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Abstract| Pitchmatching algorithms are widely

used in layout environments where no grid constraints

are imposed. However, realistic layouts include multi-

ple grid constraints which facilitate the applications of

automatic routing. Hence, pitchmatching algorithms

should be extended to those realistic layouts. This pa-

per formulates a pitchmatching problem with multiple

grid constraints. An algorithm for solving this prob-

lem is constructed by extending conventional pitch-

matching algorithms. The computational complexity

is also discussed in comparison with a conventional

naive algorithm. Finally, examples and application

results to realistic layouts are presented.

I. Introduction

Compaction-based layout approaches have been widely

used in designing leaf cells [3], macro cells [6], and entire

chips [2]. Compactors can sqeeze layouts into the smallest

possible areas without violating design rules. These ap-

proaches have two advantages over conventional manual

layouts: First, they can adapt already-designed layouts

to the new design rules. In realistic design environments,

design rules often change. Since compaction methods en-

able designers to reuse already-designed layouts, design

period can be reduced. Second, they can be applied to

module assembly techniques that can automatically gen-

erate macro cell layouts from the constituent leaf cell lay-

outs [6]. This enables layout designers to automatically

adjust the ports positions of each leaf cell layout so as to

construct a macro cell layout even if the layouts of certain

leaf cells change.

The �rst advantage o�ers a solution to the fundamen-

tal problem solved in VLSI layout because the obser-

vance of design rules is indispensable in the layout de-

signs. Initially, compaction algorithms could minimize

only layout areas taking into account minimum or max-

imun constraints speci�ed in design rules or by users [8].

Next, they were improved so that they could be applied

to realistic problems in VLSI layout designs. For exam-

ple, the conventional compaction methods have been ex-

tended in order to create an algorithm for minimizing

wiring lengths [11]. That algorithm can prevent degra-

dations in circuit performance caused by an unnecessary

increase in parasitics capacitances. Recently, those meth-

ods have been extended to layouts having grid constraints.

The grid constraints restrict the coordinates of layout el-

ements to the form cgrid � n + cdelta for some integer

n given cgrid > 0 and cdelta [4]. However, realistic lay-

outs usually have di�erent kinds of grid constraints; for

example, c1;grid � n + c1;delta and c2;grid � n + c2;delta.

From here on, we call this kind of constraints multiple

grid constraints. The extension of compaction algorithms

to layouts having grid constraints with only a single kind

of grid constant is discussed in [4]. The same author also

presents compaction algorithms for layouts having mul-

tiple grid constraints [5]. Similar kinds of problems are

considered in [7].

When compaction is applied to the layout design of

macro cells, the second advantage, the layout is con-

structed by combining constituent leaf cell layouts so that

the necessary connectivities between adjacent leaf cell

ports can be maintained (See Fig. 1). Thus, each leaf

cell must be made as small as possible under the con-

dition that the coordinates of those port-pairs become

equal. This process is called pitchmatching. Until now,

pitchmatching algorithms have been proposed in many

papers [1],[6]. These algorithms enable designers to reuse

leaf cell layouts in a macro cell layout con�guration. How-

ever, all of them are limited to layouts with no grid con-

straints. Thus, they cannot be applied to realistic layouts

which have multiple grid constraints.

This paper discusses extending pitchmatching algo-

rithms to realistic layouts that have multiple grid con-

straints. Section II is a preliminary section which de-

scribes compaction algorithm for layouts with multiple

grid constraints. The pitchmatching problem for layouts

having multiple grid constraints is formulated in Section

III. Section IV presents an algorithm for solving the prob-

lem de�ned in Section III. Also, the computational com-
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Fig. 1. An example of pitchmatching.

plexity of the proposed algorithm is analyzed in compar-

ison with a naive approach. Section V presents several

examples and an application result. Section VI concludes

the paper.

II. Compaction with Multiple Grid Constraints

A compaction algorithm that can deal with multiple

grid constraints is proposed in [5]. However, that paper

only outlines several results without proofs. This section

presents the necessary results to formulate pitchmatching

problem for layouts with multiple grid constraints. From

now on, without loss of generality, we consider compaction

in y-direction.

Let G = (V;E) be a constraint graph for y-directional

compaction, with a vertex set V = fig and a directed

edge set E = f(i; j)g � V � V . A weight set W =

fw(i; j) j (i; j) 2 Eg is also associated with edge set E of

constraint graph G. In the constraint graph G = (V;E),

each directed edge (i; j) with weight w(i; j) corresponds

to the constraint represented by inequality y(j) � y(i) �

w(i; j). Here, y(i) denotes the y-coordinate of vertex i.

Also let y-coordinate y(�) be an integer because the co-

ordinates of elements in realistic layouts are con�ned to

integer multiples of the most resolvable unit, for example,

0:05�m.

For some vertex i 2 V , we can de�ne the grid con-

straint whose form is < cgrid(i); cdelta(i) > for given posi-

tive integer cgrid(i) and integer cdelta(i), where cgrid(i) 6=

1 and jcdelta(i)j < cgrid(i). The grid constraint <

cgrid(i); cdelta(i) > for vertex i 2 V implies that y-

coordinate y(i) is con�ned to cgrid(i) � n + cdelta(i) for

some integer n. Let Vg (� V ) be a set of vertices i having

the grid constraint denoted by < cgrid(i); cdelta(i) >.

The compaction problem can be formulated by a mixed-

integer linear programming problem.

