
Timing In
uenced General-Cell Genetic Floorplanner

Sadiq M. Sait Habib Youssef Shahid Tanvir M. S. T. Benten

Department of Computer Engineering

King Fahd University of Petroleum and Minerals

KFUPM # 673, Dhahran-31261, Saudi Arabia

e-mail: sadiq@ccse.kfupm.edu.sa

Abstract| In this paper we present a timing-
in
uenced 
oorplanner for general cell IC design.
The 
oorplanner works in two phases. In the �rst
phase we restrict the modules to be rigid and the

oorplan to be slicing. The second phase of 
oor-
planner allows modi�cation to the aspect ratios of
individual modules to further reduce the area of
the overall bounding box. The �rst phase is imple-
mented using genetic algorithmwhile in the second
phase we adopt a constraint graph based approach.
Experimental results are also presented.

1 Introduction
The problem of timing sensitive 
oorplanning con-

sists of determining suitable shapes and locations of
cells, locations of pins on cells, locations of pads on
layout, etc., while satisfying user speci�ed timing con-
straints and minimizing certain objective functions.

For 
oorplanning, the aspects that need to be mod-
eled consist of the components, the interconnections,
the 
exible interfaces (blocks and chip), the chip car-
rier (layout surface), any designer stated constraints,
and the objective to optimize. A feasible 
oorplan
optimizing the desired cost function is an optimum

oorplan. Until recently, the size of the bounding box
(comprising functional area and routing area) was a
widely used measure of the quality of 
oorplan. How-
ever, due to advances in VLSI technology, sizes of
transistors have been decreasing and their switching
speeds increasing. This has increased the importance
of interconnect delays with respect to the overall speed
performance of the circuit. Hence, nowadays physical
design steps such as placement and routing are made
timing sensitive.

In this work we describe a timing sensitive 
oor-
planner. Two reasons motivate making 
oorplanning
sensitive to timing. (1) Since recently all subsequent
stages of physical design such as placement and rout-
ing are made sensitive to timing, 
oorplanning stage
must also be timing sensitive so that estimates of area,
shapes, positions of pins on modules, etc., would be
consistent with the placement objective. Therefore,
for vertical consistency it is mandatory to incorpo-
rate timing information at the 
oorplanning stage.
(2) The 
oorplanning stage when made sensitive to
timing gives an estimation of the maximum clock rate

of the circuit. This information can be used to tune
the circuit early enough in the design process.

The 
oorplanning problem like other design au-
tomation problems is characterized by several noisy
and con
icting objectives. This implies that construc-
tive approaches will most likely miss reaching superior
solutions. Iterative improvement approaches with hill
climbing capability better explore the search space and
o�er a better chance of reaching the desired solutions.
Genetic algorithm is suitable to such problems because
of several reasons. (a) It is robust in that it consis-
tently succeeds in locating a desirable solution from
any random initial set of solutions; (b) it works on a
population of solutions allowing a parallel search of the
solution space; and (c) it is very convenient for prob-
lems with con
icting objectives such as 
oorplanning.
However genetic algorithm is CPU time intensive and
has large memory requirement. Two guidelines can be
used to alleviate the above requirements, (1) choice of
a suitable solution encoding and; (2) adoption of a
simple model of the problem.

In this work we present a timing driven genetic

oorplanner based on the above guidelines. The 
oor-
planning problem is solved in two main phases. In
the �rst phase, we adopt a simple 
oorplan model
which has the following two restrictions: (a) solu-
tions are restricted to slicing structures; and (b) all
blocks are rigid but can have free orientations. The

oorplan problem of the �rst phase is solved using a
timing driven genetic approach. The second step is
a 
oorplan resizing phase where blocks are allowed to
have 
exible shapes, and the 
oorplan solutions are no
longer restricted to slicing structures. In this second
phase modules maintain their topological proximity
thus minimizing disturbance e�ects to the output of
the �rst phase.

The novelty of this approach lies in using this two-
step solution approach, where the solution from the
iterative component phase is followed by a construc-
tive re�nement phase. This is in contrast to tradi-
tional iterative approaches which usually start from
a constructively built solution which is improved us-
ing some generalized iterative improvement heuristic
such as simulated annealing (SA) or genetic algorithm
(GA). Further, our formulation is timing driven.



