Optimum PLA Folding through Boolean Satisfiability
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Abstract - This paper proposes an algorithm for optimum techniques that allow this check, we have used that based on
PLA folding based on its formulation as a problem of boolean sat- BDDs.
isfiability. A logical expression is derived such that the assignment
of variables that satisfies it defines a folding with a minimum Binary Decision Diagrams (BDDs) [6] form a convenient
number of columns. The proposed algorithm uses BDDs to repre- representation of logic functions that have proved efficient in
sent boolean functions and incorporates novel reduction tech- diverse fields of VLSI design. Thus they have been used exten-
niques, obtaining satisfactory results. sively in the formal verification of digital circuits, in numerous
optimization problems, and in the general context of logic syn-
thesis. A BDD is an acyclic directed graph (DAG) representing
a multiple output logic function. Formally, a reduced and
|.INTRODUCTION ordered BDD (ROBDD) representing a functiffr): {0,1}"
- {0,1} is a DAG (v O {1}, E), whereV is a set of internal
The Programmable Logic ArrayPLA) is a very effective nodes. Each nodé1V is associated with one of the variables
structure for the design of both combinational and sequentéid has two descendents denctefthen child) andE (else
logic. They have been extensively used in integrated circuaitild). The terminal node is {1} aridis the set of branches of
design, especially in controller implementations. A PLA corthe graph.
sists of a group of rows (carrying each one a product term) and
columns (corresponding to inputs and outputs). A logic gate
can be located at each intersection of a row with a column. The 1. The function of the terminal node is the constant function 1.
objective of a folding aIgonthm IS to d_etermme_ permutations 2. The function of a branch is the function of the node it is
of the rows (and columns) which permit a maximal set of col- : .
umns (rows) to be implemented in the same physical colunqlnreded to, unless the branch has the_ complement attribute, in
. : which case the function of the branch is the complement of the
(row) of the logic array. Since large arrays are usually veﬁ? ction of the node
sparse, a considerable area reduction can be achieved by fo g ’
ing. If we restrict the folding to pairs of columns, simple fold- 3. The function of a nodéJV associated with the variable
ing is obtained; if no restrictions are imposed, the folding g is: f, =X frq) *+ X fg).
mult|pl_e. Th_e problem of optimum PLA_‘ fol_dlng is discussed 4. The functiorf represented by the BDD is the function
extensively in literature [1-3]. Also, design ideas for the prob-
lem of multiple folding of PLAs apply to the gate matrix Iayou{epresented by the root node.
problem [3]. The folding problem has been shown to be NP- A BDD is reduced if two distinct nodes under no circum-
complete [4]. Consequently most efforts have been made in 8tances represent the same function. A BDD is ordered if the
search of heuristic algorithms. variables appear in any path from the root to the terminal node
Here, we transform the problem of simple or multiple cof—n a previously-deﬂned, iglentical order. Given a variable order-
! iIng, an ROBDD in which the use of the complementary

umn folding into one of boolean satisfiability in a similar WY Shute on the branches is prohibited, is a canonical repre-

to [5] for the problem of optimal layout. This transformation . . . o .

. . sentation of logic functions. This is the type of representation
constructs a boolean function where the number of varlablses . . . ]

) . P : Sed in the folding algorithm developed here; however, for
for which we must determine codification increases Ilneara/ommOolit we will use the term BDD

with the sum of input/output and product terms of the PLA’ y '
This transformation allows us to apply sophisticated logic ver- The rest of the paper is organized as follows: Section 2 pre-
ification strategies and check if the constructed function preents formulation of the problem of optimum PLA folding as a

sents any combination which makes it “1”. Among the varioysroblem of satisfiability and shows an example of the method.

The functionf represented by a BDD is defined as follows:



Section 3 describes implementation of the proposed solutionay prohibit their appearance. This can be expressed by the

Section 4 presents preliminary results obtained with a proteguationy(c;, O ¢, +¢,0c,+...+¢, Ocy) for each prohib-
type of the aIgon_thm, demonst_ratlng the power of approximae, § .ode ¢, ... o) and each columa,

tion. Lastly, Section 5 summarizes the conclusions.

