
Abstract: In this paper we present a novel approach for Built-
In Self Test (BIST) for VLSI. Many conventional BIST schemes
use signatures generated by a linear feedback shift register
(LFSR) or a multiple input signature register (MISR) for deter-
mining whether the device under test is faulty or fault free. In
the approach presented in this paper, fault detection is made
based on the number of different states the LFSR visits. This
number is called the cycle length. It is also shown that such an

approach results in the probability of aliasing of ,
where m denotes the number of registers in the LFSR, com-

pared to 2-m achieved by conventional signature analyzers. We
also present the complexity of the additional hardware
required to implement the scheme.

1. Introduction

Currently, there are many built-in self test (BIST)
schemes [1-5] in existence. Among them most widely used
BIST approach is the signature analysis. In signature analy-
sis, the test responses of a system are compacted into a sig-
nature using a linear feedback shift register (LFSR) or a
multiple input signature register (MISR) as shown in Fig. 1.
Then the signature of the device under test (DUT) is com-
pared with the expected (reference) signature. If they both
match, the DUT is declared fault free, else it is declared
faulty. Since several thousands of test responses are com-
pacted into a few bits of signature by an LFSR/MISR, there
is an information loss. As a result some faulty devices may
have the same correct signature. The probability of a faulty
device having the same signature is called the probability of
aliasing. The probability of aliasing is shown to be [6]
approximately2-m, wherem denotes the number of bits in
the signature (number of registers in LFSR/MISR). This
probability may be higher if the faults in the DUT are corre-
lated. As a result there is no guarantee that the device
declared to be fault free is really fault free.

In this paper, we present a new approach for built-

2
2

m 1–
m+ 

 
–

in self test that results in lower probability of aliasing. In this
scheme the outputs from the device under test will be applied
to an LFSR, and the states generated by the LFSR will be
monitored. The number of different states generated by an
LFSR before repeating is called a “cycle length” and all those
states are said to form a “cycle”. The cycle is called a maxi-

mal length cycle if it equals 2m. For a fault free device the
cycle length is determined and this cycle length is used to
determine whether a DUT is faulty or not. Suppose, a fault
free device generates a maximal length cycle, then a faulty
device may not generate a maximal length cycle, there by
detecting the faults. The probability that a faulty device hav-
ing the same cycle length is very low, and its calculations will
be presented in Section 3. In general, determination of cycle
length requires the knowledge of the states visited by an
LFSR. This implies that the past history should be maintained
in order to determine the cycle length. However, if the cycle

length is 2m, determination of cycle length would be easy. A
simple circuit presented in Fig. 2 can be used to determine

whether the cycle length is 2m or not. Hence, if the fault free

device does not generate all 2m states, an auxiliary function

Test Pattern Generator

Device Under Test

FF FF FF

Fig. 1: General Set up for Signature Analysis

f f f
1 2 k MISR

A Built-In Self Test Scheme for VLSI

T. Raju Damarla
National Research Council
US Army Research Labs

AMSRL-PS-EA
Fort Monmouth, NJ 07703

Wei Su
US Army Research Labs

AMSRL-PS-EA
Fort Monmouth, NJ 07703

Moon J. Chung
Dept. of Computer Science
Michigan State University
East Lansing, MI 48824

Charles E. Stroud
Dept. of Electrical Engineering

University of Kentucky
Lexington, KY 40506

Gerald T. Michael
US Army Research Labs

AMSRL-PS-EA
Fort Monmouth, NJ 07703

will be used to ensure that the LFSR would generate all 2m

states. The outline of the rest of the paper is as follows. Sec-
tion 2 presents a scheme for generating of cycles of required
length along with the new BIST scheme. Section 3 presents
the calculations for the probability of aliasing with the new

scheme and it will be shown to be . For example,
if m=8, the probability of aliasing by the new scheme would

be 2-136, while the probability of aliasing by signature analy-

sis is 2-8. Hence, the proposed technique results in a better
BIST scheme. The additional hardware required by the new
approach will be presented.

