
A New System Partitioning Method under Performance and Physical Constraints
for Multi-Chip Modules

Yoshinori Katsura� Tetsushi Koide� Shin’ichi Wakabayashi� Noriyoshi Yoshiday

Faculty of Engineering, Hiroshima Univ.� Faculty of Information Sciences, Hiroshima City Univ.y

4-1, Kagamiyama 1 chome, 151-5, Ozuka, Numata-Cho,
Higashi-Hiroshima, 739 JAPAN Asa-Minami-Ku, Hiroshima 731-31, JAPAN

Tel: +81-824-24-7676, Fax: +81-824-22-7195 Tel: +81-82-830-1760, Fax: +81-82-830-1792
e-mail: koide@ecs.hiroshima-u.ac.jp e-mail yoshida@ce.hiroshima-cu.ac.jp

Abstract— In this paper, we propose a new and the first MCM
system partitioning method considering chip-to-chip delays, chip
areas and I/O pins constraints. The proposed method consists of
two steps, a clustering step considering the three constraints and
an iterative improvement step with mathematical programming.
In the first step, we apply two clustering algorithms considering
the three constraints and reduce the size of the large MCM sys-
tem partitioning problem so as to get a solution within a prac-
tical computation time. Next, it generates an initial partitioning
with 0-1 integer linear programming(ILP) so as to minimize the
total wire length. Since there may exist constraint violations in
the initial solution, in the second step, we formulate the partition-
ing problem as a LP problem selecting a maximal independent
set and improve it until the total number of cuts is not decreased
and the three constraints are satisfied. We also showed that the
number of the timing constraints can be reduced by deleting re-
dundant timing constraints. Experimental results showed that the
proposed method is able to produce partitions satisfying the three
constraints and improves the number of cuts by a 27 % on an av-
erage and a 30 % in maximum over the conventional method[15]
considering only two constrains.

I Introduction

Recently, as VLSI fabrication technology has been advanc-
ing rapidly, the development of an electronic system with high
performance and smallsized is strongly needed. A printed cir-
cuit board (PCB) has been used as a packaging technology
for conventional electronic systems. In this technology, every
packaged chip is mounted on a PCB and wires are intercon-
nected between packaged chips. Accordingly, the wire density
on and the area of a PCB have become a bottleneck for imple-
menting a high performance system and some better packaging
technologies have been desired. Therefore, Multi-Chip Mod-
ule (MCM) technology has been attracted as a new packaging
approach [2, 4]. This technology is able to increase the packag-
ing density and to eliminate the single chip package by mount-
ing and interconnecting the bare chips directly onto a higher
density substrate. Consequently, MCM is smaller in the size
and in the shorter total wire length than PCB.

For physical design of MCMs, we need to consider delays
between chips for the performance constraint, and chip areas,

the number of chip I/O pins, the thermal, and the consuming
power for the physical constraints. But conventional partition-
ing and clustering methods [1, 3, 5, 6, 12, 16, 17, 19] consid-
ered only the chip area constraint. Therefore it is not adequate
to apply these methods for ICs to MCM directly. Recently,
several partitioning methods considering such constraints have
been proposed[10, 11, 13, 14, 15, 18]. In Ref. [15], Shih and
Kuh proposed a partitioning method under the chip I/O pin and
the chip area constraints. But they do not consider the timing
constraint. In Ref.[18], Woo and Kim also considered only the
chip area and the chip I/O pins constraints for FPGAs. In Ref.
[10, 11, 13, 14], the chip areas and the timing constraints were
considered but the chip I/O pin constraint was not considered.
There are no methods considering the delay, the chip area, and
the chip I/O pins constraints up to the present.

In this paper, we present a new and the first MCM sys-
tem partitioning method under the three constraints mentioned
above. The proposed method consists of two steps, a cluster-
ing step considering the three constraints and an iterative im-
provement step with mathematical programming. In the first
step, we use two clustering algorithms under the constraints
to reduce the size of the problem as much as possible so that
the proposed method can handle a large size MCM partitioning
problem within a practical computation time. Next, we select a
maximal independent set to represent the number of cuts with a
linear expression exactly, and formulate the partitioning prob-
lem to a 0-1 ILP problem to the selected set. And then, we
convert the 0-1 ILP problem as a LP problem under three con-
straints and solve the problem. This iterative improvement step
is repeated while the number of cuts is improved and the three
constraints mentioned above are satisfied. We also showed that
the number of the timing constraints can be reduced by deleting
redundant timing constraints and representing the constraints,
whose source node is assigned to the same chip, with one con-
straint. Experimental results showed that the proposed method
improves the number of cuts by a 27 % on an average and a 30
% in maximum over the conventional method[15] considering
only two constraints. From experimental results for large size
data, we can also obtain a solution within a practical compu-
tation time applying a clustering method considering the three
constraints.

The reminder of this paper is organized as follows. Some
assumptions of our system partitioning problem, the intercon-
nection delay model, and the timing constraints will be given
in Section II. Then we will propose a new MCM system par-
titioning algorithm in Section III. In Section IV, experimental
results for the proposed method will be given. Finally, we will
conclude this paper in Section V.