7) The codes of each row should be different. This is

expressed ag;, M+ Orp+ o+, 0Or) for evenry
1. OPTIMUM FOLDIG VIA BOOLEAN SATISFIABILITY andr:

i-

A PLA is generally described symbolically by its personal- 8) If our interest lies in simple folding, additional equa-
ity matrix. This is a matrix of¥R, with as many columns (l) tions are necessary to prohibit more than two columns having
as inputs and outputs, and as many rows (R) as product terti€.same code. This can be expressed as:

In the AND plane, “1” at positiori,{) means that theth input

! g e ’ . dc,+c.,0c,+..+c ,0cC,)+

is present in théth product (complemented or not); “0”, that CIEL TR PR Cin U Gjn)

thej-th input does not appear in this product term. In the OR  (Cj; U Gy + ¢ 0 Cp + .o+ ¢ T ¢y

plane, “1” at positionr(s) means that the product terfforms  for eachc, which can be folded witk; that is, if the input;

part of the expression of tlsfunction; and not if “0”. In this andg; are folded, it must be avoided that any colugrcapa-
study we consider the folding of columns. A group of TOWS|e of folding withc; has its same code
, .

implicated by the columg;, F(c;), refers to the set formed by
the rows where 1 appears in the personality matrix for that col- 9) We construct the boolean functiogds from the con-
umn. Two columns; andc; can be folded if both belong to thejunction of the equations obtained previously.

same plane anié(c;) n F(g) = .

Given the personality matrix of a PLA, the following pro-
cedure constructs a boolean function such that if the functi?r]
is satisfiable, then the PLA can be folded iRtocolumns. 0

Obviously, the assignment which satisfigge§-ensures
ding in P columns.

1) Each columrt; has N =[og,(l)Dassociated boolean AE o:
variablesgjy, ... Gjy. These variables show us in which physi-™ xample:

cal columng; is. . . . . .
! As an illustration of this formulation procedure, consider

2) Each product term) hasr = [logy(R)Jassociated bool- the PLA in Fig. 1 with 10 columns and 6 rows. Values of N =
ean variablesyy, ... rj. 4 andr=3 are used. We need three variables to code the rows.
We can obtain the foldable and unfoldable pairs from its per-

3) For each pair of columns;(c;) wherec; corresponds to i ;
sonality matrix.

an input (output) and; is an output (input), we will generate
the equatiort; Ligjy + Cjplgn + ... + UG, wherelD is the

exclusive-oroperator. This indicates that an input cannot be AND Plane  OR Plane
folded with an output. CoCy CpC3 C4C5 Cg CyCg Cy

4) For each pair of columns; (q), if F(¢) n F(¢) # 0, we :‘i 001001 1000
generate the equatiap g + GG, + ... + GyOgy. This r, 010100 0100
indicates that inputs that cannot be folded cannot be located in r, 100001 0001
the same physical column. ' 100010 0100

. . fy 100000 0010

5) Each pair of columnsc( ¢) with F(c)nF(g) = O 000000 0001

imposes a set of restrictions on the codes of rows belonging to Inputs Outputs Personality matrix

F(c;) andF(c;). These restrictions impose that each rof(e)
be over each row iR(c) or vice versa. If; is an element of

F(ci) andr; of F(g), then, Figure 1:PLA description.

O TR P PR N IO point 3), the unfolding columns due to their location on dis-
(Fip i 1) > (1 T e 1) + tinct planes are the pairg, ¢) where il){0,...5} and

(ror rY) > (ror r) j0{6,...,9}; a total of 24 pairs. For example, the equation gen-

jrtjz et iz iz tir o

erated by (g ¢y), is:

Or, OF(c) ,I]rj OF (cj)

Cop J Cpa* Cop U C1p+ Coz I C13+Cop I Cyy

that is, the inputs do not fold (and consequently have different . 2 th irs of unfoldabl | q

codes), or fold, and they meet the condition that all the rows.in M) the p:?urs o7 untoicanie columns due .to non empty
F(c) and in F¢;) are in different partitions. intersections are: ¢¢ Gy), (G %), (C1. @) (20 &); and the