2. Description of New BIST Approach

Several researchers [8,9] have studied signature anal-
ysis techniques in order to reduce the probability of aliasing. It
is this uncertainty that makes us to investigate for better test-
ing schemes. In this section, we will present a new alternative
technique to signature analysis. The general approach for this
technique is shown in Fig. 2. The idea for this approach is that
when the device is fault free, the LFSR should generate all

possible states, giving the cycle length of 2m. The designing
process of such a system consists of designing an auxiliary
function, if necessary, when applied with the function

F=f1⊕...⊕fk, the LFSR would generate all 2m states. The
approach consists of first constructing an LFSR with a primi-
tive polynomial of degreem that generates all non-zero states.
Next an auxiliary function is selected such that when it is
applied with the functionF, the LFSR in Fig. 2 would gener-
ate the same states generated by the LFSR with the primitive
polynomial as its characteristic polynomial. Note that the

characteristic polynomial for the LFSR in Fig. 2 is xm +1.
Steps involved in designing a BIST scheme given in Fig. 2 are
given below:

Device Under Test

FFFF FFFF

x
0

x
0

x1

x1

x
m-1

x
m-1

f f k h
Auxiliary Function

m+1 Bit Counter
T f/f Count

Enable

x

x

0

m-1

Clk

Fig. 2: General Scheme for New BIST

F

1
LFSR

2
2

m 1–
m+ 

 
–

Step 1: First determine the maximum number of variables
any functionfi, for all i, is dependent on for a given digital
system. Let this number be ‘m’. Then construct an LFSR with
a primitive polynomial of degreem as shown in Fig. 3b. Ini-
tialize the LFSR with a ‘100...0’ pattern. Apply the states of
the LFSR as test vectors to the digital system and collect the
output‘F ’, and the input to the LFSR ‘Z’ and xm-1, for every
state of the LFSR. Reset the LFSR with an all ‘00...0’ pattern
and collect‘F’ .

Step 2: Assume that the auxiliary function‘h’ is a function of
m variables, and the state of the LFSR is the input to it as
shown in Fig. 2. Then generate the truth table for theh(X)
using the information collected in Step 1 and using the equa-
tion:

 (1)

for every state ‘X’ of the LFSR.

Step 3: Minimize the auxiliary functionh(X) and implement
it as a part of the test system as shown in Fig. 2.

In the test mode, initialize the LFSR in Fig. 2 with

‘00...0’ vector, and run the system for 2m clocks. Clearly
from the above construction we find that the input to the
LFSR in Fig. 2,h(X)⊕F(X)⊕xm-1 = Z is same as the feed-
back input Z to the LFSR with a primitive polynomial (Fig.
3b) used in Step 1. Since the LFSR in Fig. 3b is constructed
with EXOR gates outside shift register chain, its states are
determined entirely by the input bit stream ‘Z’ entering it.
Since the same bit stream ‘Z’ is applied to the LFSR in Fig. 2,
its states would be identical to the states generated by the
LFSR with a primitive characteristic polynomial constructed
as shown in Fig. 3b.

Example 1: Design a BIST network for a system consisting
of three functions given in Table 1. We first select the primi-

tive polynomialp(x)=x4+x+1 of degree 4 for the LFSR. Then
the states generated by the LFSR with this primitive polyno-
mial starting from the ‘0001’ state are given in Table 1. The
outputs corresponding to each state for various functions are
also listed in Table 1. We monitor the functionF = f1⊕f2⊕f3,

h X() F X() Z X() xm 1–⊕ ⊕=

Digital
System

FF

Fig. 3: Set up for collection of data

ZF

x x x
0 1 m-1

f f f2 k

Fig 3a: System

x0 x1 xm-1

f1 3

Fig 3b: LFSR for Test Patterns Gene-
 ration

FF FF FF

input ‘Z’ to LFSR and compute value of the auxiliary function

‘h’ for each state using Equation 1.
Once, the BIST is designed as described in Steps 1 -

3, one needs to determine the cycle length for a device under
test in test mode to determine whether it is faulty. This can be
done by a simple circuit given in Fig. 2. For the scheme
shown in Fig. 2, initialize the LFSR with ‘00...0’ and clock it

2m times. If the number of clocks used are 2m and the contents
of LFSR is ‘00...0’, then declare the DUT to be fault free else
faulty.

