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Abstract| One of the crucial problems multi-level
logic synthesis techniques for multi-output boolean
functions f = (f1; : : : ; fm) : f0; 1gn ! f0; 1gm have to
deal with is �nding sublogic which can be shared
by di�erent outputs, i.e., �nding boolean functions
� = (�1; : : : ; �h) : f0; 1gp ! f0; 1gh which can be used
as common sublogic of good realizations of f1; : : : ; fm.

In this paper we present an e�cient robdd based
implementation of this Common Decomposition Func-

tions Problem (cdf).
Formally, cdf is de�ned as follows: Given m boolean

functions f1; : : : ; fm : f0; 1gn ! f0; 1g, and two natural
numbers p and h, �nd h boolean functions �1; : : : ; �h :
f0; 1gp ! f0; 1g such that 81 � k � m there is a decom-
position of fk of the form

fk(x1; : : : ; xn) = g(k)(�1(x1; : : : ; xp); : : : ; �h(x1; : : : ; xp);

�
(k)

h+1(x1; : : : ; xp); : : : ; �
(k)
rk (x1; : : : ; xp); xp+1; : : : ; xn)

using a minimal number rk of single-output boolean
decomposition functions.

Experimental results applying the method to FPGA

synthesis are promising.

I Introduction

The long term goal for logic synthesis is the automatic
transformation from a behavioral description of a boolean
function to near-optimal netlists, whether the goal is min-
imum delay, minimum area, or some combination. Most
of the approaches attacking the multi-level logic synthe-
sis problem use gate count as optimization criterion. A
survey can be found in [4]. Alternatively, some recent
papers [9, 10, 12, 21, 17, 23] propose an approach dif-
ferent from the one addressed above. This approach to
multi-level logic synthesis which originates from Ashen-
hurst [1], Curtis [8], and Karp [11] is based on minimizing
communication complexity. The methods used to reduce
communication complexity employ functional decomposi-
tion, i.e., given a boolean function f : f0; 1gn ! f0; 1g
they are looking for boolean functions � and g, such
that f(x1; : : : ; xn) = g(�(x1; : : : ; xp); xp+1; : : : ; xn) holds
for all (x1; : : : ; xn) 2 f0; 1gn (see Figure 1). � =
(�1; : : : ; �r):f0; 1g

p ! f0; 1gr is a multi-output boolean
function. The goal is to �nd decompositions where the
number r of decomposition functions (i.e. the number of
wires between block � and block g) is minimal. (If r < p,
then the decomposition is called non-trivial.)
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Fig. 1. Decomposition of a boolean function f : f0;1gn ! f0;1g

This approach to reduce communication complexity is
especially suited for FPGA synthesis, where the logic is
mapped onto blocks of look-up tables, which can realize
arbitrary functions lut : f0; 1gb ! f0; 1g up to a certain
number b of inputs� (see [12, 13, 14, 15, 19]).

A fundamental step in logic synthesis is the identi�-
cation of common sublogic. Methods to identify common
sublogic by (algebraic or boolean) division were developed
by Brayton et al. and included in the SIS package [22].

In this paper we present a method to identify com-
mon sublogic for the case that boolean functions are re-
alized by decomposition. This method comes into play
when we have to process multi-output boolean functions
f = (f1; : : : ; fm) :f0; 1g

n ! f0; 1gm. Note that even if the
original function f has only 1 output (m = 1), in most
cases we need a generalization to multi-output boolean
functions when we apply functional decomposition recur-
sively to � and g.
Of course, techniques to decompose single-output

boolean functions can be generalized to multi-output
boolean functions if we consider multi-output boolean
functions as single-output multi-value functions f 0 :
f0; 1gn ! f0; : : : ; 2m � 1g de�ned by f 0(x1; : : : ; xn) =Pm

i=1 fi(x1; : : : ; xn) � 2
i�1 (see [15]). However, in most

cases { unless m is very small { we have the problem,
that in such decompositions the function g must have as
many inputs as f (or at least nearly as many), such that
g is not much easier to synthesize than f .

�For XC3000 device, e.g., b = 5



On the other hand, if we would decompose each single-
output boolean function fi independently of the other
single-output functions fj (j 6= i) and would test after
that, whether they use some identical decomposition func-
tions by chance, we wouldn't make use of the potential of
reusing subcircuits for di�erent outputs of f .
For these reasons we do decompose all fi as single-

output functions, but we make use of our freedom in the
choice of the decomposition functions to compute such
decomposition functions which can be used in the decom-
position of as many fi as possible. In the same way as
in [17], the method is divided into two steps: In the �rst
step, output partitioning is performed, i.e., ff1; : : : ; fmg
is partitioned into disjoint sets Y1; : : : ; Yu. Single-output
functions fi and fj of the same set Yk will be decomposed
with respect to the same input partition. The partition-
ing is executed such that for every Yk there is an input
partition which is `near-optimal' for every fi 2 Yk. In the
second step, the decomposition functions of the single-
output functions of each class Yk are constructed giving
special attention to generate these functions in such a way
that many of them can be used in the decomposition of
di�erent elements of Yk.
Unlike [14] we avoid to compute the set of all possible

decomposition functions for all fi to choose common de-
composition functions of the functions fi from these sets,
because the number of possible decomposition functions
for such a single-output function fi is huge: If we need

ri di�erent decomposition functions �
(i)
1 ; : : : ; �

(i)
ri for the

decomposition of fi, the decomposition functions are cho-

sen from a set of at least
�

2ri

2ri�1

�
= �(2(2

ri�
ri
2
)) possible

decomposition functions. In this paper we present an al-
gorithm which directly computes a maximum number of
common decomposition functions of f1; : : : ; fm.
In contrast to [17], which was based on function ta-

bles and decomposition charts, we e�ciently make use
of Reduced Ordered Binary Decision Diagrams

