;���;tk(X; tn

1
; � � � ; t

n
k) = 0:

In other words, any combinations of tni (X)'s are legal if af-

ter substituting ti(X)'s by tni (X)'s, the resulting Zt1;���;tk

is the zero function. In the following, for simplicity, we

use Z to denote Zt1;���;tk .

B. Minimize the di�erence between ti(X) and t
n
i (X)

This heuristic �nds a realization such that the di�er-

ence between ti(X) and t
n
i (X) is minimized. We use the

number of minterms in ti(X)� tni (X) to measure the dif-

ference. The problem can be formally stated as follows:

given a Boolean relation of t1; � � � ; tk, Z(X; t1; � � � ; tk) = 0;

�nd a realization t
n
i (X) for each ti such that the total

number of di�erent minterms,
Pk

i=1 kti(X) � t
n
i (X)k; is

minimized.

We can derive an optimal solution by dynamic pro-

gramming to traverse the BDD graph once. In this for-

mulation, given a minterm, we need to know what the old

values of ti's are. The following characteristic function,

P1 =

kY

i=1

(toi � ti(X));

ti
n

t i
o

N

N00 N01 N10 N11

Fig. 4. Example of combining two BDD variables tn
i
and t

o

i
into

one super BDD variable with 4 sons.

captures these information in a BDD formula, where toi 's

represent the old value of ti's. We then construct the

following BDD,

P = Z(X; tn
1
; � � � ; tnk) ^ P1(X; t

o
1
; � � � ; t

o
k);

with BDD variable ordering as follows:

x1 < � � � < xn <

z }| {
t
n
1
< t

o
1
<

z }| {
t
n
2
< t

o
2
< � � �<

z }| {
t
n
k < t

o
k :

There are two BDD variables tni and t
o
i associated with

each ti. In the BDD P , a path X1; t
n
1
; t
o
1
; � � � ; t

n
k ; t

o
k which

leads to 1{terminal node of BDD, represents what the old

value (toi) of ti is and what legal value (tni) for ti can be

for the given minterm X1.

To �nd an optimal solution, we virtually combine two

BDD variables tni and t
o
i into one super BDD variable

(with 4 sons) as shown in Figure 4 and traverse the BDD

P in a depth{�rst manner for all the BDD nodes of P

with indices greater than or equal to tn
1
. During the BDD

traversal, the cost function for a BDD node is computed

as as follows:

Cost(N) = MINf Cost(N00); Cost(N01) + 1;

Cost(N10) + 1; Cost(N11) g;

where N is a BDD node and N00; N01; N10; N11 are the

four sons of the BDD node N . The cost of the 1{terminal

and 0{terminal nodes are zero and in�nite, respectively.

Using this cost function in the BDD traversal, we can

optimally decide the values of tni 's for each minterm im-

plicitly .

C. Minimize the number of BDD nodes of tni (X)'s

The second heuristic is to �nd a realization of tni (X)'s,

such that the number of BDD nodes is minimized. As a re-

sult, the obtained functions might be easier to implement.

Since it is di�cult to �nd a global minimum solution, we

sequentially extract the maximal freedom allowed to im-

plement each t
n
i (X)'s and then apply the bdd minimize

algorithm [18, 19] to minimize the number of BDD nodes.

After the new function tni (X) for ti has been decided, we

have to modify the characteristic function K by apply-

ing bdd compose operator [1] which substitutes the BDD

variable ti of K by function t
n
i (X). The algorithm is as

follows:

MINIMIZE BDD SIZE(K)

f

for i = 1 to k

Kti = cofactorti(K)

K�ti = cofactor�ti(K)

on = Cti+1;���;tk(K�ti)

off = Cti+1;���;tk(Kti)

t
n
i (X) = bdd minimize(on; off)

K = bdd compose(K; ti; t
n
i (X))

end

g.

VI. The overall EC algorithm

In Section IV, we showed the algorithm to �nd a can-

didate location set T , where there exists a new function

t
n
i (X) for each signal ti in T , such that the result of substi-

tuting ti by t
n
i (X) in the existing network will realize the

new speci�cation. In Section V, we discussed two di�erent

heuristics to decide the new functions of ti's. Thus, the re-

maining work is to realize these new functions by utilizing

the existing gates of the network as much as possible. We

apply the direct substitution and indirect substitution

methods proposed in [13] for this purpose.

We briey describe these substitution methods here.