What follows now is an explanation why a faulty cir-
cuit once enters a cycle it does not leave the cycle. Let
g(X)=F(X)⊕h(X). Since there are no storage elements in the
paths of outputs offi andh, the functiong(X) has an unique
value for each state X resulting in an unique state of the circu-
lar shift register (LFSR).
Remark: Since the closed loop nature of the Fig. 2, the LFSR
generates a set of states that form a cycle. Once the circuit
enters a cycle, it does not come out of the cycle, since

whereXi and Xi+1 denotes theith and (i+1)th states of the
LFSR. Sinceg(Xi) is fixed, the next state is unique. Hence if
the circuit enters cycle, it will remain in the cycle. If a faulty
device results in a maximal cycle length, then the input func-
tion to the LFSR should be one of theℵ functions (see Sec-
tion 3), otherwise the circuit enters a smaller cycle and
remains in it. Hence the fault would be detected.

The circuit shown in Fig. 2 works as follows: When
the LFSR is reset to ‘00...0’, the T flip flop will be set to ‘1’

Table 1: Various Values to be observed

State of
LFSR

x3x2x1x0

f1 f2 f3 F Z h g = F⊕h

0000
0001
0010
0100
1001
0011
0110
1101
1010
0101
1011
0111
1111
1110
1100
1000

1
1
1
0
1
0
0
1
0
1
1
0
1
0
1
1

0
0
1
1
0
0
0
0
0
0
1
1
1
0
0
1

0
1
1
1
0
0
1
1
1
0
0
0
0
0
1
1

1
0
1
0
1
0
1
0
1
1
0
1
0
0
0
1

1
0
0
1
1
0
1
0
1
1
1
1
0
0
0
0

0
0
1
1
1
0
0
1
1
0
0
0
1
1
1
0

1
0
0
1
0
0
1
1
0
1
0
1
1
1
1
1

Xi xi 0, xi 1, … xi m 1–,, , , 
 =

Xi 1+ g Xi 
  xi m 1–, x,⊕

i 0,
xi 1, … xi m 2–,, , ,

 
 =

allowing the counter to count. When the ‘00...0’ state is
reached the T flip flop will be reset to ‘0’ stopping the
counter. The contents of the counter would indicate how
many clock pulses are applied.

3. Aliasing Probability based on Cycle Lengths

We assume that we are using the approach shown in
Fig. 2 to determine whether a DUT is faulty or fault free
based on the cycle length. We are also assuming that the error
masking due to the linear combination of double bit errors at
the outputsf1,...,fk is statistically the same as that which
would occur in a MISR due to diagonal errors. There is a dan-
ger of declaring a faulty circuit as fault free if the faults are
such that the resulting input to the LFSR takes it through all
states but in a different order starting from ‘00...0’ and ending

in ‘00...0’ preserving the cycle length to 2m. We will now
compute this probability of aliasingPa.

Since the DUT is declared fault free only if the num-

ber of clocks used is 2m and the contents of the LFSR is
‘00...0’, in order to compute the probability of aliasing we
need to compute how many functionsg(X) give cycle length

of 2m, in the setting shown in Fig. 4. Consider the network
shown in Fig. 4. The input to this network is a four variable
function and the number of flip flops in the circular shift reg-
ister is four. If the original function applied to this circuit is
same as the function given in Table 1, then the cycle gener-

ated by this function is 24=16. Suppose, due to a fault the

input function changed to another functiong’(X) giving a
cycle length of 16, then we have aliasing. Suppose, there are
ℵ number of functions that generate maximal cycle length,
then the aliasing probability in general is given by

 (2)

where is the total number of different functions that gener-

ate the cycle length of 2m and is the total number of pos-
sible functions withm variables, wherem denotes the number
of flip flops in the LFSR shown in Fig. 4. For the casem=4,

Pa= .The above probability is derived with the assump-

tion that all functions are equally likely. Now, we will com-
pute ℵ. In order to computeℵ, we will first find the

properties of the functions that result in cycle length 2m.