II System Partitioning for MCM

A. Preliminaries

Figure 1(a) shows a diagram of an MCM substrate. We as-
sume that an MCM consists of a chip layer, on which bare chips
without the individual packages are mounted, multiple routing
layers providing all of the chip-to-chip interconnections, and a
power/grand layer.

register noder
c combinational logic node

i

j

 :
 :

Input

Output

r 5

r 3

r 1
c3

c5

c2

c7

c9

1

1

1

2

2

3

4

2

1

4

3

2

1 2
2

1

1

1
c8

r 4

r 2

c1

Output

c4

c6
chip layer

a bare chip

power / grand
layers

routing layers

(a) MCM model. (b) System graph.

Fig. 1. MCM model.

In this paper, for simplicity, we assume that a system consists
of registers and blocks of combinational logic, and all clock
generation and distribution circuits are ignored. When a sys-
tem is given as inputs, the system can be represented as a graph
G = (V;E) � (R [C;E), where V = fv1; v2; � � � ; vIg is a set
of register nodes R and combinational nodes C, and E is a
set of directed edges, which correspond to signal flows in the
system. The graph is called system graph[10]. Each edge is
associated with a weight !lm, which represents the number of
wiring between two nodes vl; vm 2 V . Figure 1(b) shows an
example of a system graph. The rectangular and circular nodes
correspond to registers and blocks of combinational logic, re-
spectively. The directed edges represent the signal flows. The
values attached to directed edges are the number of wiring be-
tween two nodes.

Let S = fs1; s2; � � � ; sJg be the set of chips (slots), where J
is the number of chips. We define M = (G;S) as an MCM sys-
tem. The positions of bare chips on the MCM are fixed. The
center coordinate of a chip sj 2 S is denoted by (pxj; pyj).
For each chip sj 2 S, chip areas Aj (1 � j � J) and the num-
ber of I/O pins of chips IOj (1 � j � J) are given as inputs.
For simplicity of the presentation, we assume that all bare chip
areas are the same size, that is, A1 = A2 = � � � = AJ , and all
multi-terminal nets are converted into two-terminal nets under
a weighted clique model like Ref.[15] in advance. For the case
that areas of bare chips are different, we can easily extend the
proposed method.

B. An Interconnection Delay Model

In general, an interconnection is modeled as a distributed
RC circuit[9]. Internal delays of registers and combinational
blocks are less than interconnection delays between chips.
Therefore, we suppose that internal delays of registers and
combinational blocks are equal to zero. To calculate the
interconnection delays between chips, we estimate the wire
length of a net by the half perimeter of bounding box of the
pins of nets. For simplicity, we assume that the interconnec-
tion delay is proportional to the wire length. Then the delay
Dpq (1 � p; q � J) from a source node assigned to the chip sp
to a load node assigned to the chip sq of a net is represented by
the following equation.

Dpq = Dunit length � length; (1)

where, Dunit length is the per unit length wiring delay which
depends on the material(dielectric constant ��). length is the
half perimeter of bounding box of the pins of the net, that is,
length = jpxp � pxq j + jpyp � pyqj.

C. Timing Constraint

In this paper, we consider the long path problem. As there
are many paths from a primary input(PI) or an output of flip-
flops(FFs) to a primary output(PO) or inputs of FFs, they can
be specified by pairs of pins, source ones and sink ones. Thus
we specify a timing constraint as t� = (s� ; e� ;Dallow�

), where
s� is a source pin (or node), e� is a sink pin (or node), and
Dallow� is the maximum allowable delay from the source to the
sink. If delays of all paths from a PI or an output of FF to a
PO or an input of FF are less than Dallow� , it satisfies the timing
constraint of the circuit.

For example, Fig. 2(b) shows the constraint graph of a tim-
ing constraint � , denoted G� = (V� ;E�); V� � V;E� � E, of
the circuit shown in Fig. 2(a). In this graph, nodes correspond
to blocks of a subcircuit corresponding to a timing constraint
� and directed edges correspond to signal flows in the system.
If a circuit and its timing constraint are given, the delay of any
path from s� to e� , in this case three paths, must be less than
Dallow� . We have to get the layout satisfying all elements of the
set of timing constraints T .

We apply the zero slack algorithm [7] to distribute Dallow�
to

the maximum allowable delays dlm (1 � l;m � I) between of
the edge of two nodes vl; vm 2 V� . Nodes have to be assigned
to chips so as to satisfy the maximum allowable delays between
nodes. We can get the maximum allowable delays between
nodes as shown in Figure 2 when we assume that Dallow� = 29
and apply the zero slack algorithm [7]. In Figure 2(b), the max-
imum allowable delay between nodes v3 and v7, i.e., d37, is 14,
and it is the largest slack. The maximum allowable delays be-
tween nodes, d12, d23, d35, d56, and d67, are 2 and they are the
smallest slack.

D. The MCM System Partitioning Problem

In the MCM design, we should consider delays between
nodes for performance and chip areas and the number of I/O

(a) A timing constraint

(b) A constraint graph

4v

1v

6v

7v 8v
4

33

5 6 3

14

3
3

s eτ τ

Dallow = 29τ

2v 3v

5v

Dallow = 29τ

7v

6c
8

r2

τe

1v

r1

τs

2v

1c v

v4

3c

v3

2c v65v
4c

5c

Fig. 2. A timing constraint.

pins of chips for physical constraint. The number of cuts is the
number of the nets which are connected among different chips.
We define that oeij is the number of nets that go out from a chip
sj when a node vi is assigned to a chip sj. Then we can rep-
resent the number of cuts with 1

2

P
I

i=1

P
J

j=1 oeij where a node
must be assigned to only one chip necessarily. Now, we for-
mulate the MCM partitioning problem considering above three
constraints as follows.