(robdd) during the computation of common decompo-
sition functions. robdd [6] are compact representations
for many of the boolean functions encountered in typical
applications. In this paper we show that it is possible
to carry out all necessary steps based on robdd's. This
increases the e�ciency of the approach in a high degree.
In particular, we show that the computation of common
decomposition functions for the decomposition of several
single-output functions can be performed e�ciently based
on robdd's.
Benchmarking results show the new method to be ef-

�cient with respect to layout size, signal delay and run-
ning time. Experiments concerning FPGA synthesis using
these methods are very promising as well.
We start by giving some basic de�nitions (section II)

and summarize the algorithm for computing common de-
composition functions (section III). In section IV we
demonstrate how to apply robdds to implement this al-
gorithm. Experimental results close the paper (section
V).

II Basic definitions

A multi-output boolean function � with n inputs is
represented as a set f�1; : : : ; �mg of boolean-valued out-

put functions. We denote the set of completely de�ned
boolean functions with n inputs and m outputs by Bn;m.
Let Bn be an abbreviation for Bn;1. �i;:::;j (i � j) denotes
the tuple (�i; : : : ; �j).

De�nition 1 A decomposition of a multi-output boolean
function f 2 Bn;m with respect to the input partition
fX1;X2g (X1 = fx1; : : : ; xpg,X2 = fxp+1; : : : ; xp+qg,
p+q=n) is a representation of f of the form

fk(x1; : : : ; xn) = g(k)(�
(k)
1 (X1); : : : ; �

(k)

r0
k

(X1);X2)

(8k 2 f1; : : : ;mg), where �
(k)
i 2 Bp (8i), and g(k) 2

Br0
k
+q. �

(k)
i are called decomposition functions of fk. g

(k)

is called composition function of fk. 3

With respect to a given input partition fX1;X2g, a
single-output function fk can be represented as a 2p � 2q

matrixM(fk), the decomposition matrix of fk or the chart
of fk with respect to fX1;X2g. (For illustration see Fig-
ure 2.) Each row and column of M(fk) is associated with
a distinct assignment of values to the inputs in X1 and
X2, respectively, such that fk(X1;X2) = M(fk)[X1;X2]
where M(fk)[X1;X2] represents the element of M(fk)
which lies in the row associated with X1 and the column
associated with X2.

Note that (�
(k)
1 ; : : : ; �

(k)

r0
k

) of de�nition 1 encodes the

rows of chart M(fk). Of course, the following property
has to hold.

Encoding Property If the row pattern of row
(v1; : : : ; vp) 2 f0; 1gp di�ers from the row pattern of row

(v01; : : : ; v
0

p) 2 f0; 1gp, then (�
(k)
1 ; : : : ; �

(k)

r0
k

) has to assign

di�erent codes to (v1; : : : ; vp) and (v01; : : : ; v
0

p). 3

The minimum number of communicationwires required
between the subcircuit which encodes the rows of M(fk)

and the composition function g(k) is dlog dr(k)e where

dr(k) is the number of distinct row patterns in M(fk).

rk will denote value dlog dr(k)e in the following.

De�nition 2 A decomposition of fk : f0; 1gn ! f0; 1g
is optimal (for X1 with respect to a given input partition

A = fX1;X2g) if it uses only rk (= dlog dr(k)e) decompo-

sition functions �
(k)
1 ; : : : ; �

(k)
rk with domain X1. 3

In the following we will always use such \optimal" de-
compositions.

To compute decomposition functions (with domainX1)
of a multi-output function f which are used by di�erent
single-output functions fk, we have to consider the fol-
lowing problem which will be denoted by cdf.

Given: Let f =ff1; : : : ; fmg2Bn;m be a multi-output
boolean function, A = fX1;X2g with X1 = fx1; : : : ; xpg
and X2=fxp+1; : : : ; xng be an input partition, and h be

a natural number with h � rk (= dlog dr(k)e) (8k).

Find: h single-output boolean functions �1; : : : ; �h 2
Bp, which can be used as decomposition functions of every
single-output function fk for k = 1; : : : ;m such that there
is an optimal decomposition of fk of the form

fk(x1; : : : ; xn) = g(k)(�1(X1); : : : ; �h(X1);

�
(k)
h+1(X1); : : : ; �

(k)
rk

(X1);X2):
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Fig. 2. Charts M(f1) and M(f2) of the multi-output boolean
function ff1; f2g which will be used to illustrate the ideas of the
paper. The input partition is given by ffx1; x2 ; x3g; fx4; : : : ; xngg.
Each chart obviously consists of 8 rows. A row pattern is
associated to each row. There are three (four) di�erent row
patterns in M(f1) (M(f2)) denoted by the numbers 1, 2, and 3 (1
to 4). Thus, r1 = r2 = 2 holds.

