
Implicit Prime Compatible Generation

for Minimizing Incompletely Speci�ed Finite State Machines

Hiroyuki HIGUCHI Yusuke MATSUNAGA

CAD Laboratory
FUJITSU LABS. LTD.
Kawasaki, Japan 211
Tel: +81-44-754-2663
Fax: +81-44-754-2664

e-mail: fhiguchi, yusukeg@
ab.fujitsu.co.jp

Abstract| This paper proposes a new implicit al-

gorithm for excluding dominated compatibles. The

algorithm utilizes a novel notion of signatures of com-

patibles to exclude dominated compatibles e�ciently.

Though this dominance check is weaker than the con-

ventional one, experimental results show that in many

cases the number of excluded compatibles is the same

as that by class sets. Proposed method computes

prime compatibles more e�ciently than conventional

methods for many tested large ISFSM's.

I. Introduction

Minimizing the number of states in incompletely spec-
i�ed �nite state machines(ISFSM's) is an important step
of FSM synthesis. A combination of the methods of Paull
and Unger [1] and Grasselli and Luccio [2] provides a sys-
tematic method for �nding a minimum-row state table
for an ISFSM. The approach reduces the problem to the
computation of prime compatibles and the selection of a
minimum closed set of them by means of a binate cov-
ering step. If the machine has n states, the number of
compatibles is O(2n). Prime compatibles are selected out
of these compatibles. Therefore the computation of prime
compatibles for large ISFSM's will be intractable with ex-
plicit enumeration of compatibles in [1, 2, 3].

Implicit techniques are based on the idea of operating
on discrete sets by their characteristic functions repre-
sented by Binary Decision Diagrams (BDD's) [4]. For
two-level logic minimization, e�cient implicit algorithms
have been proposed [5, 6, 7]. To minimize the number of
states in large ISFSM's, Kam et al. proposed a fully im-
plicit algorithm with Binary Decision Diagrams (BDD's)
[8]. They showed that the implicit method can handle
some ISFSM's which the explicit methods cannot mini-
mize. In this paper, we propose a new implicit method
for generating prime compatibles. We introduce a novel
notion of signatures of compatibles in order to e�ciently
exclude dominated compatibles. The signatures of a com-
patible correspond to the minimal compatible dominated
by the compatible. Therefore compatibles which cover at
least one of these signatures are to be excluded. Further-

more, BDD's of relation between compatibles and their
signatures are likely to be represented e�ciently. By us-
ing these fact, dominated compatibles are likely to be ex-
cluded e�ciently. Though this dominance check is weaker
than that with class sets, experimental results shows that
in many cases the number of excluded compatibles are the
same as that by class sets. Our method takes less time
than conventional implicit and explicit methods for many
tested large ISFSM's.
The rest of this paper is organized as follows. Sec-

tion 2 gives terminologies and theorems proved in previ-
ous papers. Implicit representations of compatibles are
also introduced. Section 3 gives an algorithm of gener-
ating compatibles. Algorithms for implicit generation of
prime compatibles are presented in Section 4. Experi-
mental results are shown in Section 5. Conclusions are
summarized in Section 6.

II. Preliminaries

A. De�nitions

De�nition 1 A Finite State Machine (FSM) M is a
5-tuple M = (I; O;S; �; �), where I; O; and S are �-
nite nonempty sets of inputs, outputs, and states, respec-
tively; � : I � S ! S is the state transition function;
� : I � S ! O is the output function.
An FSM, where each (input, state) pair is related to

exactly one next state and one output, is a completely

speci�ed FSM. An incompletely speci�ed FSM is
one where either the next state or the output is not spec-
i�ed for at least one (input, state) pair. 2

De�nition 2 Two output sequences ~za; ~zb of machine M
are compatible if and only if their corresponding outputs
are not con
icting, i.e., identical whenever both outputs
are speci�ed. 2

We denote compatible output sequences ~za; ~zb by ~za �
~zb.

De�nition 3 Two states sa; sb of machine M are com-

patible if and only if sa; sb yield compatible output se-
quences for every input sequence. Two states sa; sb are
incompatible if they are not compatible. 2

NS, z
PS x = 0 x = 1

A C, 1 E, {
B C, { E, 1
C B, 0 A, 1
D D, 0 E, 1
E D, 1 A, 0

Fig. 1. Machine M

We denote compatible states sa; sb by sa � sb.

