
Abstract - This paper proposes an algorithm for optimum
PLA folding based on its formulation as a problem of boolean sat-
isfiability. A logical expression is derived such that the assignment
of variables that satisfies it defines a folding with a minimum
number of columns. The proposed algorithm uses BDDs to repre-
sent boolean functions and incorporates novel reduction tech-
niques, obtaining satisfactory results.

I. INTRODUCTION

The Programmable Logic Array (PLA) is a very effective
structure for the design of both combinational and sequential
logic. They have been extensively used in integrated circuit
design, especially in controller implementations. A PLA con-
sists of a group of rows (carrying each one a product term) and
columns (corresponding to inputs and outputs). A logic gate
can be located at each intersection of a row with a column. The
objective of a folding algorithm is to determine permutations
of the rows (and columns) which permit a maximal set of col-
umns (rows) to be implemented in the same physical column
(row) of the logic array. Since large arrays are usually very
sparse, a considerable area reduction can be achieved by fold-
ing. If we restrict the folding to pairs of columns, simple fold-
ing is obtained; if no restrictions are imposed, the folding is
multiple. The problem of optimum PLA folding is discussed
extensively in literature [1-3]. Also, design ideas for the prob-
lem of multiple folding of PLAs apply to the gate matrix layout
problem [3]. The folding problem has been shown to be NP-
complete [4]. Consequently most efforts have been made in the
search of heuristic algorithms.

 Here, we transform the problem of simple or multiple col-
umn folding into one of boolean satisfiability in a similar way
to [5] for the problem of optimal layout. This transformation
constructs a boolean function where the number of variables
for which we must determine codification increases linearly
with the sum of input/output and product terms of the PLA.
This transformation allows us to apply sophisticated logic ver-
ification strategies and check if the constructed function pre-
sents any combination which makes it “1”. Among the various

techniques that allow this check, we have used that based on
BDDs.

Binary Decision Diagrams (BDDs) [6] form a convenient
representation of logic functions that have proved efficient in
diverse fields of VLSI design. Thus they have been used exten-
sively in the formal verification of digital circuits, in numerous
optimization problems, and in the general context of logic syn-
thesis. A BDD is an acyclic directed graph (DAG) representing
a multiple output logic function. Formally, a reduced and
ordered BDD (ROBDD) representing a functionf(x): {0,1}n

→ {0,1} is a DAG (V ∪ {1}, E), whereV is a set of internal
nodes. Each nodev∈V is associated with one of the variables
and has two descendents denotedT (then child) andE (else
child). The terminal node is {1} andE is the set of branches of
the graph.

The functionf represented by a BDD is defined as follows:

1. The function of the terminal node is the constant function 1.

2. The function of a branch is the function of the node it is
directed to, unless the branch has the complement attribute, in
which case the function of the branch is the complement of the
function of the node.

3. The function of a nodev∈V associated with the variable
xj is: fv = xj fT(v) + xj fE(v).

4. The functionf represented by the BDD is the function
represented by the root node.

A BDD is reduced if two distinct nodes under no circum-
stances represent the same function. A BDD is ordered if the
variables appear in any path from the root to the terminal node
in a previously-defined, identical order. Given a variable order-
ing, an ROBDD in which the use of the complementary
attribute on theT branches is prohibited, is a canonical repre-
sentation of logic functions. This is the type of representation
used in the folding algorithm developed here; however, for
commodity we will use the term BDD.

The rest of the paper is organized as follows: Section 2 pre-
sents formulation of the problem of optimum PLA folding as a
problem of satisfiability and shows an example of the method.
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Section 3 describes implementation of the proposed solution.
Section 4 presents preliminary results obtained with a proto-
type of the algorithm, demonstrating the power of approxima-
tion. Lastly, Section 5 summarizes the conclusions.