! ! equation corresponding tog(cy):

6) If P < 2N there are binary vectors not used, hence we Gy, 0 ¢y +Cyp 0 €+ Cog 0 €3 +Cou 0 Cyy



point 5) the pairs of foldable columns arg;, @), (cy, ©), I1l. | MPLEMENTATION OF THENEW FOLDING ALGORITHM

(Co: C3), (C1y ©), (€1, Cy)s (€1, C5), (s Ca), (Cor C), (Cai Ca), (G,
Cs), (C4,C5), (Gs: €7) (Go: GB)s (G C)s (€75 Cg)s (C7 ), (G, Co)-
For example, the equation generated by the pgic{kis:

The use of a technique based on the representation of the
function derived from the previous Section through BDD, is
attractive in its correspondence between solutions to our problem

CorUCyytegole,t ez c 3+ c e, + (assighments that satisfy the function) and paths from the root to

— — — 0

%21 [ op L p+ Topp L Ly + 15y [y a0
— — — —0

%31 rgp Lhyp+ Tgp Ly [y +1gy [y ya0

the terminal nodes with an even number of branches affected by
the complementary attribute. The complexity of determining a
path with this characteristic 3(n), wheren is the number of

% O o tr . OO +r. 0O+ variables of the function. However, difficulties frequently arise in
417427127 42 117127 1417 110 the construction of the BDD itself, due to the excessive memory
%11 Y O A Y BZBD requirements. This situation can be encountered in practice, even

_ R — for relatively small PLAs. To solve this difficulty, the boolean
Elrnmlz Lhgp+ Ty lhgy gy 1y thgpl top

— —_— —[ 1 i ' = .
%11312 ot Mo Oapt 1 g function Fyeq is expressed ag(x,, x,, ..., x;) ﬂlfI
i=

. . Fach f; is represented by a BDB;. Figure 3a shows the
point 6), the equations generated depend on the vaRje o : ] i .
for example, the equation that excludes the code (Loilﬁeudocode of the recursive algorithm proposed to obtain assign-
(since there are only 10 columns) for the colugisc ments that satisfy all the subfunctions, and Fig. 3b, the

o — S pseudocode of the folding algorithm.
Cor U 1+cy,00+cy01+cy, 01 = cpy+CoytCogtCyy

where

The algorithm takes the PLA's personality matrix as input
point 7) we generate equations for each pair of rows. For fm\d preprocesses it. This task is performed by the furfeten
process(tovered later, and is intended to simplify the boolean

pair (i,11): 7oy 0y *+ Moo U rap+ Mos U function. The functiorinit_bound()evaluates a lower bound

point 8) we generate equations to avoid multiple foldind©" P, Then, as long as a solution is not found, the BDD set
For the pair of folding columns, gocy): whose conjunct|on represents the fgncng,g_d-‘is constructed. .
and a satisfying assignment of variables Is searched. If it is
found, we can fold the PLA iR physical columns. Else, we
need to increase

SATISFYis called with three arguments. The fifdb(le
is an array and each elemé&tudg is the upper node frof.
The secondRarity _indey also has an element for each sub-

If we wish to find esmple fold, the valueR)eannot be Iess. function and is used to represent the parity of the complemen-
than[6/2+ [4/20) which corresponds to a maximum fold. Thlstary attribute number in a path. Lastiar is the first of the
value is 5 in the example PLA and in effect, a 5-column fold S )

ossible (Fig. 2a). For a multiple folding the minimum value variables in the order that is used in the construction of the
bo 9. <a). 1P 9 DDs. The description of the functiocBATISFYuses the
Pis 2, that is, a column of input and another of output. For the - ; i
L ) . . ssignmenarray withn elementsr, the number of variables
example PLA, it is impossible to find any assignment that lea . ) :
C ; In"the function) that stores the assigned value of each variable.
us to a fold of these characteristics; increasing the valeoof

3, leads us to the solution shown in Fig. 2b Initially none of the positions dkssignmenare specified.