Theorem 1 Two states sa; sb of M are compatible if and
only if

(i) 8x 2 I; �(x; sa) � �(x; sb); and

(ii) 8x 2 I; �(x; sa) � �(x; sb): 2

Let us introduce an example machine M , which will be
used throughout the paper. The state table to be mini-
mized is shown in Fig.1. Since next states of states A;B
of M are identical and outputs of A;B are not con
ict-
ing, States A;B of M are compatible. States A;C are
incompatible, because next state of A;C for input 0 are
con
icting.

De�nition 4 A set of states is compatible if and only if
each pair of states in the set is compatible. A set of
states is incompatible if it is not compatible. 2

In this paper, a compatible set is simply called a com-

patible. For example, state pairs (B;C), (C;D), and
(B;D) of M are compatible. Therefore set fB;C;Dg is
compatible.

De�nition 5 Implied set IMP (c; i) of compatible c for
input i is the following set of states:

IMP (c; i) =
[

s2c

�(s; i):

2

The implied set of compatible c for input i is the set
of next states of states in c for input i. For example, the
implied set of compatible fB;C;Dg for input 1 is fA;Eg.

De�nition 6 Next state pair (�(sa; i); �(sb; i)) of compat-
ible state pair (sa; sb) for input i is called the implied

pair of (sa; sb) for input i. 2

In this paper, a pair is also treated as a set with two
elements.

De�nition 7 Class set CS(c) of compatible c is the set
of all the implied sets d such that:

(i) jdj > 1, and

(ii) d 6� c, and

(iii) 8d0 2 CS(c); d 6� d0. 2

The class set of a compatible expresses the closure con-
ditions imposed by the compatible. The class set of com-
patible fB;C;Dg is ffA;Egg. Since the implied set of the
compatible for input 0, which is fB;C;Dg, is the compat-
ible itself, it is not a member of the class set.

De�nition 8 Compatible c dominates compatible c0 if
and only if

1. c0 � c, and

2. CS(c0) � CS(c). 2

Compatible c expresses strictly weaker conditions than
compatible c0. Therefore c is always a better choice for a
minimum closed cover than c0.

De�nition 9 A prime compatible is one that is not
dominated by any other compatibles. 2

Theorem 2 At least one minimum closed cover consists
entirely of prime compatibles [2]. 2

The theorem shows that it is su�cient to consider a
subset of compatibles called prime compatibles for the
selection of one minimum closed set.

B. Implicit Representations of Compatibles

In state minimization, compatibles, i.e. sets of states,
need to be represented and manipulated e�ciently. To
represent sets of states or sets of sets of states implicitly,
we use Binary Decision Diagrams(BDD's). The represen-
tation of compatibles is the same as in [8].
Suppose an FSM has n states, there are 2n possible sets

of states. In order to represent them at once, each set is
represented in positional-set form by using a set of n
Boolean variables, ~x = (x1; x2; � � � ; xn). Variable xk takes
the value 1 in the positional set if state sk is a member
of the set, while xk takes the value 0 if state sk is not
a member. For example, if n = 5, the set fs1; s4g is
represented by 10010.
A set of sets of states is represented as a set S of

positional-sets by a characteristic function �S : Bn ! B.
�S(~x) = 1 if and only if the set of states represented by
the positional-set ~x is in the set S. A BDD representing
�S(~x) contains minterms, each of which corresponds to a
set of states in S.

III. Generation of Compatibles

The procedure of computing prime compatibles can be
divided into two parts:

(i) generation of compatibles,

(ii) deletion of dominated compatibles.

B
p

C � AE
D � CD BD;AE
E CD � � �

A B C D

Fig. 2. Merger table

generate compatible(MergerTable T) f
1. C Universenf;g;
2. for each incompatible pair p in T f
3. C Cn(all the sets including p);
4. g /* C is the set of all the compatibles */
5. return C;
g

Fig. 3. Generation of compatibles

In this section, we discuss the �rst step. The second
step will be discussed in the next section.
Here let us take the example machine M again. To

generate all the compatibles, the merger table [9] is de-
rived �rst. The merger table is also called the implica-
tion table [1] or compatibility table [2]. The merger table
of a machine has cells corresponding to the compatible
pairs de�ned by the intersection of the row and column
headings. The incompatibility of two states is recorded
by placing an \�" in the corresponding cell, while their
compatibility is recorded by a check mark (

p
). The en-

tries in cell sa; sb are the implied pairs of (sa; sb). The
merger table is explicitly constructed and represented in
our method, which is the same as in the method of Paull
and Unger [1]. In [8], this step is also done implicitly by
image computation technique. Since the number of cells
in the merger table is at most n(n� 1)=2, where n is the
number of states, and also image computation requires
large computation e�orts, the explicit method is likely to
be faster than the implicit one.
The merger table for the example is shown in Fig.2.