Compaction Problem A

minimize y(n)� y(0)

subject to 1) y(j)� y(i) � w(i; j)

for all edges (i; j) 2 E.

2) y(i) satis�es grid constraint

< cgrid(i); cdelta(i) >

for all vertices i 2 Vg.

Here, vertex 0 and n denote the special vertices that cor-

respond to lowermost and uppermost layout elements, re-

spectively. The coordinates of other vertices are bounded

by those vertices (i.e., y(0) � y(i) � y(n) for all i 2 V ).

For simplicity, let vertex 0 be the origin of y-coordinate

y(�) (i.e., y(0) = 0). In the remainder of the paper, Com-

paction Problem A may be abbreviated to Problem

A.

The solution to Problem A is discussed in [5]. The

paper presents several algorithms, but includes no proofs

that validate them. Thus, in this section, we describe

proofs of the claims, which are necessary in the following

discussion to make the paper self-contained.

De�nition 1 For integer x and vertex i 2 V , function

round(x; i) with integer value is de�ned as

round(x; i)
def
= x ( if i has no grid constraint ( i.e.,

i 2 V � Vg) ),
def
= n � cgrid(i) + cdelta(i) ( if i has grid

constraint < cgrid(i); cdelta(i) > ( i.e., i 2 Vg ) and (n �

1) � cgrid(i) + cdelta(i) < x � n � cgrid(i) + cdelta(i) holds

for some integer n. ).

In constraint graph G, consider a path p =

(i0; i1; : : : ; in) that is represented by a sequence of ver-

tices. Let pk = (i0; i1; : : : ; ik) ( k = 0; 1; : : : ; n ) be a

sub-path from i0 to ik. The e�ective length of the path

starting from vertex i0 with an initial value u0, which

is denoted by Le(pk; u0; i0) (k = 0;1; : : : ; n ), is de�ned

recursively as

Le(p0; u0; i0) = u0;

Le(pk; u0; i0) = round(Le(pk�1; u0; i0) + w(ik�1; ik); ik)

(k = 1; 2; : : : ; n):

Using the e�ective length of the path Le(�; �; �), the

longest e�ective path length from source vertex 0 to ver-

tex i is de�ned by

Lmax
e (i) = maxfLe(p; 0;0) j all paths p from 0 to i.g:

Proposition 1 [5] The minimum solution fy(i) j i 2 V g

to Problem A is given by the longest e�ective path length

from source vertex 0 to vertex i ( i.e., y(i) = Lmax
e (i) ) in

G, if there exists a solution to Problem A.

Proof The proof is almost the same as that of Theorem

1 in [4].

Let c be a cycle with starting vertex i0 and its initial

value u0. In addition, let cj denote the j-times union of

c, and put uj = Le(c
j; u0; i0).

The two lemmas below appear in [5] without proofs.



Lemma 1 There exits a nonnegative integer m and pos-

itive integers J; j1 such that uj+n�J = uj + n � m �

D(c) for all j � j1 and n � 0; where D(c) is the least

common multiple of grid constants fcgrid(i)j i 2 c \ Vgg.

Proof The proof is divided into two cases.

(Case 1) The process for calculating the e�ective length

of cycle c recursively ends after executing �nite steps.

In this case, since there exists an integer j1 � 1 such

that uj1+n = uj1 for all n � 0, uj+n�J = uj + n � m �

D(c) for all j � j1 and n � 0 with J = 1 and m = 0.

(Case 2) The process for calculating the e�ective length

of cycle c continues in�nitely.

In this case, there exists some integers j < i such that

ui � uj (mod D(c)). This implies that ui�uj = m�D(c)

for some integer m � 1. Thus, the process for calculating

the e�ective length after ui is essentially the same as the

process from uj to ui. Putting i�j = J(� 1) and j = j1,

uj+n�J � uj = (uj+n�J � uj+(n�1)�J)

+(uj+(n�1)�J � uj+(n�2)�J)

: : :

+(uj+J � uj)

= n �m �D(c)

for all j � j1. Hence, uj+n�J = uj + n � m � D(c) for all

j � j1 and n � 0 for some positive integers J; j1 and a

nonnegative integer m.

On the basis of Lemma 1, e�ective cycle length is de-

�ned as follows.

De�nition 2 The e�ective cycle length for a cycle is de-

�ned as:

Le(c) = m �D(c)=J:

Lemma 2 The sequence fuj=jg converges to Le(c) as j

tends to in�nity.

Proof Let J and j1 be positive integers in Lemma 1.

For any su�ciently large j � j1, there exists an integer

nj such that j1+nj �J � j < j1+(nj+1) �J , and kj such

that 0 � kj � J�1 and j = j1+nj �J+kj . Without loss

of generality, let uj � 0. Since nj !1 as j !1 and kj
is bounded,

(uj=j) = (uj1+kj + nj �m �D(c))=(j1 + nj � J + kj)

= ((uj1+kj=nj) +m �D(c))=(((j1 + kj)=nj) + J)

! m �D(c)=J (nj !1)

Hence, uj=j ! m �D(c)=J (j !1) holds.

De�nition 3 A cycle c is an e�ectively positive cycle if

and only if Le(c) > 0, or equivalently limj!1 uj=j > 0.

Proposition 2 The necessary and su�cient condition

for the existence of a sulution to Problem A is that there

is no e�ectively positive cycle in the constraint graph G.