At this point we would like to mention that the input
g to the LFSR in Fig. 4 appears in a particular order deter-

Pa
ℵ 1–

2
2

m
-------------=

ℵ

2
2

m

ℵ 1–
65536

FF FF FF FF
x0 x1 x2 x3g(x3x2x1x0)

Fig. 4. Circular Shift Register with a single input

mined by the states of the LFSR when compared to the same
function represented in a truth table. Table 2 illustrates this
point for the functiong given in Table 1. The function re-writ-
ten in the numerical order of the states as it should appear in a
truth table is given in columns 3 and 4. So the function f in
column 4 is exactly same asg in column 2 but written in dif-
ferent order. In order to find their properties, we will be deal-
ing with the sequences‘g’ and their corresponding functions
‘ f ’ . Some of the lemmas given below relate to the properties
of transformations that take sequences ‘g’ into functions ‘f ’ .

Definition: Let g(x) = anx
n+an-1x

n-1+....+a1x+a0, an ≠ 0.

Then the reciprocal polynomialg* of g is defined by [5]:

g*(x) = xng() = a0x
n+a1x

n-1+....+an-1x+an.

Property 1: Let g(x)=q(x)p(x) then from the above definition

g*(x)=q*(x)p*(x)

Property 2: An input polynomialg(x) that generates all 2m

states in an LFSR with characteristic polynomialp(x)=xm+1
shown in Fig. 4 is divisible byp(x) and henceg(x)=q(x)p(x),
and the states generated by the LFSR are identical to them-
bits taken at a time in the normal bit pattern representation of
q(x).

Example 2: Let m = 4, and let theg(x) applied to the LFSR

with p(x) = xm+1 shown in Fig. 4 is g=1001001101011111
(represented in its normal form) and the
q=0000100110101111. This sequence of bits forq is same as
the sequence of bits that appear at the output of the last regis-
ter of LFSR (x3 register, in Fig. 4). The first four bits ofq

gives the state ‘0000’, the second four bits give ‘0001’ state.

Table 2: Function g(X) to circular shift register

State of
LFSR

x3x2x1x0 g

Truth

x3x2x1x0

Table

f f*

0000
0001
0010
0100
1001
0011
0110
1101
1010
0101
1011
0111
1111
1110
1100
1000

1
0
0
1
0
0
1
1
0
1
0
1
1
1
1
1

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1
0
0
0
1
1
1
1
1
0
0
0
1
1
1
1

1
1
1
1
0
0
0
1
1
1
1
1
0
0
0
1

1
x

and so on. Similarly, if g*=1111101011001001 then
q*=0000111101011001 and clearly the states of the LFSR
generated byg* are exactly identical to the ones generated by

g but in reverse order. Hence if g generates all 2m states, then

g* would generate all 2m states.

Lemma 1: Let g be a vector, andg*=Eg be the reciprocal of
g, where

,

if there exists linear transformsT andT* such thatf=Tg and
f*=T*g* , then the vectorf*=Ef is the reciprocal off.

Proof: Let T*=ETE-1, then

f*=T*g*=ETE -1Eg=ETg=Ef.

Lemma 2: Let g be an input polynomial when applied to an

LFSR whose characteristic polynomial isxm+1 generates all

2m states and the corresponding Boolean function

f=(f(0),f(1),...,f(2m-1)) (g written as a function of the output
state of LFSR). Then the reciprocal of f denoted by

f*=(f(2m-1),...,f(1),f(0)) and the corresponding polynomialg*

also results in a cycle length of 2m.

Proof: Clearly there is a linear transformT that converts g to
f since we can generate g from f. From Properties 1 & 2, it is

clear thatg*, the reciprocal of g, also generates all 2m state.
Now, from Lemma 1, we haveT*g* = f* . But the relationship
between f andf* is given by

f(xm-1xm-2...x1x0) = f*(xm-1xm-2...x1x0).

Hence the proof.

From now onwards we use the function f and g inter-
changeably as they both are identical except for reordering.
Table 2 gives the functionf(X) and itsf*(X).

Lemma 3: Let f(xm-1xm-2...x1x0) be a function that generates

a cycle of maximal length 2m, then the function should satisfy
the propertyf(0xm-2...x0)=f(1xm-2...x0) where xm-1 is the most
significant variable in the truth table. In other words, the
functional values in the first half of the truth table should be
identical to the second half.