Of course, such h boolean functions need not to ex-
ist. We have proven the problem whether such functions
�1; : : : ; �h exist to be NP-complete. Nevertheless, we
have to solve cdf

y. An algorithm which is applicable
from the practical point of view (as shown by the bench-
marking results) is presented in the next two sections.
In particular, experimental results show that the running
time needed for computation of common decomposition
functions is only a small fraction of the total running time
of the tool. The running time is dominated by the compu-
tation of good input partitions, not by the computation
of common decomposition functions.

III An algorithm for CDF

In the following, let f = ff1; : : : ; fmg2Bn;m be a multi-
output boolean function. Each single-output function fk
has to be decomposed with respect to the same given in-
put partitionA = fX1;X2g (computed during output par-
titioning (see [17])) which will be �xed in the following.

A. Theoretical background

We start with a theoretical result working towards a
solution to cdf. It gives a condition necessary and suf-
�cient that h single-output functions �1; : : : ; �h 2 Bp

are common decomposition functions of f1; : : : ; fm. It is
a generalization of a lemma shown by Karp [11]. For
this, we need the following notations. The rows of
chartM(fk) induce a partition of f0; 1g

p into equivalence

classes K
(k)
1 ; : : : ;K

(k)

dr(k)
such that v; v0 2 f0; 1gp belong to

yThe (maximal) value of parameter h of cdf is determined by log-
arithmic search. After that we solve cdf for subsets of ff1; : : : ; fmg,
but only for such subsets ffi1 ; : : : ; filg where all pairs fij and fik
have at least one common decomposition function. Note that this
question is not NP-complete, but can be decided e�ciently by dy-
namic programming. Also note that the algorithms for the com-
putation of common decomposition functions given in this paper
can be generalized in a canonical manner for the case that some of
the decomposition functions �k

i
(i > h) are already predetermined.

More details of how the cdf algorithm is integrated in the tool can
be found in [17].

the same class K
(k)
j if and only if the two corresponding

row patterns of M(fk) are identical. We denote the cor-
responding equivalence relation by �k and the set of the

equivalence classes fK
(k)
1 ; : : : ;K

(k)

dr(k)
g by f0; 1gp=�k

. Let

�(k) : f0; 1gp ! f1; : : : ; dr(k)g be the function which maps

v 2 f0; 1gp to the index j of the class K
(k)
j to which it

belongs.

Continued example (see Figure 2): f0; 1g3=�1
con-

sists of 3 elements, namely K
(1)
1 = f000; 001g, K

(1)
2 =

f010; 011; 111g, and K
(1)
3 = f100; 101; 110g. It follows

that �(1)(000) = �(1)(001) = 1, �(1)(010) = �(1)(011) =

�(1)(111) = 2, and �(1)(100) = �(1)(101) = �(1)(110) = 3.

f0; 1g3=�2
consists of 4 classes, namelyK

(2)
1 = f000; 110g,

K
(2)
2 = f001; 100; 101g, K

(2)
3 = f010g, and K

(2)
4 =

f011; 111g. 3

Furthermore, for given �1;:::;h
z and all a2f0; 1gh, let

S
(k)
a be the set f�(k)(v); �1;:::;h(v) = ag of those classes

which contain a row mapped to a by �1;:::;h. (�1;:::;h is
not able to tell these rows apart (see the Encoding Prop-

erty).) Note that S
(k)
a and S

(k)

a0 need not to be disjoint

for a 6= a0, and that the number j S
(k)
a j of elements of

S
(k)
a equals the number of distinct row patterns of M(fk)

mapped to a by �1;:::;h. Thus, maxfjS
(k)
a j; a 2 f0; 1ghg

denotes the 'inability to distinguish' of �1;:::;h with respect

to fk. itd(A; fk; �1;:::;h) will denote value maxfjS
(k)
a j; a 2

f0; 1ghg in the following.

Continued example: Let h be equal 2. Assume
that 8(v1; v2; v3) 2 f0; 1g3 �1(v1; v2; v3) = v2 and

�2(v1; v2; v3) = v3. It follows that S
(1)
00 = f1; 3g holds

because �1;2(000) = �1;2(100) = 00 and �(1)(000) = 1,

�(1)(100) = 3. Furthermore the following equalities hold:

S
(1)
01 = f1; 3g, S

(1)
10 = f2; 3g, and S

(1)
11 = f2g. Thus the

inability to distinguish itd(A; f1; �1;2) of �1;2 with respect
to f1 is equal to 2. 3

Lemma 1 �1; : : : ; �h 2 Bp are common decomposition
functions of f1; : : : ; fm with respect to A such that there
is an optimal decomposition of fk of the form

fk(x1; : : : ; xn) = g(k)(�1(X1); : : : ; �h(X1);

�
(k)

h+1(X1); : : : ; �
(k)
rk

(X1);X2)

(8k 2 f1; : : : ;mg) if and only if the inability to distin-
guish itd(A; fk; �1;:::;h) of �1;:::;h with respect to fk is

� 2rk�h (8k). 3

Proof: Since (�1;:::;h; �
(k)

h+1;:::;rk
) has to assign di�erent

values to rows of chartM(fk) with di�erent row patterns

(see the Encoding Property), �
(k)

h+1;:::;rk
has to assign dif-

ferent values to those rows which cannot be told apart by

�1;:::;h. As �
(k)
h+1;:::;rk

can produce at most 2rk�h di�erent

values, the statement of the lemma follows.

zRemember that �1;:::;h denotes the tuple (�1 ; : : : ; �h).