2 Literature Review
Various strategies have been reported in the lit-

erature for designing 
oorplans and can be broadly
classi�ed as constructive and iterative. Some of the
constructive techniques use cluster growth, partition-
ing and slicing, connectivity clustering, and rectan-
gular dualization. Other techniques are constraint
graph based approaches, mathematical programming,
or knowledge-based. Most of these techniques are dis-
cussed in detail in [6].

Iterative and non-deterministic techniques such as
simulated annealing and genetic algorithms have also
been employed to solve the 
oorplanning problem
[3, 7]. There are two main variations of iterative al-
gorithms as applied to 
oorplanning; namely direct
and indirect. In the direct approach, manipulations
are done directly on the physical layout of the 
oor-
plan. In the indirect approach, an abstract represen-
tation (such as a graph or slicing tree) of a 
oorplan
is used for manipulations. The abstract solution is
later mapped to obtain the physical representation of
the 
oorplan. The work reported in [7] is an example
of a direct approach using simulated annealing. The
methods discussed in [10, 11] can be classi�ed as an
indirect approaches.

The issue of timing driven 
oorplanning has also
been addressed. In [5], a procedure for path-delay con-
strained initial placement is presented which directly
incorporates timing and geometrical constraints. The
problem is modeled and mathematically formulated
as a constrained non-linear programming problem. In
[1], a 
oorplanning algorithm and a global router that
uses a sequence of gradient descent operations based
on force-directed functions are presented. The best

oorplan is selected and overlaps are removed by ap-
plying simulated annealing. Circuit timing is also con-
sidered.

Much work has been done towards timing driven
placement, whereas very little work has been done in
the area of timing driven 
oorplanning. In this work
we describe a timing in
uenced genetic 
oorplanner.
The principle reason for selecting the genetic algo-
rithm is that it allows several 
oorplan con�gurations
to be maintained. This makes the technique easy to
adapt to the multi-objective nature of the 
oorplan
problem in general and timing-driven 
oorplanning in
particular. Further, the chances of getting trapped in
a local minima are reduced since several alternatives
exist.

3 Timing prediction
The delay of the longest path in the circuit, which

includes the delay due to both the logic cells and the
interconnects, is not known prior to layout. And long
path timing problems registered after layout are very
di�cult to correct because they may require, not only
new iterations of the physical design steps, but possi-
bly, many iterations of the logic design step.

Long path timing problems are caused by large in-
terconnect delays. Obviously, the critical paths are
those that are most inclined to exhibit a long path
problem. In this work, the timing data passed by the

timing analysis program to the 
oorplanning proce-
dure consist of a set of the most critical paths. This
set is predicted using the notion of �-criticality. Our
prediction approach proceeds as follows. From past
layouts with similar complexity, the average and stan-
dard deviation of net lengths are estimated for each
type of net (2 pin-, 3 pin-,..., k pin-nets). These are
converted to capacitances for the particular technol-
ogy of the design at hand. Let T� and S� be the overall
delay (including the net delay estimations) and stan-
dard deviation along path �, respectively. Let Tmax be
the estimated delay of the longest path in the design,
that is,

Tmax = max
�

fT�g (1)

A path � is called �-critical if and only if,

T� + �� S� � Tmax (2)

The parameter � acts as a con�dence level. The larger
� is, the larger is the number of predicted critical
paths, and the higher is the probability of including
all potentially critical paths. Typical values of � are:
�� S� � 5ns. This prediction approach was e�ective
in predicting all of the critical paths in the designs we
experimented with.

4 Timing Driven Genetic Floorplan-

ning
In this section we explain the �rst phase of the 
oor-

planner which is based on the genetic algorithm. Ge-
netic algorithms (GA) are an e�ective optimization
and search technique inspired by the mechanism of
evolution and natural genetics [4]. They are charac-
terized by a parallel search of the state space as against
a point-by-point search by the conventional optimiza-
tion techniques. The parallel search is achieved by
keeping a set of possible solutions to the optimiza-
tion problem, called population. An individual in the
population is a string of symbols and is an abstract
representation of the solution. The symbols are called
genes and each string of genes is termed a chromo-
some. The individuals in the population are evalu-
ated by some �tness measure. Based on the �tness
value, two individuals (parents) are selected at a time
from the population. The genetic operators (crossover
and mutation) are applied on the selected parents to
generate new possible solutions called o�springs.