For more details, please refer to [20, 2, 3, 13]. A connec-

tion conni = (Si; Di) is a signal, where Si and Di are

its source and destination gates. A connection conn2 =

(S2; D2) is called substitutable by another connection

conn1 = (S1; D1) if the functionality of the network re-

mains unchanged after adding conn1 and removing conn2.

In the case where D1 is equal to D2, conn2 is called di-

rectly substitutable by conn1. The exact requirement

of conn2 being directly substitutable by conn1 are shown

in [20, 21]. In the case where D1 is di�erent from D2,

conn2 is called indirectly substitutable by conn1. Based

on the concept of indirect substitution, an ATPG{based

approach is shown in [2, 3] for logic optimization.

To apply these substitution methods for our purpose,

we �rst synthesize a network CT for the new functions tni 's

based on their BDD representations (independent from

the existing network). Then, the indirect and direct

substitution algorithms are used iteratively to utilize the

signals (or gates) in the existing network C
o to replace

the signals in CT .

The overall EC algorithm is shown in Figure 5, where

PO
error(POcorrect) denotes the set of outputs which are

di�erent (equivalent) in the old and new speci�cations.

Before calling the EC algorithm, an BDD{based veri�ca-

tion tool [1] is used to �nd POerror and POcorrect. Due to

EC(Co
; S

n
; PO

error
; PO

correct
; k)

f

Ef= compute error minterm set(Co
; S

n
; PO

error)

T = search candidate location set(Ef ; k)

if T 6= ;

EC COD synthesize(Co
; T)

append PO
error to PO

correct

else

fPO
error
1

; PO
error
2
g � partition(POerror)

EC(Co
; S

n
; PO

error
1

; PO
correct)

EC(Co
; S

n
; PO

error
2

; PO
correct)

end

g

EC COD synthesize(Co
; T)

f

t
n
i 's = decide functions from Boolean relation(Co

; T)

replace ti by t
n
i in Co

loop f

perform indirect substitution(Co)

perform direct substitution(Co)

g until (no further improvement)

g

Fig. 5. The pseudo code of EC algorithm.

the imposed size constraint k, the algorithm might fail to

�nd a candidate location set to rectify all the outputs in

PO
error. If this happens, POerror is split into two sub{

set POerror
1

and POerror
2

, and the EC algorithm recti�es

them separately.

VII. The Experiment

In this section, we show the experimental results of ap-

plying the EC algorithmdescribed in the previous section.

Several combinational benchmark circuits from MCNC91

and one industrial example (SrCr) from Fujitsu are in-

cluded in our test suite.

The circuit SrCr (part of an ATM router chip) origi-

nally was given in VHDL by the designer and, later on,

the speci�cation was modi�ed by creating a new signal.

It was a hierarchical design and contained ip{ops. For

our experiment, we attened the design and extracted

the combinational portion of the circuit. For MCNC91

benchmarks, it was assumed that each of them represents

the original speci�cation S
o. To obtain Co, we optimized

S
o by running script.rugged script and then performed

technology decomposition (tech decomp {a 4 {o 4) in SIS

[1]. The numbers of gates in S
o and C

o are shown in

the third and fourth column of Figure 6 respectively. Be-

side the di�erence in the number of gates, the networks'

topology between S
o and C

o are quite di�erent also.

To obtain S
n, we randomly modi�ed S

o by changing

the function of internal gates. For a complex gate (repre-

sented as a SOP form in BLIF format [1]), we arbitrarily

modi�ed its cubes. For a simple gate, say an AND gate,

we changed it to an OR gate, etc. The �fth column of Fig-

ure 6 shows the number of such changes and the number

of primary outputs a�ected.

Then, given C
o and S

n, we applied the EC algorithms

to generate Cn. We test both heuristics described in Sec-

tion V with the constraint 5 on the size of the candidate

location set. The results for the algorithms in Section

V.B and Section V.C are shown in the columns labeled

M1 and M2, respectively. For comparison, the results

from [13] are listed in the column labeled M0. We re-

port the number of added gates (A), removed gates (R)

and computation time (seconds). They could be used to

measure the quality of the EC algorithms.

The columns labeled P shows the results of recursively

partitioning erroneous outputs. For example, (3; 1; 2)

means that during searching for a candidate location set,

the 6 erroneous outputs in POerror were partitioned into 3

sub{groups. Each of them was recti�ed separately. As ex-

pected, M1 andM2 partition POerror into fewer number

of sub{groups. This is because they explore the chances

of modifying multiple signals simultaneously.