B. The basic algorithm

In this section we describe an algorithmwhich could ba-
sically solve cdf. Note that we actually don't use this al-
gorithm in our robdd based implementation, but it leads
to a better understanding of how the robdd based algo-
rithm works.

cdf can be solved (on principle) by computing �1;:::;h
by a (simpli�ed) branch and bound algorithm. The

sets S
(k)
a , which determine the inability to distinguish

itd(A; fk; �1;:::;h) with respect to fk, are constructed step
by step. In the initialization phase, �1;:::;h(v

0) is set to

undef for all v0 2 f0; 1gp, and S
(k)
a0 is set to the empty set

for all a0 and k. Each time we enter the main loop (step
4 of the algorithm; see Figure 3) there is a v 2 f0; 1gp

and a vector a 2 f0; 1gh such that �1;:::;h(v
0) is de�ned

for all v0 with int(v0) < int(v),x and there is no exten-
sion of the present function table with �1;:::;h(v) = a0 and
int(a0) < int(a) which does not violate the condition of
lemma 1. In this step we test whether the condition of
lemma 1 is violated if �1;:::;h(v) is set to a. If the condi-

tion is violated, we have to backtrack if int(a) = 2h � 1,

i.e., a = (1; : : : ; 1). If int(a) < 2h � 1, we enter the loop

once again with a incremented by 1. The sets S
(k)
a are up-

dated in each step. (Thus, the numbers itd(A; fk; �1;:::;h)
of lemma 1 are implicitely updated, too.) For detailed
information of the algorithm see the pseudo code shown
in Figure 3.

Continued example: Assume h = 1, and remember that
r1 = r2 = 2 holds. The cdf algorithm above computes
�1 : f0; 1g3 ! f0; 1g de�ned by �1(v) = 1 () v 2
f010; 011; 111g as common decomposition function of f1
and f2. The inability to distinguish with respect to fk
(k = 1; 2) is equal to 2 as S

(1)
0 = f1; 3g, S

(1)
1 = f2g, and

S
(2)
0 = f1; 2g, S

(2)
1 = f3; 4g:{ 3

IV A ROBDD based implementation

Assume the function f = ff1; : : : ; fmg2Bn;m we want
to decompose is given by m robdds bdd1; : : : ; bddm and
that the ordering of the variables is given by (x1; : : : ; xn)
(for illustration see Figure 4).

A. BDD based decomposition

The following observations result in an e�cient imple-
mentation of functional decomposition:
The �rst observation, already made in [7, 12], is that

for all (v1; : : : ; vp) 2 f0; 1g
p the row pattern belonging to

row (v1; : : : ; vp) of M(fk) equals the function table of the

cofactor (fk)xv1
1
�:::�x

vp
p

(with x0i = xi and x1i = xi). Thus

the problem of determining the number dr(k) of di�erent
row patterns of M(fk) is equivalent to the problem of

xint(y) denotes the natural number represented by the boolean
vector y

{Because of itd(A; fk; �1) = 2, there obviously exists a decom-

position function �
(k)

2 : f0;1g3 ! f0;1g such that 8v;v0 2 f0;1g3

(�1(v); �
(k)

2 (v)) 6= (�1(v
0); �

(k)

2 (v0)) if the row patterns of chart

M(fk) coresponding to v and v0 are di�erent (k = 1; 2).

1. Let S
(k)

a0
= ; (81� k � m; a0 2 f0; 1gh),

�1;:::;h(v
0) = undef (8v02f0; 1gp),

v = (0; : : : ; 0)2f0;1gp, and

a = (0; : : : ; 0)2f0;1gh.

2. Let �1;:::;h(v) = a, =* �1;:::;h(0; : : : ; 0) = (0; : : : ; 0) *=

S
(k)
a = f�(k)(v)g (8k).

3. Increment v.

4. Let �1;:::;h(v) = a.

If (8k) jS
(k)
a [ f�(k)(v)g j� 2rk�h

=* test whether the condition of lemma 1 is
not violated *=

then let S
(k)
a = S

(k)
a [ f�(k)(v)g (8k).

Increment v.

Let a = (0; : : : ; 0)2f0;1gh.
else while �1;:::;h(v) == (1; : : : ; 1)

do let �1;:::;h(v) = undef .
Decrement v;

"S
(k)

�1;:::;h(v)
= S

(k)

�1;:::;h(v)
n f�(k)(v)g" 8k.

od
a = �1;:::;h(v).
Increment a.
Let �1;:::;h(v) = undef .

�

5. If (8v2f0; 1gp) �1;:::;h(v) 6= undef
then return �1; : : : ; �h.
else if v = (0; : : : ; 0)

then return "There is no solution"
else goto 4 �

�

Fig. 3. Pseudo code of the algorithm solving cdf. In step 2 of the
algorithm, we can set �1;:::;h(0; : : : ; 0) = (0; : : : ; 0) without loss of
generality because if there exist h common decomposition
functions then there also exist h common decomposition functions
with �1;:::;h(0; : : : ; 0) = (0; : : : ; 0). Furthermore, the operation

S
(k)

�1;:::;h(v)
= S

(k)

�1;:::;h(v)
n f�(k)(v)g in step 4 is somewhat more

complex than common set di�erence: the index �(k)(v) is only

removed from S
(k)

�1;:::;h(v)
if there is no v0 6= v with

int(v0) < int(v), �1;:::;h(v
0) = �1;:::;h(v), and �(k)(v0) = �(k)(v).

computing the number of di�erent cofactors (fk)xv1
1
�:::�x

vp
p
.