The application of genetic algorithm for any prob-
lem requires a representation of the solution to the
problem as a string of symbols, a choice of genetic op-
erators, an evaluation function, a selection mechanism
and determination of probabilities controlling the ge-
netic operators. Each of these greatly in
uences the
performance of the genetic algorithm.

Solution representation
The �rst phase of the 
oorplanner constrains the

structure to be slicing and the circuit modules to be
rigid, but allows rotation. The layout is represented
as a repetitive division into basic rectangles by hori-
zontal and vertical cut-lines. Such a layout is called
a slicing structure. A slicing structure can be mod-
eled by a binary tree with n leaves and n � 1 nodes,



1
2

3

4
5

6

7

V

H

V

H

V

1

2

3 4

57

6

H

E = 16H2V75VH34HV

(a) (b)

Figure 1: (a) A rectangular dissection. (b) Its corre-
sponding slicing tree.

where each node represents a vertical cut-line or hor-
izontal cut-line, and each leaf a basic rectangle. This
binary tree is called a slicing tree, and the correspond-
ing 
oorplan is a slicing 
oorplan. Letters H and V
refer to horizontal and vertical cut operators respec-
tively. A postorder traversal of a slicing tree produces
a Polish expression with operators H and V , and with
operands the basic rectangles 1; 2; � � � ; n:Figure 1 gives
a rectangular dissection, its corresponding slicing tree,
and its Polish expression representation. Since there
is only one way of performing a postorder traversal
of a binary tree, there is one to one correspondence
between 
oorplan trees and their corresponding Pol-
ish expressions. The operators H and V carry the
following meanings: ijH means rectangle j on-top-of
rectangle i; ijV means rectangle i to-the-left-of rect-
angle j. In this work each solution is encoded as a
Polish expression [10].

Initial population generators
Two types of initial population generators were

considered in our implementation, IPG1 and IPG2.
IPG1 constructs the Polish string by inserting n � 1
operators in a random permutation of n operands.
IPG2 generates the Polish string in such a way that
the modules are arranged in rows.

Fitness function
The �tness function consists of three terms repre-

senting the timing performance, the area of 
oorplan
bounding rectangle, and the overall interconnection
length. Since the above three quantities are incom-
patible, they are �rst normalized to a common mean
and a common deviation. The �tness function of a so-
lution i is equal to a weighted sum of three quantities
as follows:

Fitness(i) =
A
*(i)

Amax

�WA +
T
*(i)

Tmax
�WT +

L
*(i)

Lmax
�WL (3)

where A*, T*, L* represent normalized quantities
of area, clock speed and wirelength respectively, for
solution i. WA, WT, WL are user speci�ed relative
weights for area, timing and wirelength respectively.
The quantities, Amax, Tmax, Lmax are the maximum
values in the given population. The quality of 
oor-
plan solution largely depends upon the values of the

weights. By varying the weight values, the notion of
optimality can be changed.

Selection for crossover
This step determines which parents are selected for

crossover. In this work we used the selection mecha-
nism based on the proportionate selection scheme im-
plemented by the roulette wheel method [4]. In this
selection scheme, each string is allocated a sector of a
roulette wheel with the angle subtended by the sector

at the center of the wheel which is equal to 2� � fiP
j
fj

where fi is the �tness of solution i, and
P

j
fj is the

sum of the �tness over the entire population.

Crossovers �
Crossover is a mechanism for probabilistic inheri-

tance of useful information from two individuals (par-
ents) to o�springs. The main idea is that the ge-
netic information of a good solution is spread over
the entire population. Thus, the best solution can be
obtained by thoroughly combining the chromosomes
in the population. Four crossovers have been imple-
mented and are invoked with di�erent probabilities.
The �rst three, namely �1, �2 and �3 were proposed
in [3]. One more crossover, namely �4 is a variation of
the partially mapped crossover (PMX) proposed for
placement in [8].