By using the merger table we generate all the compat-
ibles implicitly. The algorithm is shown in Fig.3. For
the sake of simplicity, the algorithms introduced in the
sequel will be described on explicit sets of sets of states.
These algorithms can be directly translated into implicit
manipulation.
Since incompatibles are the sets containing at least one

incompatible pair, all the compatibles C is calculated by
iteratively excluding all the sets including each incompat-
ible pair from a set of all the sets of states without the
empty set.
Machine M has 11 compatibles:

C = f(E); (D); (C); (CD); (B); (BD);

(BC); (BCD); (A); (AE); (AB)g;
which is also written in the positional-set form as:

C = f00001; 00010; 00100; 00110; 01000;01010;

01100; 01110; 10000; 10001; 11000g:

IV. Implicit Generation of Prime Compatibles

Prime compatibles are generated by excluding domi-
nated compatibles. To exclude dominated compatibles
e�ciently in implicit manners , we use input-labeled pair-
wise class sets instead of class sets.

A. Input-Labeled Pair-Wise Class Sets

De�nition 10 If (sa; sb) is an implied pair of (sc; sd) for
input i, then (sa; sb; i) is called an input-labeled im-

plied pair of (sc; sd). 2

De�nition 11 Input-labeled pair-wise class set

IPWCS(c) of compatible c is the set of all the input-
labeled implied pairs (sa; sb; i) of any state pairs in c such
that:

(i) sa 6= sb, and

(ii) fsa; sbg 6� c. 2

For example, let us consider compatible fB;C;Dg of
machine M . Since the input-labeled implied pairs in the
compatible are only (A;E; 1), the input-labeled pair-wise
class set is f(A;E; 1)g.
Intuitively a input-labeled pair-wise class set is the col-

lection of the state pairs attached to input i in each im-
plied sets in the class set for each input i.
We introduce the following dominance relation using

input-labeled class sets instead of the conventional domi-
nance relation.

De�nition 12 Compatible c pw-dominates(or pair-
wise-dominates) compatible c0 if and only if

1. c0 � c, and

2. IPWCS(c0) � IPWCS(c): 2

De�nition 13 Signature s of compatible c is a minimal
subset of c such that IPWCS(c) � IPWCS(s). 2

A signature of compatible c is a minimal compatible pw-
dominated by c. Signatures of compatibles are obtained
by collecting the state pairs implying each implied pair
in pair-wise class sets. Though we could compute signa-
tures for class sets, it requires reverse image computation,
which takes a lot of time.

De�nition 14 A pw-prime compatible is one that is
not pw-dominated by any other compatibles. 2

As for the relation between pw-dominance and the con-
ventional dominance, following condition holds.

Theorem 3 Compatible c is a pw-prime compatible if c
is a prime compatible. 2

Proof. Suppose that there exists a prime compatible c
such that c is pw-dominated by another compatible c0.
Then (1) c � c0 and (2) IPWCS(c) � IPWCS(c0). Con-
dition (2) means that IMP (c; x) � IMP (c0; x) for every
input x. It follows that CS(c) � CS(c0). Therefore c is
dominated by c0, which is a contradiction. 2

The theorem shows that dominance check by IPWCS's
is weaker than that by class sets. That is, if a compatible
is excluded by pw-dominance checking, it is also excluded
by the conventional dominance checking.
From theorem2 and 3, the following theorem is derived.