[The MCM System Partitioning Problem]
Input: an MCM system M = (G;S)
Output: a chip assignment F : V ! S so as to minimize the

objective function
Objective function: the number of cuts 1

2

P
I

i=1

P
J

j=1 oeij

Constraints: (1) timing constraints T , (2) chips areas con-
straints

P
8vi;F (vi)=sj

ai � Aj, and (3) chip I/O pins con-
straints

P
8vi;F (vi)=sj

oeij � IOj 2

Figure 3 shows an example of the MCM partitioning prob-
lem, where the area of nodes a1 and a4 are 2, and the areas of
the other nodes are 1. The chip area constraint Aj is 3 and the
I/O pin constraint IOj is 4. The total of node areas assigned
to each chips s1 and s3 are 2, and that of chips s2 and s4 are
3, respectively. The total number of I/O pins of chips s1 and
s4 is 3, and that of chips s2 and s3 are 4 and 2, respectively.
The number of cuts is 5. We suppose that the maximum al-
lowable delays between nodes are all 1� Dmin in Figure 3,
where Dmin = min Dpq (1 � p; q � J) is the minimum inter-
connection delay between chips. In this example, the intercon-
nection delay between chips s1 and s4, and chips s2 and s3 is
2� Dmin, respectively. The interconnection delays between
the other chips are all 1� Dmin.

III A New Partitioning Method under

Performance and Physical Constraints

A. Outline of the Method

The proposed method consists of four phases. In phases 1
and 2, we apply two clustering algorithms considering con-

MCMSystem graph

3v

2v 6v

5v

7v

8v
Partitioning1v

4v
5v

7v
8v

6v

2v
3v

s 2

s 3 s 4

s 1

1v

4v

4-way

= 1a i (i = 1, 4)a 1 = 2= a 4 iA = 3 IO j= 4 d ij = 1 Dmin

Fig. 3. System partitioning considering three constraints.

straints mentioned in the previous section and reduce the num-
ber of nodes so as to get a solution within a practical compu-
tation time. Next, it generates an initial partitioning based on
0-1 integer linear programming(ILP) so as to minimize the total
wire length in phase 3. Since there may exist constraint viola-
tions in phase 3, in phase 4, we improve the partition with 0-1
ILP until the timing, the chip area, and the I/O pin constraints
are satisfied. If we solve the 0-1 integer linear programming
problem directly, it is difficult to obtain a solution in a practical
computation time. So, we convert the 0-1 ILP problem into a
linear programming(LP) problem and solve it. We move nodes
to minimize the total number of cuts under the timing, the I/O
pin, and the chip area constraints. The improvement process
is repeated while the total number of cuts is decreased and the
three constraints are satisfied. We will explain the details of the
proposed method in the following subsections.

B. Phase 1 : Initial Clustering under Timing Constraint

In order to reduce the computation time, the clustering has
been known as an effective method to reduce the number of
nodes [3, 6, 19]. But it is difficult to apply conventional clus-
tering algorithms for ICs to the MCM system partitioning prob-
lem, since we must consider interconnection delays between
nodes for the performance constraint, and the chip area and the
number of chip I/O pins for the physical constraints.

We propose a clustering algorithm considering such three
constraints. Firstly, we cluster all pairs of the nodes that
cause a timing constraint violation if a pair of nodes are as-
signed to different chips. In other words, a pair of nodes
vl; vm 2 V generate timing violation only if the maximum al-
lowable delay dlm between nodes vl and vm is less than the
minimum interconnection delay between chips, i.e., dlm <

Dmin(= min1�i6=j�JDij). So, we cluster such all pairs of
nodes. This clustering process is repeated until all pairs of clus-
ter nodes have the maximum allowable delay dlm � Dmin

[10]. After phase 1, all pairs of nodes, which are connected
each other, have dlm � Dmin. However, if the area of a cluster
node is larger than the chip area constraint, there is no feasible
solution and terminate with reporting an error. The algorithm
of phase 1 is shown below.

[Phase 1 : Initial Clustering under Timing Constraint]
Step 1.1 Find a pair of nodes vl; vm 2 V with dlm < Dmin;

If there is no such a pair of nodes, then go to Step 1.4;
Step 1.2 Cluster nodes vl and vm to vl;

Step 1.3 If all pairs of cluster nodes have the maximum allow-
able delay dlm � Dmin, then terminate;

Step 1.4 If there is a pair of nodes with dlm < Dmin and al +
am > min1�i�JAi then report that there is no feasible
solution and terminate, else go to Step 1.1;

Since the algorithm checks all pairs of nodes, the computa-
tion time is O(jV j2), where jV j is the number of nodes.

C. Phase 2 : Clustering under the Three Constraints

We propose a new clustering method considering the tim-
ing, the area, and the chip I/O pins constraints, and reduce
the number of nodes so as to solve the large MCM partition-
ing problem within a practical computation time. The delay
is said to be critical if dlm � Dmin < preset value. In the
proposed method, we cluster a pair of nodes vl; vm 2 V , for
which the maximum allowable delay dlm is critical, the area is
al + am > min1�i�JAi, and the connectivity !lm is large.