Crossover �1, known as `block inheritance
crossover' generates a valid o�spring by copying the
operands from one parent (say P1) insitu1 and the
operators from the other parent (say P2) at the re-
maining positions. This crossover inherits the building
blocks from one of the parents to the o�spring.

Crossover �2, known as the `slicing inheritance
crossover', inherits the slicing structure from one of
the parents. It is implemented by copying the opera-
tors from the �rst parent (say P1) insitu and complet-
ing the o�spring by copying the operands from the
other parent (say P2) at the remaining positions.

Crossover �3, the (sub-tree crossover) [2] is a mech-
anism for inheritance of a slicing sub-tree from the
parent to the o�spring. This is achieved by identify-
ing a sub-tree in a parent slicing 
oorplan tree, and
passing this sub-tree as is to the o�spring. The op-
eration of this crossover is explained as follows. Let
P1 and P2 be the two parents to be crossed. First,
the P1 chromosome is scanned from left to right and
a sub-tree is identi�ed. The substring corresponding
to the sub-tree is copied insitu in the o�spring. Then
the remaining operators are copied from the parent P1
and the remaining operands are taken from the other
parent P2 to complete the o�spring.

Crossover �4 implements the PMX crossover on the
modules [8], and then, the operators are copied from
each parent, thus resulting in two o�springs with the
same order of modules, but di�erent set of operators.

Mutation �

Mutation is a means of introducing new informa-
tion into the population. Our implementation uses
�ve mutation operators �1 to �5. The �rst four are

1insitu means in the same location as that of the parent.



similar to the perturbation moves used by Wong and
Liu in their simulated annealing solution to 
oorplan-
ning [10] and are illustrated in Figure 2.

0 1 2 3 4
0

2

4

6

8

5
3

2
4

11

0 2 4 6 8
0

1

2

3

4

5

3

2

4

11

0 1 2 3 4 5 6 7
0

1

2

3

4

5

5 3

2

1
44

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

5

3

2
4

11

 5   3   V   2   4   V   H   1   H  5   3   H   2   4   H   H   1   V

 5   3   2   V  4   V   H   1   V

µ4

 5   3   V   2   1   V   H   4   V

µ2

 5   3   V   2   4   V   H   1   V

µ3

µ1

Figure 2: Illustrating the e�ect of mutation operators
�1 to �4. �1: Complement an operator. �2: Com-
plement a chain of adjacent operators. �3: Swap two
adjacent operands. �4: Swap an operand with an ad-
jacent operator.

A new mutation operator �5 called `timing biased
module exchange' is used. This operator pulls closer
together those modules on a timing critical path with
violations of the interconnect bounds. It works as fol-
lows: �rst, a net violating the net delay bound on a
critical path is identi�ed. Then, modules on this net
are selected and brought closer together by swapping
them with other modules not on critical paths.

Selection mechanism for next generation
A number of methods were proposed to select in-

dividuals that can survive and be used in the next
generation [4]. In this work we use a technique that
combines old population with the o�springs, selects
the best individual, and then the remaining individu-
als are chosen probabilistically based on their �tnesses
(higher �tness translates to higher survival probabil-
ity).

In the next section, we describe the algorithm we
use to re�ne the slicing 
oorplan produced by the ge-
netic algorithm.

5 Floorplan Re�nement
In this phase, we remove the slicing restriction on

the 
oorplan structure. Also, modules are allowed to
have 
exible shapes. The re�nement phase consists
of two steps: (1) construction of a constraint set, and
(2) shape optimization.

