A Hardware-Software Co-simulator for Embedded System Design and Debugging

A. Ghosh, M. Bershteyn, R. Casley, C. Chien, A. Jain, M. Lipsie, D. Tarrodaychik, O. Yamamoto

Mitsubishi Electric Research Laboratories, Inc.
Sunnyvale, CA 94086

Abstract than the actual system, allowing the designer to test the system
One of the interesting problems in hardware-software co-design With @ large number of test cases. However, due to its high
is that of debugging embedded software in conjunction with cost, this technique is economically feasible onIy in certain
hardware. Currently, most software designers wait until a work- cases. It also cannot be used to model timing constraints accu-
ing hardware prototype is available before debugging software. rately and in many cases designs have to be modified to suit
Bugs discovered in hardware during the software debugging emulation. Moreover, re-compiling hardware takes more time
phase require re'design and re-fabl’ication, thereby not Only than Comp|||ng Soﬁware or a HDL (Hardware Descr|pt|on
delaying the project but also increasing cost. It also puts software Language) model for simulation. Finally, it is not always pos-
debugging on hold until a new hardware prototype is available. gjpie 1o observe the internal state of the circuit, both in the
In this paper we describe a hardware-software co-simulator that FPGA and in the processor, making debugging complicated
can be used in the design, debugging and verification of embed- gnd slow.
ded systems. This tool contains simulators for different parts of
the system and a backplane which is used to integrate the simula- A complementary approach is to build software models for all
tors. This enables us to simulate hardWare, software and their the Components of the System and use simulation to ana'yze
interaction efficiently. We also address the problem of simulation penavior. There are many advantages of this approach. First,
speed. Currently, the more accurate (in terms of timing) the mod- - gy are can be combined with behavioral-level hardware
el.s u.sed’ .the longer it takes to simulate a system. O.ur main Con'descriptions to detect bugs as early as possible in the design
tribution is a set of techniques to speed up simulation of : .
processors and peripherals without significant loss in timing pha_se. Hardware, SOftW_are and interface roqt'nes can _be
accuracy. designed and debugged in parallel. Second, timing constraints

can be accurately modeled. Third, re-compilation of either

hardware or software is quick. Detailed debugging, where
internal states of all components can be accessed and altered at
1 INTRODUCTION all time points can be easily supported. Finally, this approach

. - iS not as expensive as emulation.
Design of embedded systems containing both hardware and P

software requires solving several unique and difficult prolsimulators have been mostly used for the design of hardware
lems [4] [5] [12]. One of the interesting problems is that o&nd there are few tools for co-simulation. In this paper, we
debugging embedded software in conjunction with hardwargescribe a hardware-software co-simulator that can be used in
The traditional co-design process, where the software tige design, debugging and verification of embedded systems.
debugged after hardware is fabricated, produces large desigiis tool contains a simulation backplane which can be used
delays due to late discovery of errors in the hardware andt#integrate processor, hardware (HDL) and dedicated simula-
the interface between hardware and software. Integration ofogs for peripherals, forming a co-simulator capable of effi-
chip will make this problem worse because currently usefently simulating hardware, software and their interaction.
tools like In-Circuit Emulators (ICE) cannot be used and sigeach simulator implements debugging functions like setting
nals on a chip cannot be easily observed. There is an obvigygakpoints, examining and altering internal states, single
need for a change in the co-design methodology whereby seffepping,etc In order to feed stimulus to the system and to
ware and hardware can be jointly debugged earlier in t®serve its response a set of virtual instruments have been cre-
design cycle. However, this change in methodology can ordyed. The co-simulator and the virtual instruments can be used
happen when appropriate design tools are available. to create a virtual laboratory that will provide users with a

Th i hes to debugaing hard q hiltform for rapid virtual prototyping. Performance metrics
ere are two approaches to debugging haraware and Syige ¢jock cycles needed to execute software) can be easily
ware without building the actual hardware. The first one

aluated, allowing the user to explore different algorithms,

based on emulation of hardware using, for example, Field Prﬁ)é dware and software implementations and hardware-soft-
grammable Gate Arrays (FPGA) and using a separate bogld . i je-offs

for the processor and memory. A designer can generate a pro-

totype relatively quickly and debug software and interfaces ame main drawback of simulation is its speed. In many cases,
the prototype. After bugs are detected, the entire system eamulation runs orders of magnitude slower than the actual
be recompiled within a relatively short time. In most casesystem. Simulation time depends on the (timing) accuracy of
hardware emulators run only an order of magnitude slowgfe models, with time increasing with increased accuracy.

Finally, we describe applications used to test the co-simulator
and our experience in using it.

Therefore, reducing simulation time without sacrificing timingnteractions with hardware are replaced by remote procedure
accuracy becomes a very important problem. Our main contealls to a hardware simulator process. The main drawback of
bution is a set of techniques to speed up simulation of proc#isis approach is that there is no notion of timing accuracy as
sors and peripherals without significant loss in timingeither the software execution speed nor the interface between
accuracy. Processor simulation speed is improved by actardware and software are accurately modeled.