Proof From Proposition 1, De�nition 2 and the proof of

Lemma 1 (Case 1), this proposition can be proved.

The following de�nition and lemma are corrections of

[5].

De�nition 4 For each vertex i 2 V , bounding number bi
is de�ned by

bi
def
=

�
D=cgrid(i) (if i 2 Vg)P

j2Vg
D=cgrid(j) + 1 (if i 2 V � Vg);

where D is the least common multiple of grid constants

fcgrid(i) j i 2 Vgg.

Lemma 3 [5] If there is no e�ctively positive cycle in

G, then the e�ectively longest path lengths can be found

among paths which do not traverse any vertex i 2 V more

than bi times.

Proof Two assertions are prooved.

(a) Any e�ectively longest path cannot include grid ver-

tex i 2 Vg more than bi times.

Assume that some e�ectively longest path traverses grid

vertex i at (bi + 1) times. Let cj be a path which is tra-

versed from the (j � 1)-th to the j-th traverse of ver-

tex i in the e�ectively longest path. Here, let the 0-

th traverse of vertex i imply the start from source ver-

tex 0. In addition, putting cj = c1 [ c2 [ : : : [ cj ,

let uj = Le(c
j ; 0; 0). If ui = uj for i; j such that

1 � i; j � bi + 1, the number of traverses of vertex

i can be decreased by 1 when an unnecessary cycle is

deleted. Thus, we assume u1 < u2 < : : : < ubi+1.

Since vertex i has a grid constraint < cgrid(i); cdelta(i) >,

uj = cgrid(i) � nj + cdelta(i) (j = 1; 2; : : : ; bi + 1) and

njk 6= njl for jk; jl such that jk 6= jl. Thus, for some j1
and j2 such that j1 < j2, nj1 � nj2 (mod bi). This

implies uj1 � uj2 (mod D), or equivalently uj2 � uj1 =

m �D for some integer m � 1. This leads to the relation

uj+n�(j2�j1) = uj+n �m �D for all j � j1 and n � 0. This

implies the existence of an e�ectively positive cycle, which

is a contradiction. This proves assertion (a).

(b) Any e�ectively longest path cannot include non-grid

vertex i 2 V � Vg more than bi times.

It should be mentioned that an e�ectively longest path

does not traverse a non-grid vertex i twice without passing

a certain grid vertex between the two traverses. This

is because if an e�ectively longest path traverses a non-

grid vertex i twice without intervening traverses of grid

vertices, there exists an e�ectively positive cycle. For non-

grid vertex i, the e�ectively longest path which traverses

vertex i most repeatedly has the form as shown in Fig. 2

because this path cannot traverse grid vertex j more than

bj(= D=cgrid(j)) times from the proof of assertion (a).

Hence, the number of traverses of vertex i is summed up

to bi =
P

j2Vg
D=cgrid(j) + 1.
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Fig. 2. An e�ectively longest path that traverses non-grid vertex i

most repeatedly.

III. The Pitchmatching Problem

Many realistic layout problems often require addi-

tional constraints besides constraints 1) and 2) in

Problem A. For example, y(i) � y(j) = y(k) �

y(l) for vertices i; j; k; l 2 V . This constraint, known as

symmetry constraint, makes two speci�ed distances be-

tween layout elements equal (See [9]). This kind of con-

straint is often applied to analog circuit layouts. On the

other hand, constraint y(i) = y(j) for some pairs of ver-

tices i; j 2 V is used for pitchmatching [1]. This type of

constraint enables designers to construct macro cells from

constituent leaf cells because the pitchmatching can make

y-coordinates of leaf cell ports equal making interconnect

of those ports possible as illustrated in Fig. 1.

This section formulates the pitchmatching problem for

layouts with multiple grid constraints. However, the com-

paction problem with symmetry constraints can be dealt

with in similar fashion.

From here on, we consider Compaction Problem ~A,

to which is added a third constraint 3).

Compaction Problem ~A

minimize y(n)� y(0)

subject to 1) y(j)� y(i) � w(i; j)

for all edges (i; j) 2 E.

2) y(i) satis�es grid constraint

< cgrid(i); cdelta(i) >

for all vertices i 2 Vg.

3) y(i) = y(j)

for vertex-pairs (i; j) 2 P � V � V :

Here, a set of vertex-pairs P must be speci�ed in ad-

vance.

In what follows, let Vc be a set of vertices de�ned as

Vc = f i 2 V j(i; j) 2 P or (j; i) 2 P for some j 2 V g

[f0g [ fng:

This de�nition implies that Vc is the set of vertices rel-

evant to vertex-pairs P � V � V .

procedure Ls;t(�);

(1) begin

(2) for (all vertices i 2 V ) do y(i) �1;

(3) y(s) round(�; s);
(4) for (ind 1) to N do

(5) for (all edges (i; j) 2 E) do

(6) if (y(j) < y(i) +w(i; j)) then
(7) begin

(8) y(j) y(i) +w(i; j);

(9) if (j 2 Vg) then y(j) round(y(j); j);
(10) end

(11) for (all edges (i; j) 2 E) do

(12) if (y(j) < y(i) + w(i; j))then
(13) begin

(14) print (\constraint con
ict detected.");

(15) stop;

(16) end

(17) return y(t);

(18) /* fy(i) j i 2 V g is obtained. */
(19) end

Fig. 3. Flow of Procedure Ls;t(�).