Theorem 4 At least one minimum closed cover consists
entirely of pw-prime compatibles. 2

B. Example

To explain how to exclude pw-dominated compatibles,
let us consider the example in Fig.1. In Section III, all
the compatibles of the machine are computed. First we
compute the signatures of compatibles. For each compat-
ible, all the subsets of the compatible are generated and
the subsets are coupled with the compatible as shown in
the leftmost column of Fig.4. Note that compatibles and
their signatures are represented in the positional-set form.
Then pick up an input-labeled implied pair, for example,
(C;D; 0). (C;D) is an implied pair of (A;E) for input 0.
It is also an implied pair of (B;D) for input 0. It is writ-
ten in the topmost row in Fig.4. Here (s1; s2; i) denotes
an implied pair (s1; s2) for input i.
For each compatible such that

\c 6� (C;D)" and \c contain (A;E) or (B;D)"; (1)

all the subsets of c containing (A;E) or (B;D) are cho-
sen. Other subsets of c are dropped and \�"'s are placed
in corresponding cells(shown in the column p1). Any sub-
sets of compatibles that do not satisfy (1) also still remain.
This procedure is done for all the input-labeled implied
pairs one by one. When it is �nished, the remaining sub-
sets for each compatible are ones pw-dominated by the
compatible. Minimal subsets are signatures. In Fig.4, sig-
natures of each compatible are checked in the rightmost
column \sig.". Finally pw-dominated compatibles are ex-
cluded. In the example, the pw-prime compatibles are
00001, 00010, 00100, 01010, 01110, 10001, 11000. These
are the same as the conventional prime compatibles.
These calculation is suitable for implicit calculation. In

the next subsection, an implicit procedure is shown.

C. Implicit Generation of Prime Compatibles

The implicit algorithm for generating the pw-prime
compatibles is shown in Fig.5.
All the operations in gen prime compatible(C; T) is

done by BDD manipulation. The set C of all the compat-
ibles is represented by a BDD as described in subsection

implied pair y
compatible subset p1 p2 p3 sig.

00001 00001
00000

p
00010 00010

00000
p

00100 00100
00000

p
00110 00110

p
00100 �
01000 �
00000 �

01000 01000
00000

p
01010 01010

p
01000 �
00010 �
00000 �

01100 01100
p

01000 �
00100 �
00000 �

01110 01110
01100

p
01010 �
00110

p
01000 �
00100 �
00010 �
00000 �

10000 10000
00000

p
10001 10001

p
10000 �
00001 �
00000 �

11000 11000
10000
01000
00000

p
y p1 : (CD; 0) AE;BD

p2 : (AE; 1) BC;CD

p3 : (BD;0) CD

Fig. 4. Generation of signatures

B. To generate pw-prime compatibles, pairs of compati-
bles and their signatures are represented as a BDD of 2n

variables, ~x = (x1; x2; � � � ; xn) and ~x0 = (x0
1
; x0

2
; � � � ; x0

n
).

Since xi and x0
i
are closely related, these variables should

be placed adjacently in the order of variables on BDD's
to reduce the size of them. Therefore the variables for
compatibles and these for signatures are interleaved.
On line 1 in Fig.5, for each compatible c, all the

subsets s are generated. These subsets are candidates
for signatures of the compatible. A recursive function
SubsetDoubling is introduced for the subset generation.
If the set C of compatibles is C = xi � C0

i
+ xi � C1

i
, then

SDoubling(C) = xi�x0i�SDoubling(C0

i
)+xi�SDoubling(C1

i
):

Set R on line 3 is the set of all the candidates to be
dropped for input-labeled implied pair (p; i). For example,
let us consider a target input-labeled implied pair (p; i) =
(C;D; 0) in Fig.4 in order to show how to calculate the

gen prime compatible(Compatibles C; Merger T) f
1. P f(c; s)jc 2 C; s � cg;
2. for each input-labeled implied pair (p; i) in T f
3. R f(r; r0)jr 6� p, PWCS(r) � p,

PWCS(r0) 6� pg;
4. P PnR;
5. g
6. P Prime(P);
7. PC ExtractPrime(P);
8. return PC;
g

Fig. 5. Implicit generation of pw-prime compatibles

BDD. Since (A,E) and (B, D) imply p, R is calculated as
follows:

R = (C +D)(AE +BD)(A0E0 +B0D0):

Prime(P) on line 6 is the function to calculate the pw-
prime compatibles. Note that for every (c; s) 2 P , c con-
tains s throughout procedure gen prime compatible.
Prime(P) can be also expressed with recursive equa-

tions. Let P = xi � x0i � P 00

i
+ xi � x0i � P 10

i
+ xi � x0i � P 11

i
:

then

Prime(0) = 0
Prime(1) = 1

Prime00
i
(P) = Prime(P 00

i
nEqDom(P 00

i
; P 11

i
))