rately (in terms of timing) simulating only those cycles where

there is interaction with peripherals and by caching results b€ Poseidon co-simulator is described in [4]. An event
instruction decoding. Suppression of periodic signals arslfiven simulator is used to co-ordinate the execution of a hard-
other techniques to be described speed up simulation V&re and a software simulator. The processor simulator is tied

peripherals. Simulation overhead is kept low by managirfgosely to the DLX microprocessor [4] model. There is no spe-
time more efficiently. cial handling of standard peripherals and little information

regarding the debugging environment, simulation speed and
We expect this tool to be used at any point after the initiatcuracy is available.
architecture is determined. Software designers may use behav-
ioral hardware models for initial debugging, evaluation antd [6] the use of Ptolemy [2] in hardware-software co-design
exploration of algorithms and implementations. System arcHRr a digital signal processing (DSP) application is described.
tects may use the tool to determine hardware-software tradéle emphasis in [6] is on the use of the capabilities of
offs. Hardware designers can use prototype software to evdifolemy for heterogeneous simulation and code synthesis for
ate, test and debug their hardware. Finally, when hardware &#egle and multiple processors. After code generation and
software are ready, designers can work on testing and debtigrdware synthesis, co-simulation is performed using the
ging the entire system. hardware simulatoirhor [13] and a simulator for the digital

signal processor DSP56000. It is our belief that though what is
The rest of this paper is organized as follows. Previous workdescribed here in terms of the backplane and what is provided
described in Section 2 followed by a description of the cdyy Ptolemy may be similar in principal, Ptolemy does not
simulation framework in Section 3. Simulator coordination iaddress the efficiency issues related to hardware-software co-
the topic of Section 4. Simulation of processor is described simulation, especially the simulation of processors and periph-
Section 5 followed by simulation of custom hardware in Seerals. From [6], few details are available regarding speed of
tion 6. Simulation of standard peripherals is described in Seximulation, accuracy, the way standard peripherals are handled
tion 7. Interface to other simulators is described in Section &d about the debugging environment.
Example applications used to test the co-simulator are .) . .)
described in Section 9. Conclusions and directions for futufde use of virtual instruments was introduced in [3] in the

work are presented in Section 10. context of simulation of hardware systems. Currently, the tool
described in [3] does not have any capabilities for hardware-
2 PREVIOUS WORK software co-simulation. Use of a simulation backplane in

In [7], a debugging tool for embedded system software is ptjgl_ixed mode simulation is described in [10] and similar back-
’ anes for the integration of hardware simulators are commer-

sented. The software is cross-compiled for the embedded p%a .
cessor and then executed on a model of the system. 'ﬁJ}%"y available.
system is modeled completely in hardware and simulated co-sSIMULATION FRAMEWORK
using a hardware simulator. During simulation, which ma o)]
take several days, all interaction between the processor mot;‘bqje&gnmg the co-simulator the main goals were:
and the surrounding hardware is logged. After simulation, tke to provide fast and timing-accurate simulation;
designer switches to a software debugging environment on a)]]])
host workstation where the code is compiled for the host afid {0 Provide an extensible and flexible simulator-indepen-
re-linked to pseudo hardware drivers that interact with the dent framework where new simulators can be easily inte-
logged information. The primary advantage of this approach is 9rated;
that during debugging, software can run at the host compuserto provide adequate debugging capability for both hard-
speed. However, when a bug is fixed, the entire system mayyare and software:
have to be re-simulated, thereby increasing the debugging)) i .
time. Further, during debugging, there is no way of interad- [0 Provide virtual prototyping capability through the use of
tively affecting system behavior by feeding the system a dif- Virtual instruments;
ferent set of inputs. In our opinion, such a debugger has tg provide means for evaluation of performance metrics.
limited usefulness.

The architecture of the co-simulator is shown in Figure 1. We
An interesting approach presented in [1] is based on distriga|ieve that different parts of an embedded system will be
uted communicating processes modeling hardware and sefinylated using different simulators and therefore we need to
ware. Software is run on a host workstation and afjjjow for heterogeneity in the simulation environment. To

Parallel Port

Simulator

] ICU Simulator,
DMA Simulator

Clock Simulator,
UART Simulator % Timer Simulator
: : > \ Memory Simulato
I Simulation Manageé
< > Backplane
(b) ‘;\ CPU Simulatoy
update_nets()
schedule_simulator()
unschedule_simulator() Verilog-XL
report_internal_time()
0

!

Virtual Instruments current_time() configure
' INitialize
: run_until” time
(Actors) = 'p i
I A : reset()
3 © end
mindelay(
maxdelay()

FIGURE 1. Architecture of the co-simulator

allow different simulators to interact with one another, a simurents are used for human interaction. When a breakpoint in
lation backplane is used. This backplane, also called the sinaumy simulator is reached, simulation is stopped and the user is
lation manager, is the main component of the tool. It managesompted for commands. Whenever a prompt is displayed, the
simulation and debugging as well as communication with viaser can issue commands for any simulator. Batch mode simu-
tual instruments. A well-designed Graphical User Interfadation can also be selected when no interactive input is

(GUI) makes the use of the co-simulator easy and natural fequired.

both software and hardware debugging. At the time of writing,) o)

only one processor simulator for an M16 microprocessor [8'€ co-simulator is implemented as a multithreaded program
and several dedicated simulators for standard peripherals hi&llow easy integration of stand alone simulators. The simu-

been integrated. A commercial simulator, Verilog-XL [14], idation manager and some dedicated simulators constitute the

used for the simulation of hardware described in Verilog HDII‘.”'?i”ﬂ:hreid- Verilog-XL and the simulator for M16 are sepa-
rate threads.