In general, it is practically difficult to satisfy the chip I/O
pin constraints before determining a chip assignment of nodes.
Therefore we cluster nodes considering the connectivity !lm of
nodes in order to satisfy the I/O pin constraint. Given a pair of
nodes vl; vm 2 V , we define the cost function CF1(l;m) as,

CF1(l;m) = �� !lm + � � Aaverage
a
l
+am

+ 1
dlm�Dmin+1 ;

where, �;� are constants, and !lm and Aaverage are the con-
nectivity between nodes vl; vm and the average of chip areas,
respectively. Larger the value of the first term becomes, higher
the possibility of clustering the pair of the nodes becomes.
Since the second term represents the ratio of the average of
chip areas Aaverage to the sum of areas al and am of nodes vl
and vm, larger the value of the second term becomes, higher
the possibility of clustering the pair of nodes becomes. In the
third term, (dlm �Dmin) represents the degree of criticality of
the delay between nodes vl and vm. As the value of the third
term becomes smaller, the possibility of clustering the pair of
the nodes becomes higher.

When we compute the cost function CF1(l;m), we are able
to get the degrees of the clustering priority between nodes vl
and vm under the three constraints. Therefore we cluster a pair
of nodes vl and vm whose value of the cost functionCF1(l;m)
is maximum. This process is repeated while the number of clus-
ter nodes is larger than a pre-defined number. The algorithm of
phase 2 is shown as follows.

[Phase 2 : Clustering under the Three Constraints]
Step 2.1: Compute the cost CF1(l;m) of all pairs of nodes

vl; vm 2 V ;
Step 2.2: Clustering a pair of nodes vl and vm whose cost

CF1(l;m) is maximum and satisfies the three constraints;
Step 2.3: If the number of cluster nodes is smaller than a pre-

defined number, then terminate; else go to Step 2.1;

Since the algorithm computes costs of all pairs of nodes, the
computation time is O(jV j2), where n is the number of nodes.

In phases 1 and 2, the clustered nodes vl; vm 2 V must be as-
signed to the same chip. Therefore the interconnection delay
between the nodes vl and vm is much less than the interconnec-
tion delay between nodes assigned to different chips. We can
update the maximum allowable delay dlm between the clus-
tered nodes vl and vm so as to redistribute the maximum allow-
able delay to the path to which the timing constraint is given.
Even if we update the maximum allowable delay between the
nodes on the path, the maximum allowable delay between flip
flops Dallow� is still satisfied. In the following, we define the
set of cluster nodes in phases 1 and 2 as vi 2 CV and call a
cluster node a node for short.

D. Phase 3 : Initial Partitioning Based on 0-1 Integer Lin-
ear Programming

In phase 3, we get an initial partition with 0-1 integer linear
programming. The objective function is the total wire length
under the chip area and timing constraints. It is very difficult
to consider the I/O pin constraint in phase 3 because the num-
ber of I/O pins of chips is unable to be represented in a linear
expression generally. Simirally the number of cuts can not be
represented by a linear expression generally. This is the reason
why we consider the total wire length as the objective func-
tion. Since we can not consider all constraints in the 0-1 ILP,
there may exist constraint violations in an initial partitioning
obtained in phase 3. We remove the constraint violations by an
iterative improvement in phase 4. The 0-1 ILP formulation of
the initial partitioning problem is as follows.

[The 0-1 ILP Formulation of the Initial Partitioning Prob-
lem]
Input: MCM System M = (G;S)
Output: A chip assignment F1 : CN ! S so as to minimize

the objective function
Objective: the total wire length

I0X
l=1

I0X
m=1

Dcpq(xlp + xmq)

Constraints: (1) the timing constraint
Dpq(xlp + xmq � 1) � dlm

(2) the chip area constraint
I0X
i=1

aixij � Aj (1 � j � J)

(3) the chip assignment constraint
JX
j=1

xij = 1 (1 � i � I
0)

(4) xij =

�
1 F1(ni) = sj

0 otherwise

Practically, the timing constraint should be satisfied when
xlp = xmq = 1. Since the timing constraint is always satisfied
when xlp or xmp is 0, the timing constraint formulated above
is equivalent to the original timing constraint. Since all nodes

are assigned to any one of chips necessarily,
JX
j=1

xij = 1.

E. Iterative Improvement Based on 0-1 Integer Linear Pro-
gramming

1. Outline of Phase 4

If more than one nodes are connected each other and they
move from a chip to another chip at one time, the number of
cuts can not be represented with a linear expression. There-
fore, we select a set of nodes not connected each other, i.e., a
maximal independent set of nodes, to formulate the partition-
ing problem with linear expressions. Firstly, we compute oeij
of the initial partition obtained in phase 3, where oeij is the
number of edges of node vi going out from chip sj. Next, we
select a maximal independent set and formulate the problem to
the 0-1 ILP problem. In order to obtain a solution in a practical
computation time, we convert the 0-1 ILP problem into a lin-
ear programming(LP) problem and solve it. If a solution has
a variable whose value is an integer (0 or 1), we presume this
variable as a constant and apply the LP again. The process is
repeated until all variables of the solution become integer con-
stants (0 or 1). The improvement is repeated while the number
of cuts is decreased and three constraints (timing, chip area,
and I/O pins of chips) are satisfied. The algorithm of phase 4
is shown below.