Prime10
i
(P) = Prime(P 10

i
nDominated(P 01

i
; P 11

i
)

Prime11
i
(P) = Prime(P 11

i
nDominated(P 11

i
; P 10

i
))

EqDom(P;Q) is an operation that calculates all the
compatibles in P pw-dominated by or equivalent to at
least one compatible inQ. P and Q are sets of compatible-
signature pairs. It can be calculated as follows:

EqDom(0;Q) = 0
EqDom(P; 0) = 0
EqDom(P; 1) = P
EqDom(P; P) = P

EqDom00

i
(P;Q) = EqDom(P 00

i
; Q00

i
[Q10

i
)

EqDom10

i
(P;Q) = EqDom(P 10

i
; Q10

i
[Q11

i
)

EqDom11

i
(P;Q) = EqDom(P 11

i
; Q11

i
[Q10

i
)

Dominated(P;Q) is an operation that calculates all the
compatibles in P pw-dominated by at least one com-
patible in Q. P and Q are also sets of compatible-
signature pairs. It is calculated in the recursive manner
like EqDom.
When set P is represented by BDD's, it requires as

many Boolean variables as class sets. That is, it requires
2n variables. However, in a pair (c; s) in P , s is always
subset of c, while this does not hold when class sets are
used. This is likely to be suitable for BDD's, especially

for Ternary Decision Diagrams (TDD's). In TDD's, these
functions require only n variables, while three edges are
necessary for each node. Though a nodes of TDD's require
about one and a half times as much memories as that of
BDD's,the TDD representing compatibles and their sig-
nature still require much less memories than the BDD
representing compatibles and their class sets.

V. Experimental Results

We implemented the algorithm described in the pre-
vious sections in a program. To represent a set of
compatible-signature pairs, we use BDD's with the in-
terleaving variable ordering instead of TDD's.

We ran our program IPWCS on large FSM benchmarks
reported in [8]. Comparisons are made with ISM [8] and
STAMINA [3] (shortened as STAM. in the table). ISM is
an implicit method and STAMINA is an explicit one.

Table I summarizes the result of prime compatible gen-
eration. In Table I, Ns, Ncomp are the numbers of states,
and compatibles, respectively. Column Nprime shows the
numbers of pw-prime compatibles or prime compatibles.
Entry \u.f." shows that the number of pw-prime compat-
ible cannot be computed from the resulting BDD's be-
cause of under
ow. Column time(sec) shows the run
time required for generating all the pw-prime (or prime)
compatibles. The run times of ISM are reported in [8]. It
was run on DECstation 5000/260(440Mb). IPWCS and
STAMINA were run on Sun SPARCstation 10(96Mb).

Experimental results show that in many tested bench-
marks our method(IPWCS) takes much less time than
ISM, though machines for experiments are di�erent.
Note that for all the examples that STAMINA completes
STAMINA takes equal or more time than IPWCS. On the
other hands, ISM takes more time than STAMINA for
some examples. For fo.70 ours is about 20 times faster
than ISM. IPWCS failed on the benchmarks rubin600, ru-
bin1200, rubin2250, while ISM completed them. These
examples are arti�cially constructed to have the number
of prime compatibles exponential in the number of states
and have huge number of implied pairs to be dealt with,
which is the main reason our program failed.

Though our dominance checking is weaker than that in
ISM or STAMINA, in many cases the number of the pw-
prime compatibles is the same as that of the prime com-
patibles. The di�erence between the numbers of both pw-
prime and prime compatibles is not negligible for the ex-
ample from e271 to e680, which have been randomly gen-
erated. These results indicates that proposed method is
likely to generate almost the same pw-prime compatibles
as prime compaitibles e�ciently for practical ISFSM's.