The system to be simulated can be broadly divided into elec-
trical and mechanical components (or even chemical compbt SIMULATION MANAGER

nents). The electrical components could be either hardwarefe simulation manager, hereafter SM, is the backbone of the
software. The hardware could further be digital or analog. Feg_simulator. It performs the following important functions.
example, to simulate a motor control system, we need to simu-

late the controller (electrical) as well as the motor (mecharfi- |t manages the simulation and debugging session. All user
cal). Simulators for standard components are provided. It is commands are relayed by the GUI to the SM. It under-
our assumption that for special components like motors, stands commands for loading the system to be simulated,

enginesetc, the user will be supplying their own models and/ for running simulation as well as for debuggiregg(set-
or simulators. ting breakpoints at certain times). The SM also directs

commands to simulators.
The input to the co-simulator is a description of the system {o
be simulated. It consists of the following items: a list of blocks
and their simulators; a list of nets connecting the blocks; a list
of virtual instruments and their connections; and a list of Simulation of a system involves coordinating the activities
source/object files used by the software debugger and sourcelof simulators, each of which is responsible for simulating a
library files used by the hardware simulator. The simulation part of the system. The SM controls when a simulator is
manager reads the system description, allocates necessary dat@voked, what events are passed tetit, This is the most
structures and initializes all the simulators that would be important function of the SM and is discussed in Section 4.
needed to simulate the system. Once the system is loaded, the
user may interact with any simulator, setting breakpoint3;2 GRAPHICAL USER INTERFACE
examining registersetc. During simulation, virtual instru-

It manages communication between the co-simulator and
virtual instruments.

The graphical user interface, built usifg)/Tk [9], allows the

[

13
2 W2 34 W M B0 TE B OBE 180 2@
Bl WERL S0C HEBMAEER

LEr sl _Same = fmep T 25
145 Tor lrey_sprliale = sl
14|]
1658

I

wald ImSR{}
1

) Ll

_geH

temap = rheos)
W (mal wea
L e

SEy A o

o rrean

| T —
= B T

Critnrcuptsd mk cleck cycle 3
Hisnlated IZGEEE] apalss in
LEMOL cantanua

Intercupted a6 oliak oyole §
Samulwied GUMEMISEHE cpclas o
Ga dberle etk esy

FIGURE 2. The graphical user interface, virtual instruments, and waveform display window

user to interact with the SM and the simulators easily amittual prototype of a 3-phase motor control system shown in
effectively. A snapshot of this interface is shown in Figure Eigure 2. The voltage source actor (FREQ) has a slider that
The GUI consists of a source display window where sourcan be pulled to change the value of the voltage generated.
(for both software and hardware) and assembly-level codeWaveforms are viewed on the oscilloscope actor (PHASE).
displayed. There is also a command window for entering coffhe motor actor (VELOCITY) shows the current motor r.p.m.
mands and a configurable button panel for frequently usesing virtual instruments, users can get both a quantitative
commands. The source display window is used to displayeasure as well as a qualitative feel for the system. In the
breakpoints, the current line where execution has stopped, @&xample of Figure 2, the user can see the actual waveforms
other relevant information found in most software debuggerthat would be generated by the system without building hard-
Additional windows are used to display variables, waveformgjare and using an oscilloscope.

etc
3.4 Simulators

3.3 VIRTUAL INSTRUMENTS _ _ _))
It is possible to represent an entire system, including proces-

Virtual instruments, also calleattors are used primarily for sor, memory, peripherals and custom circuitry in a HDL like
human interaction with the system being simulated. They averilog and simulate it using a simulator like Verilog-XL.
used to provide stimulus as well as to observe response. Bsing the right models, simulation can be accurate but will be
such they model parts of the environment with which the sygery slow [7]. Our approach to speed up simulation is to create
tem interacts and enables the user to use the co-simulator a@gdicated simulators for standard components like processors
virtual laboratory. They are implemented usifig/Tk [9]. and peripherals and integrate them into a co-simulator using
Each virtual instrument is a separate process that commuthie simulation backplane.

cates only with the SM using Unix sockets. The SM manages

the socket traffic as well as the starting and termination 6h€ Simulator for M16 is also a software debugger with
each actor. The virtual instruments that have been impRQPhisticated debugging capabilities. It allows both source-
mented include a variable voltage/current source, a switchleyel as well as assembly-level debugging. It can also evaluate
simple LED probe, a meter, an oscilloscope, a video monitgerformance metrics like the number of clock cycles needed to
an electric motor and an automobile engine. The voltag&€cute a piece of code. Verilog-XL is a hardware debugger
source, electric motor and oscilloscope actors are used foWih capabilities that include display of waveforms (as shown

in the WAVES window in Figure 2), monitoring of signal val-quently, for each block, the SM calls thetialize() routine

ues, determination of set-up and hold time violations atith a pointer to the block, the pins of the block and the nets
latches,etc. Simulators for peripherals allow very primitive connected to the pins. This allows simulators to initialize their
debugging like examining and setting internal registers. Theternal data structures and their interface routines. After this,
debugging capabilities of simulators combined with those tiie SM allocates and initializes the timing wheel. Each simu-
the SM provide a powerful debugging and verification enviator is asked to report the minimum and maximum delay of
ronment for embedded systems. It should be emphasized thath block it is going to simulate through thadelay() and

a natural debugging environment is provided for both softwamneaxdelay() functions. The minimum and maximum delays
and hardware, so neither the software nor the hardwaree the minimum and maximum time required, respectively,
designer is at a disadvantage. for any event at an input to propagate to an output. Simulators
that can ascertain the value of minimum and maximum delay
may report it and the rest (like a circuit simulator) report a