[Phase 4 : Iterative Improvement based on 0-1 ILP For-
mulation]
Step 4.1: Select a maximal independent set;
Step 4.2: Formulate a partitioning problem as a LP problem

and solve it;
Step 4.3: If a variable xij is an integer (0 or 1), then set

xij = 0 or 1 and regard it as a constant; else if a variable
xij is 0 < xij � 0:01 or 0:99 � xij < 1, then set xij = 0
or 1, and regard it as a constant;

Step 4.4: If all variables xij are integer constants (0 or 1),
then go to Step 4.5; else go to Step 4.2;

Step 4.5: If the number of cuts is not improved for a pre-
defined successive time, then terminate; else go to Step
4.1;

In Step 4.3, if no variable is regarded as an integer constant,
we change the variable with a minimum constraint violation
into an integer constant (0 or 1). Therefore, we may get a so-
lution with constraint violations. Since we repeat Step 4.2 �
4.4 until all variables become integer constants (0 or 1) and at
least one of variables becomes an integer constant in one itera-
tion, the computation time for one loop is O(T (LP) � jCV j) in
the worse case, where T (LP) is the computation time of a LP
method and jCV j is the number of cluster nodes.

2. Selection of a Maximal Independent Set

As mentioned in 1., the number of cuts can not be repre-
sented with a linear expression when moving nodes. If we ap-
ply quadratic programming to the partitioning problem, we are
able to get a solution for only a small size of problem. Because
the number of nodes for the MCM system partitioning problem
is very large, it is not practical to get a solution by quadratic
programming. Therefore, firstly, we select a maximal indepen-
dent set so that the number of cuts can be represented with a

linear expression exactly. Next, we apply 0-1 ILP to the nodes
in the maximal independent set to determine which nodes are
to be exchanged to improve a partition. The number of cuts can
be represented with a linear expression exactly if only nodes in
a maximal independent set were moved, because the nodes in
the maximal independent set do not connect with each other.
In order to avoid selecting only the same nodes successively
and to improve the partition effectively, we introduce the cost
function CF2(vi) of a node vi defined as

CF2(vi) = degree(vi) + � select count(vi),

where degree(vi) is the degree of a node vi (vi 2 CV),
select count(vi) shows how many times a node vi (vi 2 CV)
is selected as an element of a maximal independent set, and
is a constant.

In the proposed method, we sort nodes in increasing order of
their costs and check if a node is able to be selected for a max-
imal independent set in that order. Larger the count of a node
selected as an element of a maximal independent set becomes,
smaller the cost becomes. In our simulation experiments, we
set to the number of average degree of nodes so as to avoid
selecting the nodes repeatedly. Figure 4 shows an example of a
selected maximal independent set. The nodes v2; v4 and v8 are
selected for a maximal independent set.

Select

the nodes selected for a maximal independent set

5v

7v
8v

6v2v

4v

s2

s3 s4

s1

3v

1v

5v

7v
6v2v

1v

s2

s3 s4

s1

3v

4v

8v

Fig. 4. Selection of a maximal independent set.

3. The 0-1 ILP Problem Formulation

After selecting the nodes in a maximal independent set, we
are able to represent the number of cuts with a linear expres-
sion exactly. We formulate the partitioning problem in phase 4
based on the 0-1 ILP as follows.

[The 0-1 ILP Formulation of the Partitioning Problem]
Inputs: (1) a MCM System M = (G;S), (2) an initial parti-

tioning F1 : CN ! S

Output: a chip assignment F2 : CN ! S so as to minimize
the objective function

Objective: the number of cuts
I
0X

i=1

JX

j=1

oeijxij

Constraints: (1) the timing constraint
Dpq(xlp + xmq � 1) � dlm

(2) the I/O pin constraint
I
0X

i=1

oeijxij � IOj (1 � j � J 0)

112x

122x

132x

142x

24x

23x

22x

21x

34x

33x

32x

31x

+
+
+
+

_< 2
_<
_<
_<

2
2
2

+
+
+
+

(d) 4 constraints

_< 1+
+
+
+
+
+
+
+

_<
_<
_<
_<
_<
_<
_<

1
1
1
1
1
1
1

8 constraints(c)

11

11

12

12

13

13

14

14

x
x

x
x
x
x
x
x

34x
24x

23x

33x

22x

32x

21x

31x

+
+
+
+
+
+
+
+

_<
_<
_<
_<
_<
_<
_<
_<

(b) 8 constraints

11x

11x

12x

12x

13x

13x

14x

14x

1.5
1.7
1.5
1.7
1.5
1.7
1.5
1.7

24x

34x

33x

22x

32x

21x

31x

23x

2(- 1)
2(
2(
2(
2(
2(
2(
2(

- 1)
- 1)
- 1)
- 1)
- 1)
- 1)
- 1)

(a)

2v

3v

s 2

s 3 s 4

s 1

1v

1v
2v

3v

32 constraints1.5

1.7

Fig. 5. Reduction of timing constraints.