Graph construction

Two directed acyclic graphs are used to model the
topological constraints between the blocks: a hori-
zontal constraint graph GH and a vertical constraint
graph GV . The vertex set of GH is the set of blocks

plus two dummy vertices: L; R. Similarly, the vertex
set of GV is the set of blocks plus two dummy vertices:
T; B. The dummy vertices L; R; T; B correspond
respectively to the left, right, top, and bottom bound-
aries of the layout. The edge set of GH models the
to-the-left/to-the-right relationships, while that of GV

models the on-the-top/on-the-bottom relationships.
A constraint set is complete if there exists a di-

rected path between every pair of blocks bi; bj either
in GH , in GV , or both. In a strong complete set each
pair of blocks is adjacent either in GH , in GV , or both
[9]. Two blocks are adjacent if they are connected
by an edge. It is clear that a 
oorplan that satis�es a
strongly complete set will have no overlaps. Obviously
for two blocks not to overlap, only one constraint (ei-
ther in the horizontal or vertical direction) is necessary
and su�cient. Two blocks are called overconstrained if
they are constrained in both the horizontal and verti-
cal directions. The existence of overconstrained blocks
negatively a�ects the area optimality of the 
oorplan.
Our graph construction procedure is based on this key
observation.

De�nition 1 A constraint set (GH ; GV ) is su�-
ciently constrained if there exists an edge between ev-
ery pair of blocks (bi; bj) either in GH or in GV .

GH and GV are constructed as follows. Two blocks
are constrained if the center of one block must be
to the left/below the center of the other. If two
blocks (bi; bj) are overconstrained then the edge (i; j)
is deleted from the graph GH if the longest path
traversing (i; j) in GH is longer than the longest path
traversing (i; j) in GV . Otherwise the edge (i; j) is
deleted from GV . Therefore, the selection is based
on which of the constraints will lead to a smaller-area

oorplan. If two blocks are constrained in only one di-
rection (i.e., they have the same x or y coordinate), the
algorithm in this case has only one choice. This con-
structive process greedily generates a constraint set
(i.e., GH ; GV ) according to De�nition 1 and, at the
same time, eliminates all redundant constraints right
from the beginning. This is in contrast to the algo-
rithm in [9], where only redundant edges belonging
to the critical paths in GH and GV are examined.
Removing all redundant constraints produces a more
compact 
oorplan.

The next step in our 
oorplanner consists of reshap-
ing the variable-shape blocks in order to optimize the

oorplan area and satisfy the remaining constraints on
block/chip aspect ratios.

Block reshaping

The reshaping algorithm determines dimensions and
positions of the blocks so that 
oorplan area is min-
imized and constraints on block shapes are satis�ed.
This is achieved by iteratively reshaping 
exible blocks
on the longest paths.

The reshaping algorithm utilizes the constraint
graphs GH and GV to compute the dimensions of the

oorplan and decide on a candidate block for reshap-
ing.



Suppose we want to reduce the 
oorplan dimension
in the Y -direction without enlarging the 
oorplan in
the X-direction. This can be achieved as follows. let
`(�H ) and `(�V ) be the length of the longest paths in
GH and GV respectively. Let block bi be such that
bi 2 �V and bi 62 �H . If �i

H
is the longest path

traversing bi in GH , then the width wi of bi can be
increased by an amount �x

i
= `(�H ) � `(�i

H
) without

increasing the overall area of the 
oorplan. �x
i
is the

maximum block's width increment that is guaranteed
not to cause an increase in the length of the critical
path �H in GH . But, since the block width has an
upper bound wmax

i
, then the legal �x

i
is given by,

�
xlegal

i
= min(�x

i
; wmax

i
�wi) (4)

Thus, the new dimensions w0

i
and h0

i
for block bi are

derived as follows,

w0

i
= wi + c� �

xlegal

i
(5)

h0

i
= ai=w

0

i
(6)

where c is a user speci�ed positive real number (0 <
c � 1) used to control how large the x-increment
should be. Reshaping the blocks in small increments
helps achieve a smaller 
oorplan with the correct as-
pect ratio. In our experiments, we set this parameter
to 0:5. Optimization in the X-direction is similarly
formulated.

The 
oorplan resizing process is terminated if there
are no more blocks that can be selected for reshaping.

After completing the resizing process, the horizon-
tal and vertical graphs are traced to determine the
�nal xy-locations of the blocks. The lower left corner
of the 
oorplan is at origin (0,0). The lower left corner
of block bi is placed at (xi; yi) where xi is the longest
L-to-bi path in GH and yi is the longest B-to-bi path
in GV .

Finally, the blocks are enclosed inside the smallest
bounding rectangle with the desired aspect ratio �.
The area of the bounding rectangle is the area of the

oorplan.