The interface between the SM and a simulator consists of aRegative value, indicating unknown delays. TWimulation

of functions, some implemented in the simulator and some R¢riodis decided on the basis of the timing accuracy required
the SM (shown in Figure 1). A simulator simulates one dPr simulation and is usually chosen to be the time between
more blocks of the same type, with each block having a setgpfccessive clock transitions of the processor/bus clock. The
input and output pins. From a simulator’s point of view, it ignaximum of the maximum delays is used to guide the selec-
given a set of events at a particular time, which indicatet®n of the size of the timing wheel. This size is advertized to

change in signal value on the input pins, and asked to simulatesimulators which can then use it during self-scheduling (to

until some time in the future. During simulation, if the signape described shortly).

value at one of the output pins of a block changes, the simula- . . . , . .
tor reports to the SM E)he Fr)1ew value and the gtlime this evﬁﬂﬁyrmg simulation, the SM first determines events at a particu-

happened and stops simulating further. The SM sees the < [time and the simulators that need to be run. If there is only

tem as a set of blocks connected by nets. Whenever there i O simulator .to un, the SM determlnes the time for thg ’?e’“
ent on the timing wheel (if there is no event on the timing

T e e aneieliheel. i ime is onsidered f be nfriy). t hen clis the
which simulators to invoke, what events to pass to them a _untll_.tlme() fu_nctlon in the ;lmulator with an event list
the simulation time when a simulator should stop simulatin d a variablstop timeset to the time O.f the next event on the
and return control to the SM. Simulator coordination overhe eel. .If there are maore than ong_smulator to run, thg SM
can be reduced by decreasing the number of events, allow, ermines th? minimum of the minimum delays of the' simu-
rs. This minimum delay is added to the current time to

simulators to run uninterrupted for as long as possible, al . : . . :
o - etermine thestop time This ensures that no simulator simu-
managing time efficiently. ; :
lates beyond a time where an external event for it may be pro-

To manage time efﬁcienﬂy' the SM counts time in units of guced, thereby Obviating the need to roll back simulation time.
fixed time called thesimulation periodand also bounds the This is called running in lock step.

size of the timing wheel. This has several important consrﬁ—

quences. Since events can be produced only at certain ti ggh simulator, duringun_until_time() transfers all external

and a limited time into the future, the number of unique timeesventS o its internal event queue and simulates untstope

to manage is smaller. It allows us to statically allocate the tiere” tlf an _event Ohn gntﬁxte_rnallntet IS produged_tat Icf)r b%fore th?
ing wheel before simulation begins. This reduces the run-ti EOP IMe IS reached, the simulator suspends 1tselt and reports

overhead in managing time and the timing wheel. Discretiz 1€ eventt to thE_ShM b)'/t caII;]ngodatefnetsc(j) It r;:ports ﬂl]l'e
tion of time allows us to take advantage of the cycle accura . 'at vlvt!c : d thas stoppe i be kC? ":E
of processor and peripheral simulators which produce eve ort_internal_time() an €n passes control back 1o the

only at discrete times. However, when timing accurate simula-"" When a simulator stops, if there are events to be pro-

tors (like circuit simulators) are used, events can be produc gﬁsed in its internal queue, the simulator requests that it be

at any time. The interface routines round event times to tﬂi‘ ed again at a specific time in the future (as determined by

nearest discrete time value, thereby introducing errors in si h J'Te _Of lt?e ?_?lr_“eSt m(;ernal ﬁvgnt) i byh galll_mg
ulation. A small enouglsimulation periodcan reduce this schedule_simulator() This procedure, called self-scheduling

error, but may offset the benefit obtained from using discre é'o_WS simulators to stop be_fore exhaustmg all mter_nal e_vents.
time. simulator can schedule itself at any (discrete) time in the

future provided it does not exceed the current time by the

Simulator coordination and Synchronization can be undea.dvertized maximum size of the tlmlng wheel. Simulators that

stood by fo”owing a co-simulation session. After the Systeﬁ'phedule themselves in the future but are invoked before that
description is read, the SM determines the simulators tHinhe by events at their inputs can remove their self-scheduling
need to be run and calls thenfigure() routine to let the sim- events by callinginschedule_simulator() Note that when a

ulators know that their services would be needed. Subggmulator returns control to the SM, it is required to save its
internal state so that simulation can be continued from where

4 SIMULATOR COORDINATION

it was stopped. For simulators that run as separate threadsaccurately simulated.
state is automatically saved on a thread switch. Other simula-

. _ - Timing Accurate Simulator (TAS) can simulate the com-
tors have to implement this feature explicitly.

plete functionality of a processor with full timing accuracy.

Apart from coordinating simulators, the SM controls the Because each pin can change at potentially unique times
trade-off between simulation accuracy and speed. As will be @nd the detailed timing behavior of the CPU together with
explained in Section 5, the simulator for M16 has the capabil- the instruction set and the pipeline has to be simulated, this
ity to choose the appropriate level of speed and accuracy when'S the slowest of all simulators.

the processor is trying to read from or write to a CertalIE'or M16, which is a scalar processor without a local cache,

address. When the address is in the range of memory, no %g'uming that all memory accesses take the same amount of

nals are produced on the bus, but when the address is out§| e : o
. 1ime, an ISS can be used to simulate the processor with little
the range, phase-accurate bus signals are produced. Thlﬁ.) iS

adequate for the simulation of most peripherals. Howeya?SS In accuracy. This is also based on the assumption that the

there are certain peripherals, like a DMA controller, that ‘"ngteractmn between processor and memory does not have to

ten’ to the bus in order to detect vacant bus cycles and perfa & debugged. However, an ISS cannot be used to simulate

r ; . .
cycle-stealing DMA. For such situations, even when the pr(I)rereraCtlon with peripherals.