II. OPTIMUM FOLDIG VIA BOOLEAN SATISFIABILITY

A PLA is generally described symbolically by its personal-
ity matrix. This is a matrix of I×R, with as many columns (I)
as inputs and outputs, and as many rows (R) as product terms.
In the AND plane, “1” at position (i,j) means that thej-th input
is present in thei-th product (complemented or not); “0”, that
the j-th input does not appear in this product term. In the OR
plane, “1” at position (r,s) means that the product termr forms
part of the expression of thes function; and not if “0”. In this
study we consider the folding of columns. A group of rows
implicated by the columnci, F(ci), refers to the set formed by
the rows where 1 appears in the personality matrix for that col-
umn. Two columnsci andcj can be folded if both belong to the
same plane andF(ci) ∩ F(cj) = ∅.

Given the personality matrix of a PLA, the following pro-
cedure constructs a boolean function such that if the function
is satisfiable, then the PLA can be folded intoP columns.

1) Each columnci has N = log2(I) associated boolean
variables,ci1, … ciN. These variables show us in which physi-
cal columnci is.

2) Each product termrj hasr = log2(R) associated bool-
ean variables,rj1, … rjr.

3) For each pair of columns (ci, cj) whereci corresponds to
an input (output) andcj is an output (input), we will generate
the equationci1⊕cj1 + ci2⊕cj2 + … + ciN⊕cjΝ, where⊕ is the
exclusive-oroperator. This indicates that an input cannot be
folded with an output.

4) For each pair of columns (ci, cj), if F(ci) ∩ F(cj) ≠ ∅, we
generate the equationci1⊕cj1 + ci2⊕cj2 + … + ciN⊕cjΝ. This
indicates that inputs that cannot be folded cannot be located in
the same physical column.

5) Each pair of columns (ci, cj) with F(ci)∩F(cj) = ∅
imposes a set of restrictions on the codes of rows belonging to
F(ci) andF(cj). These restrictions impose that each row inF(ci)
be over each row inF(cj) or vice versa. Ifri is an element of
F(ci) andrj of F(cj), then,

that is, the inputs do not fold (and consequently have different
codes), or fold, and they meet the condition that all the rows in
F(ci) and in F(cj) are in different partitions.

6) If P < 2N there are binary vectors not used, hence we

ci1 cj1 ci2 cj2⊕+⊕ ... ciN cjN⊕+ +( ) +

r i1 r i2 ... r ir, , ,( ) r j1 r j2 ... r jr, , ,( ) +>

r j1 r j2 ... r jr, , ,( ) r i1 r i2 ... r ir, , ,( )>

r i F ci( ) , r j F cj( )∈∀∈∀

may prohibit their appearance. This can be expressed by the
equation:  for each prohib-

ited code (c1, … cN) and each columnci.

7) The codes of each row should be different. This is
expressed as  for everyri

andrj.

8) If our interest lies in simple folding, additional equa-
tions are necessary to prohibit more than two columns having
the same code. This can be expressed as:

for eachck which can be folded withci; that is, if the inputci

andcj are folded, it must be avoided that any columnck, capa-
ble of folding withci has its same code.

9) We construct the boolean function Fpleg from the con-
junction of the equations obtained previously.

Obviously, the assignment which satisfies Fpleg ensures
folding in P columns.

A. Example:

As an illustration of this formulation procedure, consider
the PLA in Fig. 1 with 10 columns and 6 rows. Values of N =
4 andr=3 are used. We need three variables to code the rows.
We can obtain the foldable and unfoldable pairs from its per-
sonality matrix.

point 3), the unfolding columns due to their location on dis-
tinct planes are the pairs (ci, cj) where i∈{0,...5} and
j∈{6,...,9}; a total of 24 pairs. For example, the equation gen-
erated by (c0, c1), is:

point 4) the pairs of unfoldable columns due to non empty
intersections are: (c0, c4), (c0, c5), (c1, c3), (c2, c5); and the
equation corresponding to (c0,c4):

ci1 c1 ci2 c2⊕+⊕ ... ciN cN⊕+ +( )

r i1 r j1 r i2 r j2⊕+⊕ ... r ir r jr⊕+ +( )

ci1 cj1 ci2 cj2⊕+⊕ ... ciN cjN⊕+ +( ) +

ci1 ck1 ci2 ck2⊕+⊕ ... ciN ckN⊕+ +( )