(CorUcyptepcyp+eogc g+cg ey, +
(Cor D Cpy +Cpp Cypt CugI Cpg+CoyliCyy) U

(Cgy [ €54+ Cop [ €55 + Cog [ €55+ Cy, [ C5)

Both the variable ordering chosen as well as the breakdown

€L ¢ G5 Cs Co G2 Cs Ce of Fyjeginto subfunctions are critical for the efficiency of the
o & ) o %_ % algorithm. The importance of the first lies in that the number of
" = T n 1 T nodes in the BDD for a given function depends on the order
= o~ Co selected for the variables.The order used here was chosen on
2 s

the basis of reducing the size of the BDDs that represent the
constraints described in points 4 and 5 of the previous Section.
Decomposition of feqinto subfunctions should be a compro-
mise betweetop (number of subfunctions) and the size of the
individual BDDs.
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Figure 2: (a) Simple folding. (b) Multiple folding
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Diverse techniques are incorporated in the procedure to
reduce its complexity both in memory requirements as in exe-
cution time. Including these simplification strategies enables

1.P = [ input columns / 2+ @ output columns 2
for simple fold, and® = 2 for multiple fold.



SATISFY(Node, Parity _Index, Var)

{
for (i=1;i<top;i++)
{
if ((Nodg == 1)&&(Parity_index == 0)
return /* variable assignment does not satisfy
}

if (Oi ((Nodg == 1)&& (Parity_index == 1)))
{ The variable assignment is a solutiof End */

else
{
Assignmerjv/ar] = 0
Node = {Nodg = elsechild of Nodg if it hasVar
as its asssociated variable
Node = Nodg if not }
Parity_index= {Parity_index=Parity_index
1 if theelsebranch has its comple
mentary attribute
Parity_index = Parity_index if
not}

SATISF (Node Parity_index nextVar)
Assignmerfvar] = 1
Node= {Nodg =thenchild of Nodg f it hasVar
as the associated variable
Node = Nodg if not }

SATISF{Node Parity _index nextVar)

(@)

PLEPLAS(PLA)
{
Read_PLAPLA)
Preproces§
P=Init_bound)
While (a satisfying assignment is not found)
{
F = {F;} = Build_BDD(P)
SATISFYWUpper_Nodes_§Parity_Index first
variable)
P+=1

(b)

Figure 3: (apidgin_Cdescription oSATISFY

(b) Pidgin_Cdescription of the new folding algorithm.

increasing the size of the PLA to be treated with our algorithm
without exceeding the practical limit of memory resources.
The number of variables in the problem can be reduced, in
some cases considerably, and construction of sag $tmpli-

fied by detecting columns and/or rows whose actual position is
irrelevant to folding. A clear example of this is a colugn
such that~(c;))nF(c)) # U ,[Jj. Since this column cannot be
folded with any other, it need not be considered in the folding
process. On one hand, the elimination of columns may lead to
personality matrices with rows in which all the input are 0,
which are obviously eliminated. In addition, the remaining
rows may be partitioned into groups (macrorows) with the
characteristic that the relative order of the rows of one same
group is irrelevant for folding. Two identical rows or two rows
with a dominance relation are examples of macrorows. In gen-
eral, two rowsr, r, can not belong to the same macrorow
(they are incompatible) if it exists a folding pady, €;), such
thatr,[JF(c;) andr JF(c). Two rows are compatible it they
are not incompatible. Macrorows are determined generating
maximum sets of pairwise compatible rows and selecting a
minimum cover; that is, a subset that covers all rows. In this
way, the problem of obtaining row permutation to enable a
maximum fold is simplified to obtaining permutation of mac-
rorows, whose number is in many cases inferior.

The function Preprocess()(Fig. 3b) analyzes the PLA
matrix eliminating the irrelevant columns and partitioning the
rows in a minimum number of disjointed macrorows. The
above sketched algorithm developed for this last task is novel,
and more general than that devised in previous approximations
[3], that only contemplate equality or row dominance. This
generality results in a further reduction in the number of rows
involved to obtain folding.