6 Experiments and Results
There are several key parameters that a�ect the

performance and behavior of GA. These are: (a) size of
population, (b) initial population constructor, (c) se-
lection mechanism for crossover, (d) type of crossovers
and their probabilities, (e) mutation operators and
their probabilities, (f) selection of individuals for next
generation, and �nally (g) cost function. These pa-
rameters are selected based on experimentation in the
problem of interest. The size of the population de-
pends on the size of the problem (number of blocks).
It is recommended to use a large population (30) for
small circuits (upto 30 blocks). For larger circuits a
population size between 10 and 20 was used. Two
types of initial population generators were considered,
one constructs the Polish string by inserting n�1 oper-
ators in a random permutation of n operands and the
other generates the Polish string in such a way that
the modules are arranged in rows. The selection for

crossover is as explained in Section 4. The current im-
plementation applies all crossovers with the following
probabilities: P�1=.15, P�2=.15, P�3=.30, P�4=.40,
where P� represents the probability that crossover �
is applied on the selected two parents. Similarly, all
mutation operators are also applied with the following
probabilities: P�1=.10, P�2=.05, P�3=.10, P�4=.40,
P�5=.10.

We experimented with test cases of sizes varying
between 20 and 125 modules. For each circuit the

oorplanner is supplied with a set of the predicted
most critical paths. As explained in Section 4, the
�tness function is a weighted sum of the area of the

oorplan bounding rectangle, the wirelength of the in-
terconnects, and the circuit clock period. We experi-
mented with several weight assignments.

In Table 1 we report the results corresponding
to three di�erent weight assignments. In the �rst
column, `Area Only', the �tness includes only the
area term (wirelength and clock period are given zero
weights). In the second column, `Area+Wire', the �t-
ness includes the area and wirelength term with equal
weights (50% each). It may be observed that for all
test cases the wirelength has consistently improved.
A decrease in wirelength between 5% and 14% was
achieved with no increase in area.

In the third column, `Area+Wire+Time', the �t-
ness includes all terms with weights 50%, 25% and
25% for area, wirelength, clock period, respectively.
Note that the lower bound on the clock period is given
by the maximumpath delay due to logic only (column
Max Delay in Table 1). In this third case we observed
a decrease in the interconnect delay between 20% and
40%. For example, for the Parity3 circuit, the clock
period when area was the only objective was 46.4 nano
seconds. Since the logic delay on the path is 27.134
nano seconds, the delay due to interconnects is 19.266
nano seconds. When timing was included in the �tness
function, the delay due to interconnects was reduced
to 12.306 nano seconds. Thus a reduction in intercon-
nect delays by 36% was achieved. The increase in area
of the bounding rectangle in this third case when all
terms are weighted is upto a maximum of 12%. Note
that the dead space introduced in this stage is further
reduced by the second phase of the 
oorplanner.

(a) (b)

0 50 100 150 200 250
0

25

50

75

100

125

150

1
2

3
4 5

6

7

8

9

10

11

12

13
14

15

16

17

18
19

20

21
22

23

24
25

26

27

28

29

30

0 50 100 150 200 250
0

20

40

60

80

100

120

140

26

10

9

1

8

11

4

21

2

25

19

16
29
14

22

7

24
30

23

5

6

17

18

15

3

13

28

12

20

2727

Area Before Refinement = 170 * 290 Area After Refinement = 150 * 280

Figure 3: (a) Slicing 
oorplan obtained from phase-1;
(b) 
oorplan obtained after phase-2.

Figure 3 illustrates the e�ect of the 
oorplan re-
�nement phase on the Parity3 circuit. The relative
positions of the blocks are retained but the area of the
bounding box has been reduced further by about 15%.



Test No. of Max Area Only Area + Wire Area+Wire+Time

Circuits blocks Delay Area Wire Clock Area Wire Clock Area Wire Clock

Parity2 20 36.830 42320 5051 45.87 41088 4579 44.24 47580 4091 42.0

Parity3 30 27.134 43616 7573 46.40 43616 6514 43.37 43616 6124 39.44

Highway 45 15.540 104690 14527 29.35 102200 13805 31.25 108016 13013 25.20

Fract 125 34.14 322392 82299 86.28 319680 76100 78.2 319680 76140 74.4

Table 1: Results of experiments considering di�erent objectives. Column `Max Delay' contains the delay due to
logic elements only. Column `Clock' gives the delay of the longest path which includes logic and interconnect
delays.