VI. conclusions

We proposed a new implicit algorithm of generating
prime compatibles for state minimization of ISFSM's. A
new idea of signatures of compatibles are introduced. Al-
though the dominance check is weaker than that by class

TABLE I
Experimental results

Nprime time(sec.)
FSMs Ns Ncomp IPWCS ISM/STAM. IPWCS y ISM z STAM. y
alex1 42 55928 787 787 14 24 22

intel edge.dummy 28 9432 396 396 6 37 6

isend 40 2.876e8 480 480 43 13 fails

pe-rcv-ifc.fc 46 1.528e11 148 148 108 114 fails

pe-rcv-ifc.fc.m 27 1.793e6 38 38 0 3 304

pe-send-ifc.fc 70 5.071e17 { 506 fails 571 fails

pe-send-ifc.fc.m 26 8.978e6 23 23 1 3 332

vbe4a 58 1.756e12 u.f. 2072 36 109 309

vmebus.master.m 32 3.842e7 28 28 1 26 fails

th.30 31 97849 33064 33064 10 21 2450

th.40 41 1.456e6 529420 529420 42 75 fails

th.55 55 3.622e7 1.555e7 1.555e7 215 1273 fails

fo.20 21 42193 12762 12762 2 2 397

fo.50 51 3.643e7 1.697e7 1.697e7 62 216 fails

fo.70 71 9.622e10 4.524e10 4.524e10 1002 22940 fails

ifsm0 38 1.0649e6 18686 18686 75 43 3147

ifsm1 74 43006 u.f. 8925 39 25 abort

ifsm2 48 497399 774 774 4 267 837

rubin18 18 4095 4095 4095 0 0 640

rubin600 600 2400 � 1 { 2400 � 1 fails 1978 fails

rubin1200 1200 2800 � 1 { 2800 � 1 fails 27105 fails

rubin2250 2250 21500 � 1 { 21500 � 1 fails 271134 fails

e271 19 393215 106461 96383 50 21 fails

e285 19 393215 121665 121501 47 13 fails

e304 19 393215 265537 264079 39 93 fails

e423 19 204799 161428 160494 19 102 fails

e680 19 327699 193788 192803 53 151 fails

y: It was run on Sun SPARCstation10(96Mb)
z: It was run on DECstation 5000/260(440Mb)

sets, the number of dominated compatibles are the same
in many cases. Experimental results show that the pro-
posed method can generates prime compatibles e�ciently
for almost all the practical ISFSM's.

Acknowledgments

The authors would like to thank Dr. Timothy Kam and
Dr. Tiziano Villa of University of California at Berkeley
for providing us with the FSM benchmarks.

References

[1] M. C. Paull and S. H. Unger. \Minimizing the Number of States
in Incompletely Speci�ed Sequential Switching Functions". IRE
Trans. on Electronic Computers, 8:356{367, September 1959.

[2] A. Grasselli and F. Luccio. \A Method for Minimizing the Num-
ber of Internal States in Incompletely Speci�ed Sequential Net-
works". IRE Trans. on Electronic Computers, 14(3):350{359,
June 1965.

[3] J.-K. Rho, G. Hachtel, F. Somenzi, and R. Jacoby. \Exact
and Heuristic Algorithms for the Minimization of Incompletely
Speci�ed State Machines". IEEE Trans. on Computer-Aided
Design, 13(2):167{177, February 1994.

[4] R. E. Bryant. \Graph-Based Algorithms for Boolean Function
Manipulation". IEEE Transactions on Computers, 35(8):677{
691, August 1986.

[5] G. Swamy, R. Brayton, and P.McGeer. \A Fully Implicit Quine-
McCluskey Procedure Using bdd's". In UCB Technical Report
No.UCB/ERL M92/127, June 1992.

[6] O. Coudert, J. C. Madre, and H. Fraisse. \A New Viewpoint
on Two-Level Logic Minimization". In Proceedings of the 30th
ACM/IEEE Design Automation Conference, pages 625{630,
1993.

[7] P. McGeer, J. Sanghavi, R. Brayton, and A. Sangiovanni-
Vincentelli. Espresso-Signature: A New Exact Minimizer for
Logic Functions. In Proceedings of the 30th ACM/IEEE Design
Automation Conference, pages 618{624, June 1993.

[8] T. Kam, T. Villa, R. Brayton, and A.Sangiovanni-Vincentelli.
\A Fully Implicit Algorithm for Exact State Minimization". In
31st ACM/IEEE Design Automation Conference, pages 684{
690, June 1994.

[9] Z. Kohavi. \Switching and Finite Automata Theory 2/e". Tata
McGraw-Hill, 1978.

	ASP-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