De�nition 5 For every vertex-pair (i; j), distance d(i; j)

is de�ned as

d(i; j) =

8>><
>>:

0 ( if i = j)

�1 ( if no path from i to j exists.)

min0���D(Li;j(�)� �)

( if path from i to j exists.),

where Li;j(�) is calculated by procedure Ls;t(�) in Fig.

3 with s = i and t = j. Positive integer D is the least

common multiple of grid constants fcgrid(i) j i 2 Vgg.

Proposition 3 If constraint graph G includes no e�ec-

tively positive cycles, then procedure Li;j(�) returns a

de�nite value when the limit of loops N is de�ned by

N =
P

i2Vg
bi + (

P
i2Vg

bi + 1) � jV � Vg j � 1.

From Compaction Problem ~A we make a new com-

paction problem associated with a set of core vertices Vc
using distance d(�; �) de�ned in De�nition 5.

Core Compaction Problem ~Ac

minimize y(n)� y(0)

subject to 1) y(j)� y(i) � d(i; j)

for all vertices i; j 2 Vc.

2) y(i) satis�es grid constraint

< cgrid(i); cdelta(i) >

for all vertices i 2 Vg \ Vc.

3) y(i) = y(j)

for all vertex-pairs (i; j) 2 P � V � V :



Equivalent Compaction Problem ~Ae

Let f~yc(i) j i 2 Vcg be a solution to Core Compaction

Problem ~Ac.

minimize y(n)� y(0)

subject to 1) y(j)� y(i) � w(i; j)

for all edges (i; j) 2 E.

2) y(i) satis�es grid constraint

< cgrid(i); cdelta(i) >

for all vertices i 2 Vg .

3) y(i) = ~yc(i) for every vertex i 2 Vc.

Lemma 4 For arbitrary � � 0 and path p = (i1; i2; i3;

: : : ; ip�1; ip) of G,

Li1;ip(�) � Lip�1;ip(Lip�2;ip�1(� � � (Li2;i3 (Li1;i2 (�))) � � �))

holds.

Proof Clearly,

Li1;ip(�) = max
p
fLjk;ip(Ljk�1;jk(� � � (Lj1;j2 (Li1;j1(�))) � � �))g;

where the maximum is taken over all paths p =

(i1; j1; j2; : : : ; jk; ip) from i1 to ip and k � 1. Thus, if

we select a path p = (i1; i2; i3; : : : ; ip�1; ip), then

Li1;ip(�) � Lip�1;ip(Lip�2;ip�1(� � � (Li2;i3 (Li1;i2 (�))) � � �))

holds.

Proposition 4 For arbitrary vertices i; j; k 2 V , inequal-

ity d(i; k) � d(i; j) + d(j; k) holds.

Proof If d(i; k) = �1, then there is no path from vertex

i to k. Thus, either there is no path from i to j or there

is no path from j to k. This implies d(i; j) = �1 or

d(j; k) = �1. Since the right-hand side of the inequality

becomes �1, the inequality holds. Thus, we assume that

d(i; k) > �1. If d(i; j) = �1 or d(j; k) = �1, then the

inequality holds. Thus, we also assume d(i; j) > �1 and

d(j; k) > �1.

Let �0 be an integer such that Li;k(�0) � �0 =

min0���D(Li;k(�) � �)
def
= d(i; k) holds. Since Li;j(�0) �

�0 � d(i; j) from De�nition 5 and Li;k(�0) � Lj;k(Li;j(�0))

from Lemma 4, for this �0,

d(i; k) = Li;k(�0) � �0

= (Li;j(�0)� �0) + (Li;k(�0)� Li;j(�0))

� d(i; j) + (Lj;k(Li;j(�0))� Li;j(�0)):

Furthermore, we obtain Lj;k(Li;j(�0))�Li;j(�0) � d(j; k)

from the de�nition of d(�; �). Hence, d(i; k) � d(i; j) +

d(j; k) holds.

As in [10], we consider two conditions below.

Condition 1 For an arbitrary feasible solution ~sc =

f~yc(i) j i 2 Vcg to Core Problem ~Ac, there exists a feasi-

ble solution ~s = f~y(i) j i 2 V g to Problem ~A such that 1)

~y(i) = ~yc(i) for all vertices i 2 Vc, (i.e., the restriction of

~s to Vc coincides with ~sc, which is denoted by ~s jVc= ~sc),

and 2) the values of objective functions (i.e., y(n)� y(0))

for ~s and ~sc coincide.

Condition 2 For an arbitrary feasible solution ~s =

f~y(i) j i 2 V g to Problem ~A, ~sc = f~y(i) j i 2 Vcg

(i.e., ~sc = ~s jVc) is a feasible solution to Core Prob-

lem ~Ac such that the values of objective functions (i.e.,

y(n)� y(0)) for ~s and ~sc coincide.

The two propositions below appear in [10].

Proposition 5 Assume that Conditions 1 and 2 hold.

If there exists an optimum solution ~soptc = f~yoptc (i) j i 2

Vcg to Core Problem ~Ac, then there exits an optimum

solution ~sopt = f~yopt(i) j i 2 V g to Problem ~A such that

1) ~sopt jVc= ~soptc , and 2) the values of the objective func-

tion for ~soptc and ~sopt coincide.

Proof Let ~soptc = f~yoptc (i) j i 2 Vcg be an optimal so-

lution to Problem ~Ac, which has optimum value ~vopt.