Proof: Let X(t) = (xm-1(t),xm-2(t), ... ,x0(t)) be the current
state of the circular shift register (LFSR) in the Fig. 4 setting,
then the next state is given by

 X(t+1) = (xm-2(t), ... ,x0(t),f(X(t)⊕xm-1(t)) (3)

If f(xm-1(t),xm-2(t), ... ,x0(t)) ≠ f(xm-1(t),xm-2(t), ... ,x0(t)), then
f(X(t))⊕xm-1(t)=f(X(t))⊕xm-1(t), wheref denotes the comple-

E

0 … 0 1

0 … 1 0

…
1 … 0 0

=

ment of f, hence by Equation 3 the state generated after the
present state (xm-1(t),...,x0(t)) and (xm-1(t),...,x0(t)) will be
identical. Since no two states should go to the same next state
for maximal length cycle

f(xm-1(t),xm-2(t), ... ,x0(t)) = f(xm-1(t),xm-2(t), ... ,x0(t)).

Table 2, illustrates the concepts described in Lemma 3, that is
the first half of the table for f is identical to the later half.

Lemma 4: Let f(xm-1 ... x0) is a function that results in maxi-
mal length cycle, then the function should satisfy the property

f(00...0) =f(011...1) = 1

f(10...0) =f(111...1) = 1

where xm-1 is the most significant variable.

Proof: Supposef(00...0)=0. In a maximal length cycle ‘00...0’
is one of the states. Iff(00...0)=0 and the present state is 00...0,
then it will stay put in the same state for ever giving a cycle of
cycle length 1. Hencef(00...0) = 1 for a maximal length cycle
generating function. From Lemma 3, we havef(00...0) =
f(10...0) = 1. Hence for any functionf that generates maximal
cycle lengthf(100..0) = 1. Since, the reciprocal functionf*
also generates maximal length cycle, we havef* (100...0) = 1.
Then, from Lemma 2, we getf* (10...0) =f(01...1) = 1. Since
f(01...1) = 1, from Lemma 3 we concludef(11...1) = 1.

Theorem 1: The number of functions withm number of vari-
ables that generate maximal length cycle when applied to a
circular shift register (LFSR) ofm flip flops whose outputs are
in turn applied as inputs to the function is given by

 (4)

Proof: Proof is given in the Appendix.

From Equation 2, we find that the probability of aliasing as

(5)

which is much smaller compared to the probability of aliasing
obtained by signature analysis, which is equal to2-m. Clearly,
finding the cycles is a better way of testing the circuits.

4. Hardware Complexity of Auxiliary Function h(X)

In this section, we will present the hardware com-
plexity of the auxiliary functionh(X). In general this hardware
complexity could be high. However, the size of the LFSR for
a given probability of aliasing will be small. For example, if

the desired probability of aliasing for a system is 2-100, then
the size of the LFSR would be 8. In the worst case, the hard-

ware complexity would be 27. For this calculation, we

ℵ 2
2
m 1–

m–
=

Pa
2
2
m 1–

m–
1–

2
2
m

--------------------------------------- 1

2
2
m 1–

m+
------------------------------≈ 2

2
m 1–

m+ 
 

–
= =

assumed thath(X) can have at most 2m-1 minterms, wherem
denotes the number of variables in functionh(X). If h(X) con-

tains more than 2m-1, then implement the complement ofh(X)
and use an inverter to geth(X). The following Table 3 pre-
sents the worst case hardware complexities for variousm and
the resulting probability of aliasing. From Table 3, it is clear
that the probability of aliasing is very small even form=8.
However, it should be noted that the LFSR size will normally
be selected based on the number of test patterns that must be
applied to the largest function in the DUT as opposed to the
desired aliasing probability. As a result, for most practical
logic functions, the probability of aliasing with this approach
will be extremely low.

5. Conclusion

In this paper we have introduced a new BIST
approach that provides better probability of aliasing than the
conventional methods. In this new scheme, fault detection is
performed based on the cycle length of the LFSR rather than
the signature. It is shown that, if the size of the LFSR ism

then the probability of aliasing is shown to be .
The hardware complexity is also shown to be much smaller
than the conventional approach. The approach, as described
in this paper, assumes that the DUT is composed completely
of combinational logic. However, it should be noted that this
approach can be extended to test sequential logic by the
incorporation of the necessary initialization and control cir-
cuitry to obtain reproducible results from sequential logic.