The robdd of the cofactor (fk)xv1
1
�:::�x

vp
p

is given by the

sub-bdd of bddk whose root is reached by starting at the
root of bddk and then following the path corresponding to
(v1; : : : ; vp). The roots of these cofactors are called linking
nodes (the shaded nodes in Figure 4). Since fk is given by
a robdd, the number of di�erent linking nodes of bddk
obviously equals the number of di�erent cofactors. The
computational complexity of determining the number of
di�erent linking nodes is at most linear in the size of bddk
since it can be determined by traversing bddk in a depth
�rst search manner.

The second observation is that encoding the linking
nodes of bddk with a code of length rk (which is the log-
arithm of the number of linking nodes of bddk) results in
an optimal decomposition of fk. (Of course this simple
approach does not lead to common decomposition func-
tions.) For 1 � i � rk the corresponding decomposition
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Fig. 4. Continued example: The robdds of f1 and f2. The left
(right) outgoing edge of node xi corresponds to the case xi = 0
(xi = 1).

function �
(k)
i is given by substituting the linking nodes

of bddk by the ith bits of the codewords belonging to the
linking nodes. The composition function g(k) is given by
substituting the part of bddk, which corresponds to the
variables x1; : : : ; xp, by the corresponding code-tree. For
illustration see Figure 5.
A decomposition constructed in this way leads to de-

composition functions �
(k)
j of fk which assign the same

value to all those (v1; : : : ; vp) 2 f0; 1g
p for which the cor-

responding row patterns of M(fk) are identical. (Note

that till now the decomposition functions �
(k)
1 ; : : : ; �

(k)
rk

of a single-output function fk are allowed to assign di�er-
ent values to rows with identical row patterns in the case
that the total number of di�erent row patterns is less than
2rk .)

B. BDD based solution of CDF

In the last section we have made the observation, that
an encoding of the linking nodes leads to a special subclass
of decomposition functions, which we will call \equiva-
lence preserving decomposition functions":

De�nition 3 A decomposition function �i 2 Bp of a
boolean function fk 2Bn is said to preserve equivalences
if �i(v) = �i(v

0) holds for every v; v0 2 f0; 1gp with
v �k v

0. 3

In practical applications functions fk often have some
desirable properties like symmetry in some variables or in-
dependence of some variables. The following lemma shows
that equivalence preserving decomposition functions \pre-
serve such properties".

Lemma 2 If fk is decomposed with respect to the in-
put partition ffx1; : : : ; xpg; fxp+1; : : : ; xngg and fk is
symmetric in xi and xj (i; j 2 f1; : : : ; pg) (i.e.
fk(: : : ; xi; : : : ; xj ; : : :) = fk(: : : ; xj ; : : : ; xi; : : :)), then all
equivalence preserving decomposition functions of fk are
symmetric in xi and xj too. An analogous statement holds
for independence of xi, i 2 f1; : : : ; pg. 3

That's why we restrict our search for commondecompo-
sition functions to equivalence preserving decomposition
functions. We modify the branch and bound algorithm

above such that only equivalence preserving decomposi-
tion functions are considered and we name the modi�ed
branch and bound algorithm \robdd based branch and
bound algorithm". Moreover the restriction to equiva-
lence preserving decomposition functions has the addi-
tional e�ect that we receive an algorithm which is much
more e�cient. In the rest of this section we give a sketch
of how this algorithm works:

Common equivalence preserving decomposition func-
tions �1; : : : ; �h of f1; : : : ; fm have to assign the same
value to v and v0 2 f0; 1gp whenever there is a k 2
f1; : : : ;mg such that the rows of M(fk) corresponding
to v and v0 have identical row patterns. More formally,
let

v � v0
def
() (91� k�m) v �k v

0;

then the corresponding equivalence relation partitions the
rows, i.e. f0; 1gp, into equivalence classes E1; : : : ; El such
that common equivalence preserving decomposition func-
tions have to assign the same value to each v2Ei. We will
denote the set of these equivalence classes by f0; 1gp=�.
(Thus, for all k 2 f1; : : : ;mg the classes Ei are unions of

certain classes K
(k)
j .)

Continued example: Figure 6 illustrates the de�nition
of this equivalence relation. Consider a graph whose ver-
tices are the 8 rows 000; : : : ; 111. (Note that this graph
will not be constructed by the algorithm presented in
subsection C.2.) There is an edge between two rows
v and v0 if the corresponding row patterns in M(f1)
or M(f2) are identical, i.e., if v �1 v0 or v �2 v0.
(Edges resulting from f1 are drawn in bold.) This re-
sults in a graph whose connected components determine
the equivalence classes Ei. There are two classes, namely
E1 = f000; 001; 100; 101; 110g and E2 = f010; 011; 111g.
E1 is marked by shaded nodes. 3

011 101

111001

110010

100

000

Fig. 6. Continued example: Illustration of the de�nition of the
equivalence classes Ei.