From Condition 1, there exists a feasible solution ~s =

f~y(i) j i 2 V g to Problem ~A such that 1) ~s jVc= ~sc and

2) the optimum value is ~vopt. If there exists a feasible

solution ~s0 to Problem ~A whose objective function value

is ~v0(< ~vopt), then from Condition 2, ~s0 jVc is a feasible

solution to Problem ~Ac having the objective function

value is ~v0(< ~vopt). This contradicts the optimality of

~soptc to Problem ~Ac. This implies that ~s is the optimum

solution to Problem ~A.

Proposition 6 If Conditions 1 and 2 hold, then the

optimum solution to Equivalent Problem ~Ae is the op-

timum solution to Problem ~A.

Proof Assume that Conditions 1 and 2 hold. Let ~se be

an optimum solution to Equivalent Problem ~Ae whose

objective function value is v. This implies the existence of

the optimum solution ~soptc to Core Problem ~Ac which

has also optimum value v. From Proposition 5, there

exists an optimum solution ~sopt to Problem ~A such that

~sopt jVc= ~soptc and the optimum value is v.

Clearly, ~se is also a feasible solution to ~A. The objective

function value for ~se is v which is the optimum value of

Problem ~A. Hence, ~se is the optimum solution to ~A.

De�nition 6 For an arbitrary feasible solution ~sc =

f~yc(i) j i 2 Vcg to Core Problem ~Ac, the extension of

~sc to V is de�ned as ~s = f~y(j) j j 2 V g such that

~y(j)
def
= max

i2Vc
round(~yc(i) + d(i; j); j)

for all vertices j 2 V . For simplicity, we call this the

extension of ~sc.

Lemma 5 Let ~s = f~y(i) j i 2 V g be an extension of

~sc = f~yc(i) j i 2 Vcg. Assertions 1), 2), and 3) below

are satis�ed:



1) The relation ~y(i) = ~yc(i) holds for all vertices i 2 Vc
(i.e., ~s jVc= ~sc).

2) The relation ~y(j)�~y(i) � w(i; j) holds for every edge

(i; j) 2 E such that i 2 V � Vg.

3) If ~y(j)� ~y(i) � w(i; j) holds for every edge (i; j) 2 E

such that i 2 Vg, then Condition 1 is satis�ed.

Proof of 1) Since ~sc is a feasible solution to ~Ac, ~yc(j)�

~yc(i) � d(i; j) for all vertices i; j 2 Vc. Thus, ~yc(j) �

round(~yc(i) + d(i; j); j) for all vertices i; j 2 Vc. This

leads to ~yc(j) � maxi2Vc round(~yc(i) + d(i; j); j) for all

vertices j 2 Vc. On the other hand, maxi2Vc round(~yc(i)+

d(i; j); j) � round(~yc(j)+d(j; j); j) � ~yc(j) for all vertices

j 2 Vc. This implies that ~y(j) = ~yc(j) for all vertices j 2

Vc:

Proof of 2) Let (i; j) 2 E be an edge such that i 2 V �

Vg . From De�nition 6, ~y(i) = maxk2Vc (~yc(k) + d(k; i)).

Let k0 2 Vc be a vertex such that ~y(i) = ~yc(k
0) + d(k0; i).

For this k0 2 Vc,

~y(j)� ~y(i) = max
l2Vc

round(~yc(l) + d(l; j); j)

�(~yc(k
0) + d(k0; i))

� round(~yc(k
0) + d(k0; j); j)

�(~yc(k
0) + d(k0; i))

� (~yc(k
0) + d(k0; j))� (~yc(k

0) + d(k0; i))

= d(k0; j)� d(k0; i)

� d(i; j)

� w(i; j):

This completes the proof.

Proof of 3) From the validity of assertions 1) and 2), it

is clear that assertion 3) holds.

Proposition 7 Condition 2 is always satis�ed.

Proposition 8 If Vg � Vc, then Condition 1 holds.

Proof Let (i; j) 2 E be an edge such that i 2 Vg and

~s = f~y(i) j i 2 V g be an extension of ~sc = f~yc(i) j i 2 Vcg.

Since Vg � Vc, then i 2 Vc. Thus, from assertion 1) of

Lemma 5, ~y(i) = ~yc(i). This leads to the relation

~y(j) � ~y(i) = max
l2Vc

round(~yc(l) + d(l; j); j) � ~yc(i)

� round(~yc(i) + d(i; j); j)� ~yc(i)

� (~yc(i) + d(i; j)) � ~yc(i)

= d(i; j)

� w(i; j):

Consequently, from assertion 3) of Lemma 5, Condition

1 holds.

IV. Pitchmatching Algorithms

A. Pitchmatching Model

On the basis of the formulation in Section III, we con-

sider pitchmatching algorithms that can be applied to
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Fig. 4. Pitchmatching model. Ports corresponding to vertices
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k
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R
and l

i+1
k

2 V
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L

must have the same y-coordinates for all

k(1 � k � ni.

realistic layouts having multiple grid constraints. Fig. 4

shows the layout model to which the pitchmatching algo-

rithms are applied. The entire macro cell is constructed

by placing adjacent leaf cells Ci (i = 1; 2; : : : ; n) in the x-

direction. Each leaf cell layout must be shrunk or spread

in the y-direction so that corresponding ports of adja-

cent leaf cells can be placed at the same y-coordinates.

In Fig. 4, broken lines denote port-pairs which must be

pitchmatched.

Let Gi = (V i; Ei) be a constraint graph for cell Ci.