001001  1000
010100  0100
100001  0001
100010  0100
100000  0010
000000  0001

Personality matrix

r0
r1
r2
r3
r4
r5

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

OutputsInputs

AND Plane OR Plane

Figure 1:PLA description.

c01 c11⊕ c02 c12⊕ c03 c13⊕ c04 c14⊕+ + +

c01 c41⊕ c02 c42⊕ c03 c43⊕ c04+ + + c44⊕



point 5) the pairs of foldable columns are: (c0, c1), (c0, c2),
(c0, c3), (c1, c2), (c1, c4), (c1, c5), (c2, c3), (c2, c4), (c3, c4), (c3,
c5), (c4,c5), (c6, c7), (c6, c8), (c6, c9), (c7, c8), (c7, c9), (c8, c9).
For example, the equation generated by the pair (c0, c1) is:

point 6), the equations generated depend on the value ofP,
for example, the equation that excludes the code (1,0,1,1)
(since there are only 10 columns) for the column c0 is:

point 7) we generate equations for each pair of rows. For the
pair (r0,r1):

point 8) we generate equations to avoid multiple folding.
For the pair of folding columns, (c0, c1):

If we wish to find a simple fold, the value ofP cannot be less
than6/2 + 4/2, which corresponds to a maximum fold. This
value is 5 in the example PLA and in effect, a 5-column fold is
possible (Fig. 2a). For a multiple folding the minimum value of
P is 2, that is, a column of input and another of output. For the
example PLA, it is impossible to find any assignment that leads
us to a fold of these characteristics; increasing the value ofP to
3, leads us to the solution shown in Fig. 2b.  ■

c01 c11 c02 c12 c03 c13 c04 c14⊕+⊕+⊕+⊕ +

r21 r22 r12⋅ ⋅ r22 r11 r12⋅ ⋅ r21 r11⋅+ + 
  ⋅

r31 r32 r12⋅ ⋅ r32+ r11 r12⋅ ⋅ r31+ r11⋅ 
  ⋅

r41 r42 r12⋅ ⋅ r42+ r11 r12⋅ ⋅ r41+ r11⋅ 
  +

r11 r12 r22⋅ ⋅ r12+ r21 r22⋅ ⋅ r11+ r21⋅ 
  ⋅

r11 r12 r32⋅ ⋅ r12+ r31 r32⋅ ⋅ r11+ r31⋅ 
  ⋅

r11 r12 r42⋅ ⋅ r12+ r41 r42⋅ ⋅ r11+ r41⋅ 
 

c01 1⊕ c02 0⊕ c03 1⊕ c04 1⊕+ + + c01 c02 c03 c04+ + +=

r01 r11⊕ r02 r12⊕ r03 r13⊕+ +

c01 c11⊕ c02 c12⊕ c03 c13⊕ c04 c14⊕+ + +( ) +

c01 c21⊕ c02 c22⊕ c03 c23⊕ c04 c24⊕+ + +( ) ⋅

c01 c31⊕ c02 c32⊕ c03 c33⊕ c04 c34⊕+ + +( )

r0

r2

r5

r4

r3

r1

c2 c5 c6

c1 c3 c7

c9

c8
c4

c0

c1 c2 c5 c6 c9

c7 c8c4c3c0

r0

r1

r2

r3

r5

r4

(a) (b)