In terms of the EC quality, for the example b9 ,M1 and

M2 perform better than M0, while for x2 , the results

fromM0 is better. AlthoughM0 is a special case ofM1

and M2, on the average, the results for three di�erent

heuristics are quite competitive. This is probably because

of the inaccuracy of the cost function. In other words, the

�nal results of EC algorithms also depend on the synthesis

methods used to synthesize the new functions. During the

process of determining those new functions, it is di�cult

to use a cost function which accurately represents the �nal

synthesis results.

VIII. Conclusions and Future Work

In this paper, synthesis algorithms for the engineering

change problem are described. To realize changes of the

speci�cation, we developed algorithms to modify the ex-

isting synthesized network minimally such that substan-

tial portion of engineering e�ort can be preserved.

Our EC algorithm can be divided into two steps. The

�rst step identi�es multiple candidate signals, such that

replacing them simultaneously with appropriate new func-

tions can rectify the di�erence between the old and new

speci�cations. The next step synthesizes these new func-

tions by utilizing gates of the existing network.

Deciding which signals to change is a major problem

in all minimization algorithms which try to change mul-

tiple signals concurrently. In our approach, this prob-

lem is solved by using the concepts of observable and co-

observable domains to guide the search. Currently, mul-

tiple signals identi�cation and synthesis of new functions

are performed independently. Future improvement will

consider new algorithms which integrate these two steps

closely such that we can obtain more accurate estimate of

the �nal changes in the EC algorithm.

Acknowledgements

This work was supported in part by the National Sci-

ence Foundation under Grant MIP 9419119 and in part

by the California MICRO program.

References

[1] \SIS: A system for sequential circuit synthesis,"

Report M92/41, University of California, Berkeley,

1992.

[2] K.T. Cheng and L.A. Entrena, \Multi-level logic op-

timization by redundancy addition and removal,"

Proc. European Conference on Design Automation,

pp. 373{377, 1993.

[3] S.C. Chang and M. Marek-Sadowska, \Perturb and

simplify: multi-level boolean network optimizer," IC-

CAD, 1994.

[4] T. Shinsha, T. Kubo, Y. Sakataya and K. Ishihara,

\Incremental logic synthesis through gate logic struc-

ture identi�cation," ACM/IEEE Design Automation

Conference, pp. 391{397, 1986.

[5] Y. Watanabe and R.K. Brayton, \Incremental syn-

thesis for engineering changes," ICCAD, pp. 40{43,

1991.

[6] M. Fujita, Y. Tamiya, Y. Kukimoto and K.C. Chen,

\Application of boolean uni�cation to combinational

logic synthesis," ICCAD, pp. 510{513, 1991.

[7] D. Brand, A. Drumm, S. Kundu and P. Narain,

\Incremental synthesis," ICCAD, 1994.

[8] J. C. Madre, O. Coudert, J.P. Billon, \Automating

the diagnosis and the recti�cation of design errors

with PRIAM," ICCAD, 1989.

[9] H.T. Liaw, J.H. Tsaih and C.S. Lin, \E�cient auto-

matic diagnosis of digital circuits," ICCAD, pp. 464{

467, 1990.

[10] P.Y. Chung, Y.M Wang and I.N. Hajj, \Diagnosis

and correction of logic design errors in digital cir-

cuits," ACM/IEEE Design Automation Conference,

pp. 503{508, 1993.

[11] I. Pomeranz and S. M. Reddy, \On error correction

in macro-based circuits," ICCAD, pp. 568{575, 1994.

[12] A. Kuehlmann, D.I. Cheng, A. Srinivasan and

D.P. LaPotin, \Error diagnosis for transistor-level

veri�cation," ACM/IEEE Design Automation Con-

ference, pp. 218{224, 1994.

[13]

C.C. Lin, K.C. Chen, S.H. Chang, M. Marek-Sadowska

and K.T. Cheng, \Logic synthesis for engineering

change," ACM/IEEE Design Automation Confer-

ence, 1995.

[14] E. Cerny and M. A. Marin, \An approach to uni�ed

methodology of combinational switching circuits,"

IEEE Trans. on Computers, pp. 745{756, 1977.

[15] R.K. Brayton and F. Somenzi, \An exact minimizer

for boolean relations," ICCAD, pp. 316{319, 1989.

[16] Y. Kukimoto and M. Fujita, \Recti�cation method

for lookup{table type FPGA's," ICCAD, pp. 54{61,

1992.