A set of vertices having grid constraints in V i is denoted

by V i
g . Further, let V i

L (V i
R) be a set of vertices placed

on the left (right)-hand side boundary of Ci. Assume

that the number of vertices in V i
R is the same as that in

V i+1
L (i = 1; 2; : : : ; n � 1), say ni. Thus we can represent

V i
R (V i+1

L ) (i = 1; 2; : : : ; n � 1) by V i
R = fri1; r

i
2; : : : ; r

i
ni
g

(V i+1
L = fli+11 ; li+12 ; : : : ; li+1ni

g). All pairs of ports corre-

sponding to those of vertices (rik; l
i+1
k ) (k = 1; 2; : : : ; ni)

in V i
R and V i+1

L must be pitchmatched.

The constraint graph G = (V;E) for the entire cell can

be constructed by connecting constraint graphs Gi(i =

1; 2; : : : ; n) with edge sets E(i) (i = 1; 2; : : : ; n � 1).

For simplicity, we put E(n) = ;. Here, E(i) is the

set of directed edges between leaf cells Ci and Ci+1,

which includes pairs of edges (rik; l
i+1
k ) and (li+1k ; rik)

(ri1; r
i
2; : : : ; rni 2 V i

R; li+11 ; li+12 ; : : : ; li+1ni
2 V i+1

L ) with

reverse directions and weights of zero. The constraints

caused by these edge-pairs add constraints y(rik) = y(li+1k )

(k = 1; 2; : : : ; ni; i = 1; 2; : : : ; n � 1). Hence, solving con-

straint graph G corresponds to Compaction Problem
~A with P = [ni=1E(i) in Section III.

B. An Extension to Multiple Grid Constraints

We describe an algorithm for solving constraint graph

G de�ned above. In what follows, we refer to it as EX-

TENT.

Initially, we generate the Core Compaction Prob-



lem ~Ac from constraint graphs Gi (i = 1; 2; : : : ; n). Let

the constraint graph for Problem ~Ac be Gc = (Vc; Ec).

From Proposition 8, vertex set Vc must include all grid

vertices Vg (= [ni=1V
i
g ). Thus, Vc is de�ned as Vc =

Vg [ ([ni=1V
i
L) [ ([ni=1V

i
R). The distance dis(�; �) de�ned

in De�nition 5 is calculated in constraint graph G. As

indicated in [9][10], if there are no grid vertices, d(�; �) can

be calculated only within each Gi. On the other hand,

if there are grid vertices, d(�; �) must be calculated over

entire G, as detailed in example 2 of Section V. How-

ever, in order to reduce processing times, we use a similar

method to that applied to the problem having no grid

vertices. The procedure is described in Fig. 5.

As shown in Fig. 5, for each i (i = 1; 2; : : : ; n), we

generate constraint graph Gi
c which corresponds to the

Core Compaction Problem of Gi ( See from (4) to

(20) in Fig. 5. ). After that, those constraint graphs

Gi
c (i = 1; 2; : : : ; n) are merged into a single constraint

graph Gc = (Vc; Ec) having additional edge sets E(i) (i =

1;2; : : : ; n � 1). The Core Problem ~Ac is de�ned by

graph Gc.

Next, the Core Problem ~Ac is solved by the same

algorithm as procedure Ls;t(�) with � = 0. It should be

noted that procedure Ls;t(�) can obtain y(i) for vertices

i 2 Vc. This yields the solution ~sc = f~yc(i) j i 2 Vcg to

Problem ~Ac

Finally, in order to �x the coordinates of vertices in

Vc, we add constraint fy(i) = ~yc(i) j i 2 Vcg into con-

straint graph G. This constraint graph corresponds to the

Equivalent Compaction Problem ~Ae. Again, we ap-

ply the same algorithm as procedure Ls;t(�) with � = 0

to G. Consequently, we obtain the solution ~s = f~y(i) j i 2

V g to the original problem ~A whose constraint graph is

G.

Having described the processing 
ow of EXTENT,

let us now turn to the analysis of its time complexity.

Clearly, the time complexities for solving theCore Prob-

lem ~Ac and the Equivalent Problem ~Ae are equal to

the time complexity of procedure Ls;t(�). However, in

the phase for generating Core Problem ~Ac, the pro-

cedure Ls;t(�) is performed jV i
c j times for all the con-

straint graphs Gi (i = 1; 2; : : : ; n). Since procedure

Ls;t(�) for each constraint graph Gi has the time com-

plexity O(D � jEij �Ni), the total time complexity becomes

TEXTENT = O(
Pn

i=1 jV
i
c j �D � jEij �Ni). Here, Ni is the

number de�ned as N in Proposition 3 for constraint graph

Gi.

C. A Naive Approach

The simplest approach to the pitchmatching problem is

to apply procedure relaxation in Fig. 6 to constraint

graph G.