IV. EXPERIMENTAL RESULTS

A first version of the new PLA folding algorithm has been
coded in C, using the BDD packet of SIS [7] to implement the
construction and manipulation operations of these structures.
The prototype program is called PLEPLAS. We have applied
it to a group of PLAs taken from different sources. Table |
shows the results obtained for some of them. Columns have
been included for the number of rows (R) and columns (l) in
the original PLA, as well as for its sparsity (SP). The number
of columns in the folded PLA, I’, both for simple and multiple
folding are also shown. Time, in seconds, corresponds to a
SparcStation10. Results from PLEASURE [8], an standard
heuristic folding algorithm, have also been included in Table I.
Half of the single foldings an two multiple ones obtained with
PLEASURE are non optimum. These results show how far
heuristic solutions may be from the optimum even for rela-
tively small machines, and indicate that practical instances of
the folding problem can be exactly solved without requiring
much computation resources.



PLEPLAS PLEASURE

s M s M
PLA [R I SP%I' t [ t |1 1 [1]
Hatchg2| 6 6 74| 3 13 3 06 3 3

Hwangl| 6 8 75| 5 25 5 07 5 5

Conl |9 9 785 14 5 148 6 5 2
Hwang2| 7 10 77| 7 2§ 7 08 9 9

Demi84| 6 10 85| 5 09 3 15 6 6 @l
adré |75 13 7411 02 9 oL 11 9
Biswas8616 14 85| 7 66 7 500 10 7

dc2 |39 15 72| 11 6.4 10 192 11 1 )
alu2 |68 18 82| 14 45 13 22[2 15 13

alu3 |66 18 82| 14 2.8 12 19 14 12

Table I: Experimental Results. [5]
S: Single Folding; M: Multiple Folding

[6]

V. CONCLUSIONS 7]

The problem of optimum PLA folding (simple and multiple)
has been formulated as a problem of boolean satisfiability, deriv-
ing a boolean function such that an assignment of variables ¥t
satisfy it defines a fold with a minimum number of columns. A
fold algorithm has been developed using sophisticated logic veri-
fication techniques based on the representation of functions by
BDDs. Novel reduction techniques are incorporated to treat PLAs
with a higher number of rows and/or columns. Our results show
that although the problem is NP and so heuristic method are
required in generabptimum single and multiple folding is fea-
sible for practical instances of the folding problem.

REFERENCES

G.D. Hachtel, A.R. Newton y A.L. Sangiovanni-Vin-
centelli, “An Algorithm for Optimal PLA Folding”,
IEEE Trans. Computer-Aided Desjgrol. CAD-1, Jan.
1982, pp. 63-76.

J.E. Lecky, J.O. Murphy y R.G. Absher, “Graph-Theo-
retical Algorithms for the PLA Folding ProblemEEE
Trans. Computer-Aided Desigrvol. CAD-8, Sept.
1989, pp. 1014-1021.

A.G. Ferreira, y S.W. Song, “Achieving Optimality for
Gate Matrix Layout and PLA folding: A Graph theo-
retic Approach”, Integration, the VLSI Journall4
(1992), pp. 173-195

M. Luby, U. Vazirani y A.L. Sangiovanni-Vincentelli,
“Some Theoretical Results on the Optimal PLA Folding
Problem”,Proc. IEEE Conf. on Circuits and Comput-
ers, pp. 165-170, 1982.

S. Devadas, “Optimal Layout Via Boolean Satisfiabil-
ity", Proc. IEEE ICCAD 89pp. 294-298, 1989.

R. E. Bryant, “Graph Based Algorithms for Boolean
Function Manipulation” |IEEE Trans. on Computers
C-35(8):677-691, August 1986.

E.M. Sentovich et al., “SIS: A System for Sequential
Circuit Synthesis”,Memo UCB/ERL M92/41Univ.
California, Berkeley, May, 1992.

G. De Micheli and A.L. Sangiovanni-Vincentelli, “Mul-
tiple Constrained Folding of Programmable Logic
Arrays: Theory and ApplicationsTEEE Trans. Com-
puter-Aided Designvol. CAD-2, July 1983, pp. 151-
167.



	ASP-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index