(3) the chip area constraint
I0X

i=1

aixij � Aj (1 � j � J 0)

(4) the chip assignment constraint
JX

j=1

xij = 1 (1 � i � I 0)

(5) xij =

�
1 F1(ni) = sj
0 otherwise

4. Reduction of Timing Constraint

The timing constraint is formulated as, Dpq(xlp+xmq�1) �
dlm (1 � l;m � I0) (1 � p; q � J), where Dpq repre-
sents the interconnection delay between chips sp and sq, and
dlm represents the maximum allowable delay between nodes
vl and vm. But, if we formulate all timing constraints with
the inequality, we must consider all combinations of chips and
nodes, and the number of the inequalities of the timing con-
straints is I 02 � J2 in the worst case, where I0 and J is the
number of nodes and chips, respectively. Even if we construct
100 clusters in phase 2, the number of the inequality of the tim-
ing constraints is 640,000 when nodes are assigned to 8 chips!
It is impossible to solve such a large size problem in a practi-
cal computation time. However we can reduce the number of
these constraints, while keeping the mathematical equivalence
of original constraints and resulting constraints, because there
exist redundant constraints in the original timing constraints.

For example in Figure 5 (a), the maximum allowable delay
between nodes v1 and v2, and nodes v1 and v3 are 1.5 Dmin

and 1.7 Dmin, respectively. When the nodes are assigned to
4 chips, we need 32 inequalities under the timing constraint.
Now, consider the constraints that satisfy Dpq(xlp + xmq �

1) � dlm when xlq = xmq = 1. The constraints satisfy
Dpq(xlp+xmq�1) � dlm even if xlq and xmq are any value (0
or 1). Therefore we can remove such constraints from the tim-
ing constraints. Consequently, the number of the timing con-
straints becomes 8 as shown in Figure 5 (b). Since these con-
straints generate the timing violation only whenxlq = xmq = 1,
we are able to convert Figure 5 (b) into (c) keeping this rela-

tion. When a source node vl 2 CN is assigned to a chip sp, let
Pm (1 � m � M) be the number of chip assignments gener-
ating timing violations for every sink node vm (1 � m � M)
where M is a number of sink nodes. Then the number of chip
assignments generating timing violations, denoted P , becomes
M � Pm for all sink nodes vm (1 � m � M). When we con-
vert these constraints in one constraint, we get the following
constraint.

P � xlq +
MX
m=1

PmX
i=1

xmqi � P (2)

This new timing constraint can be satisfied iff the old timing
constraint is satisfied. Finally, we get the result as shown in Fig-
ure 5 (d). The number of timing constraints becomes 4, where
P = 2. We can derive the following two theorems. Due to the
space limitation, we omitted proofs of these theorems. Detail
of proofs are found in Ref. [8].

Theorem 1 When a source node vl 2 CN is assigned to a
chip sp, we presume that the number of chip assignments with
timing violations is P for all sink nodes vm (1 � m � M).
Then the following constraints,

P �xlq +
MX
m=1

PmX
i=1

xmqi � P (1 � l � I0) (1 � p; q � J) (3)

are satisfied iff the original constraints,

Dpq(xlp + xmq � 1) � dlm (1 � l � I0) (1 � p; q � J) (4)

are satisfied.

Theorem 2 The number of the timing constraints of the par-
titioning problem is at most I0 � J , where I0 and J are the
number of nodes and chips, respectively.

From these theorems, we are able to reduce the number of
timing constraints. For example, when we construct 100 cluster
nodes in phase 2 and assign the nodes to 8 chips, the number of
timing constraints is not 640,000 but 800!, and we can easily
obtain a solution within a practical computation time.

IV Experimental Results

We have implemented the proposed method by C lan-
guage. All experiments were tested on a SPARC server 1000
(135MIPS, 256Mbytes) of Sun Microsystems, Inc. Table I
shows characteristics of the data and the constraints used in
experiments. All tested data are MCNC benchmark data. For
“primaryGA1" and “primaryGA2", the I/O pin constraint is
the same as ones used in Ref. [15]. For “avq.small" and
“avq.large", we set the I/O pin constraint to 500. We also set the

chip area constraint to

P
ni2N

ai

#chips
� 1:1, where ai and #chips

are the area of node vi and the number of chips, respectively. In

TABLE I
Characteristics of benchmark data.

data #nodes #nets IOj Aj #chips

primaryGA1 833 904 90 3.85 8
primaryGA2 3014 3029 335 7.19 8
avq.small 21854 22081 500 5.77 8
avq.large 25114 25341 500 6.39 8

IOj : the I/O pin constraint
Aj : the chip area constraint [mm

2]

TABLE II
Results of Shih and Kuh's method [14] under the I/O pin

and the chip area constraints.
data #cuts #I/Os area #vio time (s)

primaryGA1 334 90 – – –
primaryGA2 992 335 – – –

#cuts : the number of cuts
#I/Os : the largest number of I/O pins
area : the largest chip area [mm

2]
#vio : the number of timing violations
time : the computation time [s]

other words, every chip may have 10 % extra areas. For “pri-
maryGA1" and “primaryGA2", the maximum allowable delay
between flip flops, Dallow� , is set to the value obtained by mul-
tiplying the sum of the internal delays of nodes between flip
flops and 11.0. For “avq.small" and “avq.large", we assigned
delays (0� Dmin � 5 � Dmin) to pairs of nodes randomly.
Note that the delay more than 5 � Dmin is meaningless in 8-
way partitioning since 5� Dmin is the delay from one corner
to the another corner, that it is the maximum.

We compared the proposed method with the method pro-
posed in Ref. [15]. They partition nodes into eight sets under
only two constraints, that is, the I/O pin and the chip area con-
straints. The I/O pin constraint is set by the value given in Ref.
[15]. Table II shows the results described in Ref. [15]. The chip
area and the computation time were not shown in Ref. [15]. We
partitioned “primaryGA1" and “primaryGA2" into eight chips
as the same as in Ref. [15], respectively. Tables III and IV show
the results of the proposed method. We set � = 60, � = 0:05,
 = 200;000, and #clusters = 300 for data “primaryGA1",
and � = 90, � = 0:01, = 400;000, and #clusters = 1;000
for data “primaryGA2".