From now on, we refer to this algorithm as RE-

LAX. This procedure is essentially equivalent to proce-

dure Ls;t(�) in Fig. 3, if � is set at zero and s is a ver-

procedure core;

(1) begin

(2) /* Gi
c = (V i

c ; E
i
c): constraint graph */

(3) /* for core compaction problem of Ci */
(4) for (i 1) to n do

(5) begin

(6) V i
c  V i

L [ V
i
R [ V

i
g ;

(7) Ei
c  ;;

(8) for (all vertices s 2 V i
c ) do

(9) for (�  0) to D do

(10) call procedure Ls;:(�) with respect to

(11) constraint graph Gi = (V i; Ei);

(12) /* fLs;t(�)j s; t 2 V i
c ; 0 � � � Dg is obtained. */

(13) for (all vertices s 2 V i
c ) do

(14) for (all vertices t(6= s) 2 V i
c ) do

(15) begin

(16) if (there is a path from s to t) then

(17) ws;t  min0���D(Ls;t(�)� �);

(18) Ei
c  Ei

c [ f(s; t) with weight ws;tg;

(19) end

(20) end

(21) /* Gc = (Vc; Ec): constraint graph for */

(22) /* core compaction problem of entire cell C. */
(23) construct constraint graph Gc

(24) by merging Gi
c(i = 1; 2; : : : ; n) with

(25) edge sets E(i) (i = 1; 2; : : : ; n � 1);

(26) end

Fig. 5. Flow of Procedure core. This procedure generates Core

Problem

procedure relaxation;

(1) begin
(2) for (all vertices i 2 V ) do y(i) �1;

(3) for (all vertices s 2 V corresponding to

(4) the lowermost elements in Ci (i = 1; 2; : : : ; n))

(5) do y(s) 0;

(6) for (ind 1) to N do

(7) for (i 1) to n do

(8) /* Relaxation for cell Ci which has */

(9) /* constraint graph Gi = (V i; Ei). */

(10) begin

(11) /* E(i): edges between Ci and Ci+1. */

(12) for (all edges (s; t) 2 Ei [E(i)) do

(13) if (y(t) < y(s) +w(s; t)) then

(14) begin

(15) y(t) y(s) + w(s; t);
(16) if (t 2 Vg) then y(t) round(y(t); t);

(17) end

(18) end

(19) end

Fig. 6. Flow of Procedure relaxation. This is applied to a

naive approach to pitchmatching problem.



tex corresponding to the lowermost elements in cell C.

Steps (5) to (10) in Fig. 3 are performed in steps (7)

to (18) in Fig. 6. In the former procedure, all edges in

G are examined in a single for loop, while in the lat-

ter procedure, all edges are examined through two-folded

for loops with respect to all cells and the edges in each

cell. Since the latter needs to process only constraint

graph Gi at any stage, area requirements for process-

ing can be reduced. However, the time complexities for

both procedures are the same, which can be denoted by

TRELAX = O((
Pn

i=1 jE
ij) �N ) = O(jEj �N). Here, N is

de�ned as in Proposition 3 for constraint graph G.

D. Comparison of Time Complexity

We compare the time complexity of the extended algo-

rithm EXTENT with that of the naive algorithm RE-

LAX. For simplicity, we assume that constraint graph

G consists of n graphs Gi (i = 1; 2; : : : ; n) which have

approximately the same sizes. This implies that jEij '

jEj=n. Furthermore, let � (0 < � < 1) be the ratio

of the number of vertices having grid constraints to the

number of total vertices of the constraint graph. Since

V i
c = V i

L [ V i
R [ V

i
g and jV i

g j � jV i
Lj; jV

i
Rj in realistic lay-

outs, we assume that jV i
c j ' � � jV j=n. Also, let Ni be

approximately proportional to the number of vertices in

the relevant constraint graph. This implies Ni ' N=n.

These assumptions lead to the estimation

TEXTENT = O(

nX
i=1

jV i
c j �D � jEij �Ni)

' O(� �D � (jV j=n2) � jEj �N )

' (� �D � jV j=n2) � TRELAX :

Consequently, algorithm EXTENT is superior to algo-

rithm RELAX only when � is su�ciently small.

V. Examples and Discussion

This section presents several examples that assure the

results in Sections III and IV. It also discusses results of

applying the pitchmatching algorithm to a realistic lay-

out.

A. Example 1

Fig. 7 shows an example that illustrates the implication

of Proposition 8. Fig. 7 (a) is a constraint graph G for

a cell Ci. The numbers j in squares denote vertices hav-

ing grid constraints < cgrid(j); cdelta(j) > (i.e., j 2 Vg),

while the numbers k in circles correspond to vertices hav-

ing no grid constraints (i.e., k 2 V � Vg). Let Vc be a

set of vertices f1; 2; 7 ; 8g corresponding to the ports

on the left- and right-hand sides of cells. Fig. 7 (b) de-

notes the constraint graph Gc = (Vc; Ec) obtained from

original constraint graph G. This graph corresponds to
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Fig. 7. An example of constraint graph that corresponds to the

Core Problem. Grid vertices must be included in the constraint

graph. (a) Original constraint graph. (b) Constraint graph for

only ports. (c) Constraint graph to which grid vertices are added.

TABLE I

Calculated L1;7(�) (0 � � � D) in Fig. 7

� 0 1 2 3 4 5 6 7 8

L1;7(�) 7 7 7 7 12 12 12 12 17

L1;7(�) � � 7 6 5 4 8 7 6 5 9

� 9 10

L1;7(�) 17 17

L1;7(�) � � 8 7

the Core Problem. The weights of edges (i.e., d(�; �))

are calculated from De�nition 5. For example, the d(1; 7)

is calculated from the values of L1;7(�) � � (0 � � � D)

shown in Table I, where D = 10. This calculation leads

to d(1; 7) = min0���D(L1;7(�) � �) = 4.