References

[1]. M. Abramovici, M.A. Breuer and A.D. Friedman.Digital
Systems Testing and Testable Design. Computer Science
Press, New York, 1990.

[2]. Agrawal, Vishwani D. and Sharad C. Seth.Tutorial: Test
Generation for VLSI Chips.Washington: Computer Society
Press. 1988.

Table 3: Hardware Complexity

Size of
LFSR

m

HW
Complexity

Prob. of
Aliasing

Prob. of
Aliasing by
Signature
Analysis

4 23 2-12 2-4

5 24 2-20 2-5

6 25 2-38 2-6

7 26 2-71 2-7

8 27 2-136 2-8

2
2

m 1–
m+ 

 
–

[3]. Maunder, Colin M. and Rodham E. Tulloss.The Test
Access Port and Boundary Scan Architecture. Washington:
Computer Society Press. 1990.

[4]. Reghbati, Haffan K.Tutorial: VLSI Testing and Validation
Techniques. Washington: Computer Society Press. 1985.

[5]. P.H. Bardell, W.H. McAnney and J. Savir.Built-in Test for
VLSI.John Wiley & Sons, New York, 1987.

[6]. J.E. Smith, “Measures of the effectiveness of fault signa-
ture analysis,” IEEE Transactions on Computers, Vol. C-29,
No. 6, pp. 510-514, June, 1980.

[7]. R. G. Bennetts:Design of Testable Logic Circuits,Addi-
son-Wesley Publishing Co. Reading, MA, 1984.

[8]. D.K. Pradhan and S.K. Gupta, “A new framework for
designing and analyzing BIST techniques and zero aliasing
compression,” IEEE Trans. on Computers, Vol. 40, No. 6,
June 1991, pp. 743-762.

[9]. T.W. Williams, W. Daehn, M. Gruetzner and C.W.Starke,
“Aliasing errors in signature analysis registers,” IEEE Design
and Test, Vol. C-36, No. 4. pp.39-45, April 1987.

[10]. H. Fredricksen, “A survey of full length nonlinear shift
register cycle algorithms”, SIAM Review, Industrial and
Applied Mathematics, pp. 195-221, 1982.

APPENDIX

Here, we will present the proof for Theorem 1. Con-
sider the circuit given in Fig. 4. Let us denote the state of the

LFSR by a vectorX(t)=[xm-1(t), ..., x0(t)]
T, where T denotes

the transpose of a matrix. Then the relation between the next
state and the present state is given by:

where , [B]=[0 ... 0 1]T , where I denotes am-1 x

m-1 identity matrix andf(X(t)) is a scalar. The state of the

machine after 2m clocks is given by

X t 1+() A[] X t() B[] f X t()()⊕=

A[] 0 I

1 0
=

where is the controllability matrix

with a dimension ofm x 2m. Since the pair (A,B) is controlla-

ble, its rank(Φ)=m. Substituting thatX(t+2m)=X(t) for a func-

tion with cycle length of 2m and solving for the function
vector, we get

 (6)

f(X(j)) can be obtained by solvingm linear equations given by
(6). Hence, the above equation results inm linear equations

and 2m functional valuesf(X(j)) to be determined. But from

Lemma 3, only the first half (2m-1) of the elements in truth
table need be determined as the other half is identical. Hence,

the degree of freedom in the above equation is 2m-1-m and
hence the number of functions that generate cycles of length

2m is given by as 2m-1-m of combinations of
0’s and 1’s are there. Hence the proof.

Computer simulations were made to determine the
number of functions that generate maximal length cycle. It is
found form = 2,3,4, the numbers obtained by simulations and
the numbers obtained by computingℵ given by the above
formula are identical. A graph theoretical proof forℵ is pre-
sented in [10].

X t 1+() A[] X t() B[] f X t()()⊕=

X t 2+() A[]
2

X t() AB B[] f X t()()
f X t 1+()()

⊕=

… …

X t 2
m

+ 
 

A[]
2
m

X t() Φ[]

f X t()()
…

f X t 2
m

1–+ 
 

 
 

⊕=

Φ
A

2
m

B … AB B
=

Φ

f X t()()
…

f X t 2
m

1–+ 
 

 
 

X t() A[]
2
m

X t()⊕=

ℵ 2
2

m 1–
m–

=

	ASP-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