Figure 2: (a) Simple folding. (b) Multiple folding

III. I MPLEMENTATION OF THENEW FOLDING ALGORITHM

The use of a technique based on the representation of the
function derived from the previous Section through BDD, is
attractive in its correspondence between solutions to our problem
(assignments that satisfy the function) and paths from the root to
the terminal nodes with an even number of branches affected by
the complementary attribute. The complexity of determining a
path with this characteristic isO(n), wheren is the number of
variables of the function. However, difficulties frequently arise in
the construction of the BDD itself, due to the excessive memory
requirements. This situation can be encountered in practice, even
for relatively small PLAs. To solve this difficulty, the boolean

function Fpleg is expressed as:  where

each fi is represented by a BDDFi. Figure 3a shows the
pseudocode of the recursive algorithm proposed to obtain assign-
ments that satisfy all the subfunctions, and Fig. 3b, the
pseudocode of the folding algorithm.

The algorithm takes the PLA’s personality matrix as input
and preprocesses it. This task is performed by the functionPre-
process() covered later, and is intended to simplify the boolean
function. The functionInit_bound() evaluates a lower bound
for P1. Then, as long as a solution is not found, the BDD set
whose conjunction represents the function Fpleg is constructed
and a satisfying assignment of variables is searched. If it is
found, we can fold the PLA inP physical columns. Else, we
need to increaseP.

SATISFY is called with three arguments. The first (Node)
is an array and each elementNodei is the upper node fromFi.
The second (Parity_index) also has an element for each sub-
function and is used to represent the parity of the complemen-
tary attribute number in a path. Lastly,Var is the first of the
variables in the order that is used in the construction of the
BDDs. The description of the functionSATISFY uses the
Assignment array withn elements (n, the number of variables
in the function) that stores the assigned value of each variable.
Initially none of the positions ofAssignment are specified.

Both the variable ordering chosen as well as the breakdown
of Fpleg into subfunctions are critical for the efficiency of the
algorithm. The importance of the first lies in that the number of
nodes in the BDD for a given function depends on the order
selected for the variables.The order used here was chosen on
the basis of reducing the size of the BDDs that represent the
constraints described in points 4 and 5 of the previous Section.
Decomposition of Fpleg into subfunctions should be a compro-
mise betweentop (number of subfunctions) and the size of the
individual BDDs.

Diverse techniques are incorporated in the procedure to
reduce its complexity both in memory requirements as in exe-
cution time. Including these simplification strategies enables

1.P = # input columns / 2 + # output columns /2
for simple fold, andP = 2 for multiple fold.

f x1 x2 ... xn, , ,( ) fi
i 1=

top

∏=



PLEPLAS(PLA)
{

Read_PLA(PLA)
Preprocess()
P=Init_bound()
While (a satisfying assignment is not found)
{

F = {Fi} = Build_BDD(P)
SATISFY(Upper_Nodes_Fi, Parity_Index, first

variable)
P += 1

}
}

Figure 3:  (a)Pidgin_C description ofSATISFY.
(b) Pidgin_C description of the new folding algorithm.

(a)

(b)

SATISFY(Node, Parity_Index, Var)
{

for ( i = 1; i ≤ top ; i++)
{

if ((Nodei == 1)&&(Parity_indexi == 0)
return /* variable assignment does not satisfyfi */

}

if (∀i ((Nodei == 1)&& (Parity_indexi == 1)))
{  The variable assignment is a solution } /* End */

else
{

Assignment[Var] = 0
Node = {Nodei = else child of Nodei if it hasVar

as its asssociated variable
Nodei = Nodei if not }

Parity_index = {Parity_indexi = Parity_indexi ⊕
1 if theelse branch has its comple-
mentary attribute
Parity_indexi = Parity_indexi  if
not}

SATISFY(Node, Parity_index, nextVar)