[17] R. E. Bryant, \Graph{based algorithms for boolean

function manipulation," IEEE Trans. Computers,

vol. C-35, pp. 667{691, 1986.

[18] S.C. Chang, D.I. Cheng and M. Marek-Sadowska,

\BDD representation of incompletely speci�ed func-

tions," EDAC, pp. 620{624, 1994.

[19]

T.R. Shiple, R. Hojati, A.L. Sangiovanni-Vincentelli

and R. K. Brayton, \Heuristic minimization of bdds

using don't cares," ACM/IEEE Design Automation

Conference, pp. 225{231, 1994.

[20] S. Muroga, Y. Kambayashi, H.C. Lai and

J.N. Culliney, \The Transduction method { design

of logic networks based on permissible functions,"

IEEE Trans. on Computers, pp. 1404{1424, 1989.

[21] D. Brand, \Veri�cation of large synthesized designs,"

ICCAD, pp. 534{537, 1993.

EC Results of EC algorithms

S
n M0 M1 M2

I/O S
o

C
o changes; POerror P A,R time P A,R time P A,R time

z4ml 7=4 4 28 1; 1 1 4; 3 7 1 4; 3 4 1 4; 3 4

2; 2 1; 1 6; 3 10 2 5; 1 12 2 10; 5 5

3; 3 1; 1; 1 7; 3 30 1; 2 6; 1 23 1; 2 9; 1 23

4; 4 1; 1; 1; 1 6; 0 24 1; 1; 2 5; 0 16 1; 1; 2 5; 0 17

b9 41=21 117 89 1; 2 1; 1 6; 2 4 2 3; 2 1 2 3; 2 1:7

2; 3 1; 1; 1 6; 3 14 3 4; 3 5 3 3; 3 2

3; 4 1; 1; 1; 1 7; 3 33 3; 1 4; 3 20 3; 1 4; 3 20

4; 6 1; 1; 1; 1;2 10; 7 123 3; 1; 2 8; 7 71 3; 1; 2 7; 7 70

frg1 28=3 3 115 1; 1 1 3; 0 67 1 3; 0 120 1 3; 0 104

2; 2 1; 1 4; 1 74 2 6; 2 149 2 6; 1 151

3; 3 1; 1; 1 7; 2 71 1; 2 6; 2 170 1; 2 7; 3 165

4; 3 1; 1; 1 7; 5 74 1; 2 7; 3 161 1; 2 6; 5 161

count 35=16 47 79 1; 1 1 2; 0 4 1 2; 0 3 1 2; 0 3

2; 2 1; 1 4; 1 8 2 4; 2 5 2 4; 2 3

3; 2 1; 1 7; 2 10 2 6; 4 8 2 5; 3 4

4; 3 1; 1; 1 8; 4 34 1; 2 7; 5 23 1; 2 6; 4 23

x1 51=35 28 207 1; 1 1 4; 1 25 1 4; 1 17 1 4; 1 16

2; 2 1; 1 5; 2 31 1; 1 5; 2 22 1; 1 5; 2 23

3; 3 1; 1; 1 7; 3 79 1; 1; 1 7; 3 60 1; 1; 1 7; 3 63

4; 4 1; 1; 1; 1 8; 4 104 1; 1; 1; 1 8; 4 77 1; 1; 1; 1 8; 4 79

x2 10=7 12 25 1; 1 1 1; 1 1 1 1; 1 0:7 1 1; 1 0:7

2; 2 1; 1 1; 3 2 2 3; 5 2 2 2; 5 1

3; 3 1; 1; 1 5; 4 13 1; 1; 1 12; 7 15 1; 1; 1 12; 7 16

4; 4 1; 1; 1; 1 3; 8 7 2; 1; 1 3; 8 7 2; 1; 1 2; 8 6

C880 60=26 357 261 1; 1 1 1; 1 69 1 1; 1 102 1 1; 1 106

2; 2 1; 1 1; 12 72 1; 1 1; 12 120 1; 1 1; 12 124

3; 3 1; 1; 1 2; 13 285 1; 1; 1 2; 13 426 1; 1; 1 2; 13 442

4; 4 1; 1; 1; 1 2; 12 251 1; 1; 1; 1 2; 12 437 1; 1; 1; 1 2; 12 447

SrCr 85=82 272 339 2; 1 1 20; 5 1471 1 20; 5 1471 1 20; 5 1471

Fig. 6. The experimental results of the EC algorithms

	ASP-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