In these experiments the interconnect delays were
in
ated by a factor of 3 in order to make the timing as-
pects more pronounced. Current implementation does
not take into account routability or pin location issues.
The reason is that routability is usually not a prob-
lem for the general cell design style and can be easily
incorporated into our system by integrating a global
router with the 
oorplan sizing procedure of the sec-
ond phase. The task of the global router is to compute
routing space requirements between blocks. These
space requirements can be speci�ed as edge weights
in the constraint graphs GH and GV . Then, the algo-
rithm will use the edge and node weights to compute
correct locations of all the blocks as well as the �nal
dimensions of the 
oorplan.

7 Conclusions
In this paper we presented a novel approach to

timing-driven 
oorplanning. The novelty of the pre-
sented approach comes from using a simpler represen-
tation in the �rst phase to solve a di�cult problem,
and then using a constructive technique in the sec-
ond phase to re�ne the solution while easing the re-
strictions of the �rst phase. Timing constraints are
included in the cost function.

The 
oorplanning procedure follows the genetic al-
gorithm. The program uses net and path timing data
from a timing analyzer. The timing analyzer uses the
notion of �-criticality to predict the critical paths
prior to 
oorplanning. Extensive experiments were
conducted to tune the parameters of the program and
evaluate the extent of timing improvement.

Acknowledgment
Authors acknowledge King Fahd University of

Petroleum and Minerals for support under KFUPM
Project # COE/VLSIDESIGN/162. We also acknowl-
edge K. Al-Farrah for implementing the timing predic-
tor and the reshaping algorithms.

References
[1] D. R. Brasen and M. L. Bushnell. MHERTZ:

A New Optimization Algorithm for Floorplan-
ning and Global Routing. In Proceedings of
the 27th ACM/IEEE Design Automation Confer-
ence, pages 107{110, 1990.

[2] J. P. Cohoon, S. U. Hedge, W. N. Martin, and
D. Richards. Punctuated equilibria: A parallel

genetic algorithm. In Proceedings of the Second
International Conference on Genetic Algorithms,
pages 148{154, 1987.

[3] J. P. Cohoon, S. U. Hedge, W. N. Martin, and
D. Richards. Distributed genetic algorithms for
the 
oorplan design problem. IEEE Transactions
on Computer-Aided Design, 10(4):483{492, 1991.

[4] D. E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-
Wesley Publishing Company, INC., 1989.

[5] S. Prasitjutrakul and William J. Kubitz. Path-
Delay Constrained Floorplanning: A Mathemati-
cal ProgrammingApproach for Initial Placement.
In Proceedings of the 26th ACM/IEEE Design
Automation Conference, pages 364{369, 1989.

[6] Sadiq M. Sait and Habib Youssef. VLSI Phys-
ical Design Automation: Theory and Prac-
tice. McGraw-Hill Book Co., Europe (also co-
published by IEEE Press), 1995.

[7] C. Sechen. Chip Planning, Placement, and Global
Routing of Macro/Custom Cell Integrated Cir-
cuits Using Simulated Annealing. In Proceedings
of the 25th Design Automation Conference, pages
73{80, June 1988.

[8] K. Shahookar and P.Mazumder. VLSI Cell Place-
ment. ACM Computing Surveys, 23(2):143{220,
June 1991.

[9] G. Vijayan and R. Tsay. A new method for 
oor
planning using topological constraint reduction.
IEEE Transactions on CAD, 10(12):1494{1501,
December 1991.

[10] D. F. Wong and C. L. Liu. A new algorithm for

oorplan design. Proc. of the 23rd DAC, pages
101{107, 1986.

[11] D. F. Wong and Khe-Sing The. An algorithm
for hierarchical 
oorplan design. Proc. of the IC-
CAD, pages 484{487, 1989.


	ASP-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index