cessor is accessing memory, signals on the bus have to be pfgs choice between CAS/PAS or TAS depends on the level of
duced. Therefore, each simulator like the DMA is marked aS@curacy required. Since a CAS/PAS produces signals at pins
bus listener. Whenever a bus listener has to be run in lock SEHly at discrete times, the internal model for a CAS/PAS can
with a processor simulator, the SM sets a special flag indicgk simpler and can run faster. The extra accuracy gained by
ing to the processor simulator that bus signals should be prging a TAS is that the signals can be produced in between
duced. This ensures correct simulation of systems with DMAgck cycles at the exact time they would be produced by the
controllers and other bus listeners. processor. Since the price for this increase in accuracy is steep,
Another important function of the SM is the mapping of interi-t is worthwhile investigating when full timing accuracy is

nal values of simulators to a uniform representation and barcq(quwed and when a CAS/PAS is adequate.

to allow mixed-level ¢.g. gate and transistor) and mixed-To determine whether a CAS/PAS is adequate, the first ques-
mode €.g.analog and digital) simulation. It should be notegion to be answered is whether it is possible that certain signal
that standard tgmpla_tes are _prow_ded for the mt_erface functiapgnsitions may not be generated or caught by a CAS/PAS.
that make the job of integrating simulators easier. The M16 processor uses a synchronous bus protocol for the
transfer of data to and from memory and peripherals. Address
and data are latched by the processor and peripherals only at
Processor simulators can be divided into three categorigsrtain clock edges. The few fully asynchronous pins (like
depending on accuracy and speed of simulation. Data-Complete, Interrupt, Hold) are internally synchronized
gnd therefore have to be active for at least one clock cycle. In
qfper words, two events on the same net or that affect one
at the pins of the processor can be produced only at régther never happen without a CIQCk edge in petyveen. Our
boundaries of instructions. It does not model superscaf rmal stuc'iy of other processors indicates that this is true for
ordering effects, delayed branch, pipeline stalls, waine Intel i960 processor family and the Motorola MC68030
[QCessors. Therefore, for these processors, a CAS/PAS that

states, and cache access. Therefore accurate clock C)P , ..
count for code execution cannot be determined. Howev@nr,Oduces and samples bus signals only at each clock transition

it is the fastest processor simulator and can be used *%quuwalent to a TAS except for timing accuracy.

pure software simulation and debugging. When the user is interested in determining if set-up and hold

* Cycle-Accurate Simulator (CAS) can simulate the instrudimes are being violated, or when he/she is debugging an
tion set, the pipe]ine and the local cache of a processor #halC with tight timing constraints, the exact time when inputs
can provide the signals at the pins of the CPU at each clg@kive and when outputs are produced are important and there
transition and also provide accurate clock cycle count§. no alternative to using a TAS. Therefore, a CAS/PAS can be
Superscalar ordering effects, pipeline stalls and wait sta@gfficient only when the system has been designed so that set-
can be simulated accurately. However, it can be more thd and hold times are not violated and all custom circuitry and
an order of magnitude slower than an instruction set simperipherals meet their timing constraints. The M16 processor
lator. In addition to software simulation, it can be used t@nsures that set-up and hold times are not violated in its
model interaction with hardware components, though theR&ripherals by producing signals on the bus well in advance of
m|ght be inaccuracies in t|m|ng A variation of a Cyc|e.the clock edge where they would be latched. Users manual
accurate simulator is a phase-accurate simulator (PA§O require that peripherals produce data a certain time before

where the behavior of the processor in each clock phasdhg clock edge where it will be latched by the processor. If a
system is carefully designed and conservative design rules are

5 PROCESSOR SIMULATOR

¢ Instruction Set Simulator (ISS) simulates the instructio
set and values in memory and registers accurately. Sign

followed, there may be few set-up and hold time violationsiser defined functions (written in C) to be called from Verilog-
These violations can be detected using bus functional mod&ls during simulation. It also allows these functions to call
and timing accurate simulation. Therefore, with an appropriatertain functions for simulation control in Verilog-XL. The
design methodology, the use of CAS/PAS may be sufficiedetails of the implementation are skipped for the sake of brev-
for hardware-software co-simulation. We are conducting fuity.

ther study to validate this assertion.]) .))
In our implementation, the user is required to call the function

The simulator for M16 is an integrated ISS and a PAS. Ea8lcodebugin aninitial block of the top level module in the
processor clock cycle is divided into six periods and the PASIstom circuit description. There are some requirements on
produces bus signals at the boundary of each period, while the way input, output and bi-directional lines are represented.
ISS does not produce any bus signals. During execution ofraere is no other restriction, and hardware can be represented
program, depending on the instruction and operand addressany level of abstraction allowed in Verilog. Verilog-XL is
the simulator automatically switches from ISS to PAS\v@oel currently the only timing accurate simulator in our framework.
versa The ISS is used to simulate program execution whe&ince other simulators are only phase-accurate, the interface
nothing but memory is accessed. Whenever the processor tfiggctions for Verilog-XL may introduce errors during round-

to access some region that is outside the address range atig-of event times if proper care is not exerted in describing
cated to memory or when the SM sets a flag that indicates ttteg hardware.

signals on the bus have to produced, the PAS is used. Note that

switching between ISS and PAS requires that the ISS maintéin >MULATION OF STANDARD PERIPHERALS

some information about the state of the pipeline during exeqgmbedded processors are often used in conjunction with a set
tion. The PAS consists of a pipeline simulator and a bus inteff standard peripherals. Instead of describing them in some
face module. The pipeline simulator simulates the pipeline pfbL and using a hardware simulator, we use dedicated simu-
the CPU accurately while the bus interface generates tagors to simulate each type of peripheral. Each simulator con-
appropriate signals. Using the less accurate but fast ISS wkedts of a behavioral model written in C and a bus interface.
only memory is accessed and switching to the more accuraige behavioral model simulates the phase-accurate behavior

but slower PAS only when required cuts down on the numbgf the peripheral and the bus interface generates the appropri-
of events too and speeds up simulation by more than an orges signals at every clock transition.

of magnitude in most cases.