Thus, the robdd based branch and bound algorithm
assigns values not to single elements of f0; 1gp but to
whole classes Ei. Because l mostly is much smaller than
2p, this approach considerably reduces the running time
compared to the original branch and bound algorithm (see
subsection B.). (The benchmarking results will also show
that this reduction of the running time can be achieved
without reducing the quality of the circuits constructed.
One reason for this fact is given by lemma 2.) During the
robdd based branch and bound algorithm, every time a
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Fig. 5. Continued example: Optimal decomposition of f2 by encoding the �rst linking node by 00, the second by 01, the third by 10 and
the fourth by 11. (To make things clear the obdds shown are not reduced.)

value a 2 f0; 1gh is assigned to an equivalence class Ei

by �1;:::;h, the sets S
(k)
a (8k), which contain the di�erent

row patterns of M(fk) mapped to a by �1;:::;h, have to

be updated by S
(k)
a = S

(k)
a [ SET

(k)
i . SET

(k)
i denotes

the set fj; K
(k)

j � Eig, i.e., the set which consists of the

indices (with respect to �(k)) of the di�erent row patterns

ofM(fk) belonging to Ei. Note that the sets SET
(k)
i and

SET
(k)
j are disjoint if i 6= j.

Continued example: SET
(1)
1 = f1; 3g, SET

(1)
2 = f2g,

SET
(2)
1 = f1; 2g, and SET

(2)
2 = f3; 4g. 3

The robdd based branch and bound algorithm requires
a preprocessing and postprocessing phase described in the
following.

C. Preprocessing steps

In the �rst preprocessing step we have to e�ciently de-
termine the minimum number rk of decomposition func-
tions required for a decomposition of fk (8k). In the sec-
ond preprocessing step we construct robdds representing

the equivalence classes K
(k)

j 2 f0; 1gp=�k
. Then, we de-

termine the robdds of the equivalence classes f0; 1gp=

� corresponding to ff1; : : : ; fmg and thus also the corre-

sponding sets SET
(k)
i the algorithm requires.

Note that all these computation steps have to be done
based on the ROBDD's without constructing the charts
M(fk). Since we have already explained in section A.
how to e�ciently determine the minimum number rk of
decomposition functions required for a decomposition of a
function fk, it remains to show how to e�ciently compute
the equivalence classes.

C.1 Computation of the equivalence classes with respect
to �k

The robdds bdd
(k)
1 ; : : : ; bdd

(k)

dr(k)
for the characteristic

functions of the equivalence classes K
(k)
1 ; : : : ;K

(k)

dr(k)
with

respect to �k can be easily computed from the robdds of
the fk: As already mentioned, identical row patterns of
M(fk) correspond to the same linking node of bddk. Thus

x1

x2

bdd 1
x1
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x2x2

bdd
2

(1) (1)
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OBDDs bdd    specifying the rows with identical row patterns in M(f  )
(1)
j 1

OBDDs bdd    specifying the rows with identical row patterns in M(f  )
(2)
j 2

Fig. 7. Continued example: Illustration of how to e�ciently
compute the equivalence classes f0;1gp=�k

. (Note that the obdds
shown still have to be reduced.)

every equivalence class K
(k)
j is associated to exactly one

linking node n
(k)
j and vice versa. K

(k)
j is given by the set

of the paths from the root of bddk to linking node n
(k)
j .

Thus, substituting the sub-bdd of bddk with root n
(k)
j by

constant 1 and connecting every edge which leaves the

cone of n
(k)
j to constant 0 results in a robdd, whose ON-

set is given by K
(k)
j . We call this robdd bdd

(k)
j . The

cone of node n
(k)
j is de�ned to be the set of those nodes

x of bddk such that there is a path from x to n
(k)
j . For

illustration see Figure 7.

C.2 Computation of the equivalence classes with respect
to �

To compute the characteristic functions of the equivalence
classes with respect to �, we implicitely construct a graph
G = (V;E) where the set V of vertices is given by the

robdds bdd
(k)
j representing the equivalence classes K

(k)
j .



At the end, there is an undirected edge fbdd
(k1)
j1

; bdd
(k2)
j2

g

if and only if bdd
(k1)
j1

^bdd
(k2)
j2

6= ;, i.e., i�K
(k1)
j1

\K
(k2)
j2

6= ;

(see Figure 8). Obviously, there is a one-to-one rela-
tion between the set of the connected components (in the
graph-theoretical sense) of G and the set of the equiv-
alence classes f0; 1gp=�. For every class Ei, there is a
connected component CCi of G such that the logical-or

of the robdds bdd
(k)
j (for any �xed k) corresponding to

vertices of CCi results in a representation of Ei and vice
versa.

Continued example: E1 is represented by the robdd

bdd
(1)
1 _bdd

(1)
3 which is the same robdd as bdd

(2)
1 _bdd

(2)
2 .

E2 is represented by bdd
(1)
2 which is the same robdd as

bdd
(2)
3 _ bdd

(2)
4 . 3

2
(1)

bdd
1
(1)

bdd

bdd
3
(1)

bdd1
(2)

bdd2
(2)

bdd
3
(2)

bdd
4
(2)

Fig. 8. Continued example: Computation of the equivalence
classes f0;1gp=�. The connected components of graph G represent
the classes Ei.