Assignment[Var] = 1
Node = {Nodei = then child ofNodei if it hasVar

as the associated variable
Nodei = Nodei if not }

SATISFY(Node, Parity_index, nextVar)
}

}

increasing the size of the PLA to be treated with our algorithm
without exceeding the practical limit of memory resources.
The number of variables in the problem can be reduced, in
some cases considerably, and construction of the Fpleg simpli-
fied by detecting columns and/or rows whose actual position is
irrelevant to folding. A clear example of this is a columnci
such thatF(ci)∩F(cj) ≠ ∅¹,∀j. Since this column cannot be
folded with any other, it need not be considered in the folding
process. On one hand, the elimination of columns may lead to
personality matrices with rows in which all the input are 0,
which are obviously eliminated. In addition, the remaining
rows may be partitioned into groups (macrorows) with the
characteristic that the relative order of the rows of one same
group is irrelevant for folding. Two identical rows or two rows
with a dominance relation are examples of macrorows. In gen-
eral, two rowsrm, rk can not belong to the same macrorow
(they are incompatible) if it exists a folding pair (ci, cj), such
that rm∈F(ci) andrk∈F(cj). Two rows are compatible it they
are not incompatible. Macrorows are determined generating
maximum sets of pairwise compatible rows and selecting a
minimum cover; that is, a subset that covers all rows. In this
way, the problem of obtaining row permutation to enable a
maximum fold is simplified to obtaining permutation of mac-
rorows, whose number is in many cases inferior.

The function Preprocess() (Fig. 3b) analyzes the PLA
matrix eliminating the irrelevant columns and partitioning the
rows in a minimum number of disjointed macrorows. The
above sketched algorithm developed for this last task is novel,
and more general than that devised in previous approximations
[3], that only contemplate equality or row dominance. This
generality results in a further reduction in the number of rows
involved to obtain folding.

IV. EXPERIMENTAL RESULTS

A first version of the new PLA folding algorithm has been
coded in C, using the BDD packet of SIS [7] to implement the
construction and manipulation operations of these structures.
The prototype program is called PLEPLAS. We have applied
it to a group of PLAs taken from different sources. Table I
shows the results obtained for some of them. Columns have
been included for the number of rows (R) and columns (I) in
the original PLA, as well as for its sparsity (SP). The number
of columns in the folded PLA, I’, both for simple and multiple
folding are also shown. Time, in seconds, corresponds to a
SparcStation10. Results from PLEASURE [8], an standard
heuristic folding algorithm, have also been included in Table I.
Half of the single foldings an two multiple ones obtained with
PLEASURE are non optimum. These results show how far
heuristic solutions may be from the optimum even for rela-
tively small machines, and indicate that practical instances of
the folding problem can be exactly solved without requiring
much computation resources.



V. CONCLUSIONS

The problem of optimum PLA folding (simple and multiple)
has been formulated as a problem of boolean satisfiability, deriv-
ing a boolean function such that an assignment of variables that
satisfy it defines a fold with a minimum number of columns. A
fold algorithm has been developed using sophisticated logic veri-
fication techniques based on the representation of functions by
BDDs. Novel reduction techniques are incorporated to treat PLAs
with a higher number of rows and/or columns. Our results show
that although the problem is NP and so heuristic method are
required in general,optimum single and multiple folding is fea-
sible for practical instances of the folding problem.

 S
PLEPLA

M
S PLEA

S
SURE

M

PLA R I SP % I’ t I’ t I’ I

Hatch82 6 6 74 3 1.3 3 0.6 3 3

Hwang1 6 8 75 5 2.5 5 0.7 5 5

Con1 9 9 78 5 1.4 5 14.3 6 5

Hwang2 7 10 77 7 2.6 7 0.8 9 9

Demi84 6 10 85 5 0.9 3 1.5 6 6

adr4 75 13 74 11 0.2 9 0.1 11 9

Biswas8616 14 85 7 66 7 500 10 7

dc2 39 15 72 11 6.6 10 19.2 11 10

alu2 68 18 82 14 4.5 13 22.2 15 13

alu3 66 18 82 14 2.8 12 1.9 14 12

Table I: Experimental Results.
S: Single Folding; M: Multiple Folding
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