There are several advantages of using dedicated simulators.
Most ISS can simulate anywhere between 2000 and 20,06@st, multiple instances of the same standard peripheral can
instructions per second [11]. In order to speed up the ISS afglsimulated more efficiently. Consider, for example, a system
PAS for M16, we exploited the locality of reference in the prahat has several parallel ports. When the processor writes to
gram memory. Many embedded programs execute a groupodfe of them, events are generated for each parallel port which
instructions over and over (as in a loop). Each instructiofhen decode the address to determine the recipient. In most
which includes opcode and operand(s), is decoded and H&es, only one parallel port will respond to the write while
result is stored in a cache. Before decoding, a new instructighers will ignore it. Therefore, for all but one parallel port,
it is looked up in the cache. For a cache hit, the decoded fosicoding of the address is a useless operation that cannot be
is used directly, thereby avoiding the simulation of the complgrevented if a hardware simulator is used. Using a dedicated
cated and time consuming decoding phase. This can incregggulator, all parallel ports can be simulated together so that
the execution speed of the ISS and PAS by about a factor ofyhen a processor writes an address on the bus, only one set of
Currently, the M16 ISS can simulate about 50,000 instructioggents is created for all the parallel ports and given to the sim-
per second for typical programs on a Sun Sparcstation 10. Thgtor. The simulator decodes the address only once to deter-
PAS can simulate about 4,000 instructions per second. Thghe which one of the parallel ports the CPU is talking to.
PAS does not simulate the instruction fetch cycle, assumin@erefore, not only is the number of events reduced, but use-
that no events for peripherals can be produced during this tipags decode operations are avoided.
and that instruction memory can only introduce a fixed num-
ber of wait states. The second advantage of dedicated simulators is better han-
dling of periodic signals. Such signals impair simulation effi-
ciency by increasing simulation overhead. In [15], it was

Custom hardware represented using Verilog HDL is simulat&#own that suppression of periodic signals during concurrent
mercial simulator is designed to be a stand alone tool and d§g. We adopt a similar approach here. Each clock generator
not implement the interface functions required by the SM, igdvertises its clock signal as a triple, describing the period, the

guage Interface (PLI) for the simulator [14]. The PLI allowé@lized with a value corresponding to the number of clock
pulses to be counted. On receipt of a start signal, the timer

6 SIMULATION OF HARDWARE

- Throttle
Timer Parallel Port |-———
M» Parallel Port|—] Parallel Port &
RPM
—— | Parallel Port] Parallel Port EGO
Angular
Parallel Port[—] Parallel Port| Position
Parallel Port|—] Parallel Port

Custom Circuit

YYYY YYYY

Fuel Spark

FIGURE 3. Architecture of an Engine Control Unit

starts to decrement the value of the counter at each positiHe\wever, there are certain drawbacks. For every new periph-
negative edge of the clock. If simulated using a hardware siral a new simulator has to be written and integrated into the
ulator, clock events have to be fed to the counter periodicalyackplane. Also, it is not always possible to implement the
However, a dedicated timer simulator can use the advertidadd of techniques mentioned above for all standard peripher-
clock signal and the value of the counter to determine at wtas. We are working on a tool that will solve the first problem
time the counter is going to expire. It can then schedule itsély providing the standard boiler-plate needed for a simulator.
at the right time in the future to produce the appropriate eveRbr the second problem, we rely on the ingenuity of the simu-
This decreases the number of events generated, the numbdatofr developer.

simulators invoked to handle each event, and the time spent in

simulating the timer. For the motor control application to pg OTHER SIMULATORS

described in Section 9.2, this can reduce the number of evepts have developed an interface between the co-simulator
per revolution of the motor from 129,640 to 840. The othefescribed in this paper and the Tsutsuji hardware simulation
advantage of this method is that other simulators, like the pr&ystem [3]. The Tsutsuiji system is capable of efficiently mod-
cessor simulator can run uninterrupted during the time tlfing and simulating signal processing functions. Systems that
timer is counting, thereby reducing synchronization overheagve both control and signal processing functions, like motion
further. Note that it is not possible to avoid the generation gétectors, can be easily simulated. We are also in the process
the clock signal at all times,g.when the clock is an input to of developing an interface to the Ptolemy simulator to allow

custom circuitry. In such situations, we use a local clock gegls to use the heterogeneous simulation environment of
erator which uses the advertised clock signal to generateglemy.

clock only for the module that needs it. Once again, this

reduces simulation overhead because periodic signals are proaddition, a simulator for a three-phase electric motor and

duced locally where they are needed. for a rudimentary automobile engine has been developed for
the design and debugging of motor and engine control sys-