However, the constraint graph in Fig. 7 (b) loses the

e�ective longest path lengths in the original graph G. For

example, the e�ective longest path length from vertex 1 to

7 is seven in G, whereas e�ective longest path length from

1 to 7 in Fig. 7 (b), it is four. Thus, in order to obtain

the Core Problem which is equivalent to G, we add all

vertices in Vg to Vc as assured in Proposition 8. This

yields the constraint graph in Fig. 7 (c). For example, the

weight of the edge from vertex 3 to 7 is calculated from

the values of L3;7(�) � � (0 � � � D) shown in Table II,

which is d(3; 7) = min0���D(L3;7(�)� �) = 3.

B. Example 2

Fig. 8 shows the part of the constraint graph G be-

tween cells Ci and Ci+1. The broken line denotes the

boundary of cells Ci and Ci+1. Vertex 1 (3) belongs to

cell Ci (Ci+1). As in Figs. 2 and 7, squares and cir-

cles represent vertices with grid constraints and no grid

constraints, respectively. Vertex 2 is a port to be pitch-
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Fig. 8. An example of e�ectively longest path from vertex 1 to 3

on which relation d(1; 3) 6= d(1; 2) + d(2;3) holds.

matched between Ci and Ci+1. For simplicity, vertex 2 is

constructed by merging two ports of Ci and Ci+1 which

must be pitchmatched (i.e., rik 2 V i
R and li+1k 2 V i+1

L for

some k (1 � k � ni)).

Assume that vertices 1; 2 and 3 belong to Vc. When

we generate a constraint graph corresponding to theCore

Problem, we must calculate the distances d(�; �) between

vertices in Vc. If the distances must be calculated for

all pairs of vertices in Vc, a large amount of processing

time is necessary. Thus, unless the distance calculations

can be restricted to the cell areas including the relevant

vertex pairs, pitchmatching algorithms cannot be applied

to realistic layouts.

Let the distance from vertex 1 to 3 through the path

passing bold arrows be d(1; 3), which is obtained from Def-

inition 5. It should be remarked that this path includes

vertex 2 in Vc. If distance d(1; 3) = d(1; 2)+d(2; 3) holds,

the constraint y(3) � y(1) + d(1; 3) can be replaced with

constraints y(2) � y(1)+ d(1; 2) and y(3) � y(2)+ d(2; 3)

which can be calculated only within cell Ci and Ci+1,

respectively.

From Proposition 4 in Section 3, the inequality

d(1;3) � d(1; 2) + d(2; 3) always holds. If there are no

grid constraints, d(1; 3) = d(1; 2) + d(2; 3) holds because

d(�; �) coincides with the usual longest path length. On the

other hand, if there are grid constraints, d(1; 3) 6= d(1; 2)+

d(2;3). For example, in Fig. 8, d(1; 3) = 4; d(1;2) =

2; d(2; 3) = 1. Since we impose those additional con-

straints on realistic layouts that separate layout elements

at certain distances from cell boundaries, the limitation

of the distance calculations to each cell causes no design

rule violations.

C. Application results

We developed a compaction-based environment for lay-

out design, where we can convert previously designed lay-

outs to those which obey a speci�ed set of design rules.

TABLE II

Calculated L3;7(�) (0 � � � D) in Fig. 7

� 0 1 2 3 4 5 6 7 8

L3;7(�) 7 7 7 7 7 12 12 12 12

L3;7(�) � � 7 6 5 4 3 7 6 5 4

� 9 10

L3;7(�) 17 17

L3;7(�) � � 8 7

The pitchmatching program, in which the algorithms de-

scribed in this paper are implemented, is an integral part

of the compaction programs. The pitchmatching program

was applied to various kinds of cells. There are many lay-

out patterns that obey 0:8�m rules. These patterns also

include many sets of leaf cell layouts that must be pitch-

matched. We used the pitchmatching program to convert

those layouts to new ones that obey 0:5�m rules.

Fig. 9 shows an example of pitchmatching. Three

kinds of similar leaf cells are pitchmatched so that the y-

coordinates of the ports on the left- and right-hand sides

of their boundaries can be made equal. Each leaf cell in-

cludes 50 transistors and 16 or 17 ports on the left- and

right-hand sides of the boundary. Only the horizontal

wires of metal 1 layer that have ports at left- or right-

endpoint have grid constraints. Since the ratio � of the

number of vertices having grid constraints to that of the

total vertices is not so large, we applied pitchmatching

algorithm EXTENT to the layout. The processing time

for generating the Core Problem was about 100 min-

utes. It should be noted that the processing time for gen-

erating the constraint graph is excluded. The constraint

graph of the Core Problem, which has about 100 ver-

tices, was solved in about ten seconds of processing time.

Finally, the Equivalent Problem was solved in about

ten minutes. These processing times were measured by a

15 MIPS computer.

VI. Conclusions

We have described an algorithm for pitchmatching cell

layouts with multiple grid constraints. Extending the

method for extracting the core problem from layouts hav-

ing no grid constraints, we devised a framework for pitch-

matching layouts having multiple grid constraints. In ad-

dition, a su�cient condition for successful application of

the pitchmatching algorithm was presented. The compu-

tational complexity of the algorithm was compared with a

naive approach. On the basis of the comparison, we clar-

i�ed the condition to make the proposed algorithm more

e�cient than the naive approach. Finally, we presented

two examples and a result of application to a realistic



Fig. 9. An example of pitchmatching. Three leaf cells having 50

transistors are pitchmatched with the EXTENT algorithm.

layout.
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