Table III shows the results of the initial partitioning in phase
3 and the final partitioning in phase 4 under two constraints,
i.e., the I/O pin and the chip area constraints. In phase 3, the
I/O pin constraint is not satisfied, but the chip area constraint is
satisfied. In phase 4, the I/O pin and the chip area constraints
are satisfied, but the timing constraint is not satisfied since we
do not consider the timing constraint in this experiment. There-
fore the third term of the cost function CF1(l;m) in phase 2,
which represents the criticality of delays, is considered as 0.
The number of cuts in phase 4 is improved by a 47 % on an
average over phase 3, and the number of the timing violations
in phase 4 also decreases over phase 3. The proposed method
improves the number of cuts by a 27 % on an average over Ref.
[15].

Table IV shows the results of the initial partitioning in phase
3 and the final partitioning in phase 4 under the three con-

TABLE III
Results of the proposed method under the I/O pin and the

chip area constraints.
data phase #cuts #I/Os area #vio time (s)

primaryGA1
3 390 239 3.78 30 5
4 233 86 3.81 19 160

primaryGA2
3 1607 816 7.19 279 66
4 751 325 7.15 182 2038

� = 60; � = 0:05; = 200; 000; #clusters = 300

TABLE IV
Results of the proposed method under the three

constraints.
data phase #cuts #I/Os area #vio time (s)

primaryGA1
3 519 267 7.70 0 7
4 286 87 3.79 0 318

primaryGA2
3 1942 873 8.10 1 97
4 1231 333 7.19 0 3968

� = 90; � = 0:01; = 400; 000; #clusters = 1; 000

straints, that is, the timing constraints, the I/O pin, and the chip
area constraints. In phase 3, only the timing constraint is sat-
isfied for data “primaryGA1", and no constraints are satisfied
for data “primaryGA2". The number of cuts in phase 4 is im-
proved by a 41 % on an average over phase 3. In phase 4,
all constraints are satisfied. The proposed method can obtain
a partition satisfying three constraints with only a 5 % of the
number of cuts increasing compared with Ref. [15].

Table V shows the results of the proposed method under the
two and the three constraints for large data, respectively. The
parameters of the cost function in phase 2 are set � = 10,
� = 0:05, = 100;000, and #clusters = 1;500 so that the
second term of CF1(l;m), which represents the ratio of the
average of chip areas to the sum of node areas, becomes the
largest among the values of three terms. In Table V, “con-
straints" represents the constraint that we adopt in experiments,
and “IOj + Aj" and “ALL" represent the two constraints (the
chip area and the I/O pin constraints) and three constraints (the
timing, the chip area, and the I/O pin constraints), respectively.
Note that the results under the three constraints are improved
by an 8 % on average over the results under the two constraint
against our expectation. This may be explained that initial
solutions may be different under the two and the three con-
straints. The number of cuts in the initial partitioning for data
“avq.small" is 3,090 and 3,053 under the two and the three con-
straints, respectively, and that for data “avq.large" is 3,078 and
3,198 under the two and the three constraints, respectively. As
expected, the computation time under the three constraints be-
comes longer than that under the two constraints.

In Ref. [15], they do not show the chip area constraint.
Therefore the chip area constraint might be too loose if every
chip has a 10 % extra area. Thus, we set the area constraint

Aj as

P
vi2V

ai

#chips
+maxvi2vai and experimented so as to show

the effectiveness of the proposed method, where ai, #chips,
and maxvi2vai are the node area, the number of chips, and
the largest node area, respectively. In other words, each chip
has the minimum extra area which is the largest node area.
Note that this is the tightest chip area constraint. We can say

TABLE V
The experimental results for large data under the three

constraints.
data constraints #cuts #I/Os area #vio time (s)

avq.small
IOj + Aj 1456 413 5.77 114 11774
ALL 1230 425 5.76 0 38012

avq.large
IOj + Aj 1264 483 6.39 60 24366
ALL 1246 429 6.38 0 41133

� = 10; � = 0:05; = 100; 000; #cluster = 1; 500
IOj + Aj : the I/O pin and the chip area constraints
ALL : the timing, the chip area, and the I/O

pin constraints

TABLE VI
Results of 8-way partitioning under the I/O pin and the

chip area constraints.
data #cuts #I/Os area #vio time (s)

primaryGA1 250 86 3.67 21 116
primaryGA2 883 315 6.71 154 3213

that the proposed method is more effective than the method in
Ref. [15] if we can get a better solution that the number of
cuts is smaller and it satisfies the constraints, under the two
constraints. For data “primaryGA1" and “primaryGA2", we
set the chip area constraint to 3.68 and 6.72 [mm2], respec-
tively. For data “primaryGA1" and “primaryGA2", � = 50,
� = 0:05, = 300;000, and #clusters = 300, and � = 90,
� = 0:05, = 500; 000, and #clusters = 1; 000 in phase 2,
respectively. Table VI shows the results in 8-way partitioning
under the I/O pin and the chip area constraints obtained by the
proposed method. From Tables II and VI, the proposed method
improves the number of cuts by an 18 % over Ref. [15] on an
average. The I/O pin and the chip area constraints are satis-
fied for both methods. Table VII shows the results in 8-way
partitioning under the three constraints for proposed method.
Although the number of cuts increases by a 3 % over Ref. [15]
on an average, the proposed method produces the results satis-
fying the three constraints within a practical computation time.
Those results show that the proposed method is much more ef-
fective than the method in Ref. [15].