The third advantage of dedicated simulators can be i”UStI’at@fﬂns_ It is our hope that as this system finds more and more

using an Interrupt Control Unit (ICU). The algorithm for interyse, a large library of simulators for diverse application areas

rupt priority resolution requires complicated and deeply pipgyill develop and will increase the usefulness of this tool.
lined hardware. Simulation of this hardware takes more time

than executing the algorithm directly in the simulator. The EXAMPLE APPLICATIONS

advertized clock signal is used to determine the state of 188, ,era| applications were used to test the capabilities of the
pipeline and how long it takes to generate an interrupt signgl,_simyiator. They include an engine control unit, a three-

For an example application, replacing the dedicated ICU sitgpa5e motor control unit, a real-time operating system for the
ulator with a RTL Verilog model slowed down simulation byy;1¢ microprocessor, a motion detector and a computer
two orders of magnitude. Though a part of this slowdown c3fogem. The first three applications and our experience in

be attributed to Verilog-XL and its interface to the backplanging the co-simulator are described briefly in this section.
this result is still significant. Also, this technique is fairly rep-

resentative of the techniques that can be used to speed up SIN-ENGINE CONTROL UNIT

ulation.
The operation of an engine is controlled by varying the air-

It is obvious from the discussion above that dedicated pha$lew, the duration for which fuel is injected into each cylinder
accurate simulators for standard peripherals may be ableatd the spark time. The engine control unit receives inputs
speed up simulation in ways that HDL simulators canndrom the mass air flow sensor (MAS), the RPM sensor, the

Frequency Input— | Controller —m FOWer | Motor

Circuit
(a)
Frequency Input Frequency Input
Parallel Port Parallel Port
= n =
Y g1 8 Y g 3
o & = o
L | o O
T = £ =
— @] + (@]
s o 9 a
= S =
ICU < Timer ICU |- Timer
(b) (©)

FIGURE 4. 3-phase motor controller (a) block diagram (b) first and (c) second implementation

exhaust gas oxygen sensor (EGO), the throttle position sendemodulated waveforms show a mean square error of 8%
and the crankshaft angular position sensor. The controller cdrem an ideal sine wave because the processor cannot keep up
trols the idle valve (not shown in the figure), the throttle-bodyith the required rate of calculation. An alternative architec-
fuel injectors, and the spark plugs. ture is shown in Figure 4(c) where some custom circuitry is
. o) . _used in conjunction with the microprocessor. The calculation
An architecture of a simplified engine control unit is shown ifyr pylse width modulation are still performed in the processor
Figure 3. It consists of an M16 processor, a timer, an ICYyt the actual generation of the signals is moved to custom
nine parallel ports and some custom circuitry. The custom Cizrqware. The demodulated waveforms now show a mean
cuitry can be implemented in approximately 2000 gates. Thgyare error of less than 1% from an ideal sine wave at all fre-
C source code for the engine controller is about 1000 "”Eﬁencies. The amount of ROM required to store the program
long. and the tables is also smaller. This is a good example of how

The software for the controller and the RTL description of tht(ra1 € co-simulator may be used to determine hardware-software

custom circuit were developed and debugged solely using t%%de-oﬁs at the implementation level.

co-simulator. 1500 CPU cycles (approximately 300 machinge controller of Figure 4(b), can be implemented in 600 lines
instructions) could be simulated per second on a Sun Sparcgfec code and simulation runs about a factor of 3200 slower
tion 10. At this speed, it takes 40 minutes to simulate thgan the actual system. The controller of Figure 4(c) can be
behavior of the_ engine and the controller as it goes from OiFﬂpIemented with only 200 lines of C code while the custom
7000 r.p.m. This represents a slowdown of about a factor Qfcyit is represented using 100 lines of behavioral-level Ver-

400 over real time operation, an adequate speed for debygy Simulation runs about 7400 times slower than the actual

ging. Note that the emissions from the engine were not magstem for the second implementation, showing the effect of

eled and a simplified dynamic control algorithms was used fQ&jjog-XL on simulation time. It has been our experience that
the controller. use of custom hardware significantly slows down simulation.
Note that the power circuit and the motor is simulated using a
special simulator. A screen image of this simulation is shown
A three-phase motor controller, shown in Figure 4(a), takes iasFigure 2.

an input the desired frequency of rotation and produces pulse

width modulated signals which are demodulated by the pow&f RTOS AND DEVICE DRIVER DEBUGGING

circuit, producing three sinusoidal signals at the required frgragitionally, operating systems and device drivers have been
quency but phase shifted 120 degrees with respect 10 Qygged using working hardware. A part of the real-time

another. operating system kernel and device drivers for a microcontrol-

An implementation of this controller using a microprocessol‘rar based on the M16 processor has been debugged using the

and standard peripherals is shown in Figure 4(b). Al Compﬁp-smulator. The hardware used for this purpose consists of

an M16 CPU, an ICU, three timers and two parallel ports.

tation required to produce the pulse width modulated signals i
performed in the microprocessor. At high frequencies, tﬁ(rﬁerrupts are fed to the system from two external buttons and

9.2 THREE-PHASE MOTOR CONTROL

are also generated by the timers. Apart from the items mentioned before, in the future we are