Note that the algorithm described below does not have

to test each pair of robdds bdd
(k1)
j1

, bdd
(k2)
j2

whether their

ON-sets are disjoint. Virtually, it performs depth �rst
search on graph G. In each step we compute a connected

component which contains a node bdd
(1)
z not yet touched

by calling procedure search(bdd
(1)
z ; 1). This procedure re-

cursively constructs robdds cc(1); : : : ; cc(m). At each mo-
ment cc(k) equals the robdd representing the logical-or of

all the nodes bdd
(k)
j of the present connected component

which have already been touched. At the end of procedure

call search(bdd
(1)
z ; 1), the equation cc(1) = : : : = cc(m)

holds, and cc(1) represents the connected component com-
puted. The exact implementation of search is shown in
Figure 9. Note that, if the robdd notcovered is non-
empty during a step, there is a row v belonging to the
present connected component which is not in the ON-set

of cc(j) yet, such that the robdd bdd
(j)
u which describes

the set of the rows which have identical row patterns as
v in M(fj) has to be joined to cc(j).

Procedure search is called exactly once for every node
of G. During the execution of the body of procedure
search(b; k) (without the recursive calls) there are one ap-
ply operation (see [2, 6]) performing the logical-or of two
robdds and at most m� 1 + degree(b) apply operations
performing logical-and of two robdds, where degree(b)

procedure search (bdd b, int k)

mark b as touched;

cc(k) = cc(k) _ b; =* logical-or of two robdds *=
for j = 1 to m do

if j 6= k then

notcovered = b ^ cc(j); =* logical-and *=
while notcovered 6= ; do

let v be element of ON(notcovered).

let bdd
(j)
u be the robdd

with v2ON(bdd
(j)
u ).

call search(bdd
(j)
u ; j);

notcovered = b ^ cc(j); =* logical-and *=
od;

fi;

od;

Fig. 9. Pseudo code of the algorithm computing the equivalence
classes f0;1gp=�

denotes the degree of vertex b with respect to G. This
results in a number of apply operations which is linear in
the size of G as m � 1 � degree(b) holds. The running
time of the remaining operations is linear in the size of
the relevant robdd.

D. Postprocessing steps

After the execution of the preprocessing steps, the
robdd based branch and bound algorithm encodes the
equivalence classes as already described. We still have
to compute robdds for decomposition and composition
functions, such that we can call the algorithm recursively
for these functions.

D.1 Computation of the ROBDDs of the common de-
composition functions

Assume that a single-output function �i has been found
by the robdd based algorithm which can be used as de-
composition function of fk. Note that the algorithm does
not explicitly assign values to every v2 f0; 1gp but only to
the equivalence classes f0; 1gp=�. As the robdd of these
equivalence classes are known, we only have to connect by
logical-or those robdds whose corresponding equivalence
classes are mapped to value 1 by �i in order to obtain the
robdd representing �i.

Continued example: Assume h = 1. The robdd based
branch and bound algorithm constructs �1 : f0; 1g3 !
f0; 1g de�ned by �1(E1) = 0 and �1(E2) = 1 as common
decomposition function of f1 and f2. Thus the robdd
of �1 is given by the robdd specifying E2, and equals

function �
(2)
1 of Figure 5. 3

D.2 Computation of the ROBDDs of the composition
functions

Once that rk boolean valued functions �
(k)
1 ; : : : ; �

(k)
rk

which can be used to decompose function fk are deter-



TABLE I
Comparison between the robdd based implementation of our synthesis tool mulopII and the former version mulop working

on decomposition charts. The technology file consists of the 2-input gates from stdcell2 2.genlib available in octtools.

No. of gates Running time Fraction of running time

Circuit mulop mulopII ratio mulop mulopII ratio for CDF (mulopII)
9symml 40 45 0.89 1.40 sec 1.23 sec 1.14 0.69%
C17 6 7 0.86 0.32 sec 0.15 sec 2.13 0.01%
cm138a 20 18 1.11 1.01 sec 0.18 sec 5.61 0.89%
cm151a 48 41 1.17 4.16 sec 1.09 sec 3.82 0.13%
cm152a 34 27 1.26 2.15 sec 0.50 sec 4.30 0.36%
cm162a 46 44 1.05 350.65 sec 3.32 sec 105.62 0.26%
cm163a 38 34 1.12 2923.31 sec 2.35 sec 1243.96 0.08%
cm82a 13 13 1.00 0.38 sec 0.21 sec 1.81 0.01%
cm85a 42 42 1.00 7.46 sec 3.73 sec 2.00 0.27%
cmb 24 29 0.83 1836.13 sec 2.52 sec 728.62 0.05%
decod 31 28 1.11 26.15 sec 2.56 sec 10.21 1.93%
f51m 64 56 1.14 3.14 sec 1.83 sec 1.71 0.28%
majority 9 9 1.00 0.44 sec 0.08 sec 5.50 0.01%
parity 15 15 1.00 111.06 sec 1.37 sec 81.07 0.00%
z4m1 20 20 1.00 0.66 sec 0.76 sec 0.87 0.16%

mined, we have to compute the robdd of the correspond-
ing composition function g(k). This is done as (informally)
described in section A. (second observation). For illustra-

tion see Figure 5 once again. The robdd of g(k) can

be constructed using the linking nodes n
(k)
j and combin-

ing these cofactors through the codetree with if-then-else-
operations of the robdd-package [2]. This step doesn't
di�er from the computation of the composition functions
for the case that decomposition is done by a simple encod-
ing of the linking nodes without computation of common
decomposition functions.