V Conclusions

In this paper, we proposed an MCM system partitioning
method under the timing, the chip I/O pins, and the chip
area constraints. Experimental results show that the proposed
method improves the number of cuts by a 27 % on an average
over Ref [15]. We showed that the proposed method can get a
solution for large size data up to about 20,000 blocks within
a practical computation time. As far as we know, the pro-
posed method is the first partitioning method under the three
constraints mentioned above. Future research includes the de-
velopment of an MCM Routing method under performance and
physical constraints.

Acknowledgements

The authors thank Mr. H. Oohira who has helped in the im-
plementation of programs.

TABLE VII
Results of the proposed method for 8-way partitioning

under the three constraints.
data #cuts #I/Os area #vio time (s)

primaryGA1 295 84 3.65 0 272
primaryGA2 1172 334 6.72 0 4308

References

[1] T. N. Bui and B. R. Moon: “A fast and stable hybrid genetic algorithm for
the ratio-cut partitioning problem on hypergraphs,” Proc. of ACM/IEEE
31st Design Automation Conference, pp. 664–669 (1994).

[2] D. A. Doane and P. D. Franzon: “Multichip Module Technologies and
Alternatives,” Van Nostrand Reinhold (1993).

[3] J. Garbers, H. J. Promel and A. Steger: “Finding clusters in VLSI cir-
cuits,” Proc. of IEEE International Conference on Comput.-Aided Des.,
pp. 520–523 (1990).

[4] G. L. Ginsberg and D. P. Schnorr: “Multichip Modules and Related Tech-
nologies,” McGraw-Hill, Inc. (1993).

[5] L. Hagen and A. B. Kahng: “Fast spectral methods for ratio cut partition-
ing and clustering,” Proc. of IEEE International Conference on Comput.-
Aided Des., pp. 10–13 (1991).

[6] L. Hagen and A. B. Kahng: “A new approach to effective circuit clus-
tering,” Proc. of IEEE International Conference on Comput.-Aided Des.,
pp. 422–426 (1992).

[7] P. S. Hauge, R. Nair and E. J. Yoffa: “Circuit placement for predictable
performance,” Proc. of IEEE International Conference on Comput.-
Aided Des., pp. 88–91 (1987).

[8] Y. Katsura, T. Koide, S. Wakabayashi and N. Yoshida: “A new sys-
tem partitioning method under performance and physical constraints for
multi-chip modules,” Technical Report Tech. Rep. No.95-01, Faculty of
Engineering, Hiroshima University (1995).

[9] E. S. Kuh and M. Shih: “Recent advances in timing-driven physical de-
sign,” Proc. of Asia-Pacific Conference on Circuits and Systems, pp. 23–
28 (1992).

[10] E. S. Kuh, M. Shih and R.-S. Tsay: “Performance-driven system parti-
tioning on multi-chip modules,” Proc. of ACM/IEEE 29th Design Au-
tomation Conference, pp. 53–56 (1992).

[11] E. S. Kuh, M. Shih and R.-S. Tsay: “Integer programming techniques for
multi-way system partitioning under timing and capacity constraints,”
Proc. European Conference on Design Automation with the European
Event in ASIC Design, pp. 294–298 (1993).

[12] B. M. Riess, K. Doll and F. M. Johannes: “Partitioning very large circuits
using analytical placement techniques,” Proc. of ACM/IEEE 31st Design
Automation Conference, pp. 646–651 (1994).

[13] K. Roy and C. Sechen: “A timing driven n-way chip and multi-chip parti-
tioner,” Proc. of IEEE International Conference on Comput.-Aided Des.,
pp. 240–247 (1993).

[14] M. Shih and E. S. Kuh: “Quadratic Boolean programming for
performance-driven system partitioning,” Proc. of ACM/IEEE 30th De-
sign Automation Conference, pp. 761–765 (1993).

[15] M. Shih and E. S. Kuh: “Circuit partitioning under capacity and I/O con-
straints,” Proc. of IEEE Custom Integrated Circuits Conference, pp. 659–
662 (1994).

[16] Y.-C. Wei and C.-K. Cheng: “Towards efficient hierarchical designs
by ratio cut partitioning,” Proc. of IEEE International Conference on
Comput.-Aided Des., pp. 298–301 (1989).

[17] Y.-C. Wei and C.-K. Cheng: “Ratio cut partition for hierarchical de-
signs,” Proc. of IEEE International Conference on Comput.-Aided Des.,
10, 7, pp. 911–921 (1991).

[18] N.-S. Woo and J. Kim: “An efficient method of partitioning circuits for
multiple-FPGA implementation,” Proc. of ACM/IEEE 30th Design Au-
tomation Conference, pp. 202–207 (1993).

[19] C.-W. Yeh, C.-K. Cheng and T.-T. Y. Lin: “A probabilistic
multicommodity-flow solution to circuit clustering problems,” Proc. of
IEEE International Conference on Comput.-Aided Des., pp. 428–431
(1992).

	ASP-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