])] . looking at incorporating other processor and hardware simula-
The software running on this system consists of six tasks a@fls into our framework. We believe that the next major

the real-time OS. Taskl is invoked when there is an interryptrease in simulation speed will come from compiled simula-
from any timer and counts the number of timer interrupt$on and we are investigating promising techniques in this
Task 2 is invoked when there is an interrupt from the first bureg especially in the simulation of processors. We are also
ton and counts the number of button interrupts. Task 3 jigestigating the use of a network of workstations to speed up
invoked when there is an interrupt from the second button agghylation. There is ongoing work on a better user interface
resets the count kept by task 2. The rest of the tasks, numberg{ includes system schematic capture, dynamic attachment
4 to 6 are scheduled in round robin fashion. The task numkgryirtyal instrumentsetc so that a virtual laboratory can be
being executed is displayed through one parallel port and #@ated on the desktop. Improving the efficiency of the simu-
number of button interrupts is displayed through the other ongyion backplane is another area of ongoing work. The actor
Ié)t%rary is being enhanced to include commonly used compo-

Simulation of the RTOS can be performed at a speed nggts in embedded system design. We are also developing

23,000 instructions per second. This represents a slowdow:]in s to compilers and hardware desian tools so that the co-
1500 compared to the RTOS running on an M16. This speed IS P 9

. . Simulator can be easily integrated into a design methodology.

adequate for the debugging of the RTOS. The debugging envi- y 9 9 9

ronment is natural for a software developer and the greate¢ferences

Observab"'ty of the 'ntemf_a-l state of the processor during sif}] p. Becker, R. K. Singh and S. G. Tell, “An Engineering Environment for

ulation also helps debugging. Hardware/Software Co-simulatiorProceedings of the 29th Design Automa-
tion ConferenceAnaheim, CA, 1992.

Our eXPe“ence .SO far suggests that a PAS is adequate [E?r‘]. Buck, S. Ha, E. A. Lee and D. G. Messerschmitt, “Ptolemy: a Frame-

debugging the interface between hardware and softwa@yk for Simulating and Prototyping Heterogeneous Systeminational

However, we recommend the use of more accurate timiagurnal of Computer Simulatiorspecial issue on “Simulation Software

simulation using bus functional models in conjunction witfPevelopment,” January, 1994.

co-simulation. [38] W. B. Culbertson, T. Osame, Y. Ohtsuru, J. B. Shackleford and M.
Tanaka, “The HP Tsutsuji Logic Synthesis System”, Hewlett-Packard Journal,
10 CONCLUSIONS AND FUTURE WORK August 1993.

We have presented a hardware-software co-simulator f8f R: K. Gupta, C. N. Coelho Jr. and G. De Michel, "Synthesis and Simula-
tion of Digital Systems Containing Interacting Hardware and Software Com-

embedded _SyStem des'g”, and deb“gg'”g- This tool prOWdeﬁoﬁents",Proceedings of the 29th Design Automation Confereinaheim,
natural environment for joint debugging of software and harga, 1992.

ware ?‘nd is also .usefm for eyaluatlng Sy_Stem performan(f%, IEEE Design and Test Magazine Roundtable, “Hardware/Software Code-
selection of algorithms and implementations and also fefn", IEEE Design and Test Magazine, March 1993.

exploring hardwgre-soﬁware trade-offs. We haye addre?%jj A. Kalavade and E. A. Lee, “A Hardware/Software Codesign Methodol-
the problem of simulation speed and have outlined varioggy for DSP Applications”\EEE Design and TesSeptember, 1993.

methOdS to speed up SImU|a‘_tlon' The mpro_ved speed Qf t[I?F Y. Kra, “A Cross-Debugging Method for Hardware/Software Co-design
co-simulator comes from various sources. First, our co-SiMmgnvironments” Proceedings of the 30th Design Automation ConfereDa
lator is targeted towards phase-accurate simulation. Switchilag, TX, 1993.

between ISS and PAS during simulation, caching of decodggl The M31000S2FP Users Manual, Mitsubishi Electric Corporation, Japan.
InStrL!CtlonS and _nOt SImU|a‘t|ng mStru.Ctlon .fetCh CyCIeS aﬂ)] J. K. Ousterhoutin Introduction to Tcl and Tkddison-Wesley Publish-
contribute to the increased speed of simulation of processqkg.company, 1994.

Use of deghcated simulators, suppression of periodic &gnﬂgl H. El Tahawy, D. Rodriguez, S. Garcia-Sabiro and J-J. Mayol,
and associated events, and specific short cuts reduce the #R@eLDo: A New Mixed Mode Simulation’Proceedings of the European
required for simulation of peripherals. Making time discret®esign Automation Conferend8CH Hamburg, 1993.

and using a statically allocated timing wheel helps keep co@f1] j. A. Rawson, “Hardware/Software Co-simulatiodRfoceedings of the
dination overhead low. We have demonstrated the use of t1st Design Automation Conferen&an Diego, CA, 1994.

tool in three design examples and have shown that the simyl2; p. E. Thomas, J. K. Adams and H. Schmit, “A Model and Methodology
tion speed is adequate. for Hardware-Software Codesign”, IEEE Design and Test of Computers, Sep-
tember, 1993.

The usefulness (_)f this tool _’Vi” _d_epend on several factors. Fifg8) Thor Tutorial VLSI/CAD Group, Stanford University, 1986.

amongst these is the _avallablhty of simulators for Standgf&] Verilog-XL Reference and Programming Language Interface Manuals
components. Second, is the adequacy of cycle-accurate sifBijzence Design Systems, 1992.

lation in system verification. We are continuing our resear] T. Weber and F. Somenzi, “Periodic Signal Suppression in a Concurrent
in this area. We feel a co-design methodology with consenvgsit simulator Proceedings of the European Conference on Design Auto-
tive design rules, use of bus functional models to ensure cofation Amsterdam, 1991.

pliance and an overall design style to aid simulation may be

required.

	ASP-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