V Experimental results

We applied our tool, which uses the cdf algorithm de-
scribed above as basis, to a number of benchmarks of
the 1991 MCNC multi-level logic benchmark set. We will
call the robdd based implementation of our toolmulopII.
Our former implementation working on charts [17] will be
called mulop.

Table I shows gate counts� and running times (in CPU
seconds, measured on a SPARCstation 10/30 (64 MByte
RAM)) of our robdd based algorithm mulopII compared
to those of our former version mulop. For these examples
mulop has running times up to about 50 CPU minutes
while the running time ofmulopII is at most a few seconds.
The experiments prove our robdd based version to be
much more e�cient than the former version. Nevertheless
in almost all cases the numbers of gates of the computed
circuits are not larger.
The last column of Table I shows the fraction of running

time which is used in the computation of common decom-
position functions compared to the total running time of
the tool. It shows that only a very small fraction of the
total running time is used for the computation of common
decomposition functions. The running time is dominated
by the computation of good input partitions, not by the
computation of common decomposition functions. This

�The library consists of the 2-input gates from stdcell2 2.genlib
available in octtools.

TABLE II
Comparison between mulopII and sis1.1 with respect to

layout size, and signal delay.

Layout size ratio Signal delay ratio

Circuit sis mulopII sis mulopII
9symml 1194336 201400 5.93 27.6 13.6 2.03
C17 28800 31744 0.91 4.2 4.2 1.00
cm138a 103896 87480 1.19 5.8 6.8 0.85
cm151a 95312 177712 0.54 12.6 16.4 0.77
cm152a 85536 106704 0.80 10.0 13.2 0.76
cm162a 131976 192000 0.69 12.0 13.2 0.91
cm163a 144008 164416 0.88 13.0 10.4 1.25
cm82a 74784 61600 1.21 7.2 7.0 1.03
cm85a 165456 180000 0.92 10.2 11.0 0.93
cmb 204792 123496 1.66 9.4 6.8 1.38
decod 140448 119496 1.18 6.2 5.0 1.24
f51m 561184 251392 2.23 51.0 18.4 2.77
majority 42200 39168 1.00 7.8 6.6 1.18
parity 99408 96976 1.03 5.0 5.0 1.00
z4m1 156288 103896 1.50 16.2 9.8 1.65P

3228K 1937K 1.67 198.2 147.4 1.34

con�rms our approach to compute common decomposi-
tion functions rather than to encode linking nodes in a
straightforward manner (as described in section A.).
Table II shows a comparison between mulopII and sis

1.1 with respect to layout size.y For almost two thirds of
the benchmark set, our approach dominates (or is as good
as) that of sis with respect to layout size. Nevertheless,
the signal delays of our realizations for more than two
thirds of the circuits considered are better (or equal) than
those of the realizations synthesized by sis.

Since functional decomposition techniques are espe-
cially suited for FPGA synthesis, we also made exper-
iments with mulopII on a number of benchmarks for
XC3000 device. As proposed by Lai, Pan, Pedram, Vrud-
hula [13, 14], we applied our algorithm to multi-output
functions which result from a node clustering in a boolean
network which is received by running the rugged script
[20] on the benchmark circuit. (The multi-output boolean
function de�ned by such a cluster of nodes constitutes an
input to the decomposition algorithm.) In Table III we

yThe technology library used consists of the set of the 2-input
gates from stdcell2 2:genlib available in octtools. Placement and
routing was done by TimberWolf integrated in octtools.



TABLE III
Experimental results for XC3000 device

Number of CLB
Circuit in out FGSyn FGMap mis-pga(new) mulopII

5xp1 7 10 9 15 13 9
9sym 9 1 7 7 7 7
alu2 10 6 52 53 96 51
apex7 49 37 45 47 43 45
b9 41 21 29 27 32 30
bw 5 28 27 27 27 27
C499 41 32 54 49 66 60
C880 60 26 88 74 72 87
clip 9 5 18 20 23 14
count 35 16 24 24 30 26
duke2 22 29 94 178 94 114
e64 65 65 56 55 56 55
f51m 8 8 9 11 15 8
misex1 8 7 9 8 9 9
misex2 25 18 22 21 25 24
rd73 7 3 5 7 5 5
rd84 8 4 8 12 9 8
rot 135 107 144 194 143 146
sao2 10 4 20 27 28 20
vg2 25 8 20 23 18 18
z4ml 7 4 4 5 4 4

compare our results with FGSyn [14], FGMap [13] and
mis-pga(new) [16, 18]. Our �rst results are promising.
Moreover we made the experience that an exploitation of
don't cares z (which is not included in this paper) will
lead to further improvements of the results.

VI Conclusion

We have presented a robdd based technique for com-
puting common decomposition functions of multi-output
boolean functions. This algorithm has been integrated in
our multi-level synthesis tool which has been presented
in [17] where more details of how the cdf algorithm is
integrated can be found. The benchmarking results show
that most of the circuits constructed by our synthesis tool
are very e�cient. They also prove it to be applicable in
terms of running time. Results for FPGA mapping are
promising.
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