
Performance-Driven Circuit Partitioning for Prototyping by Using

Multiple FPGA Chips

Chunghee Kim, Hyunchul Shin Younguk Yu

Dept. of Electronics Eng., Seodu Logic Inc.

Hanyang University, Korea Seoul, Korea

Abstract| A new performance-driven partitioning

algorithm has been developed to implement a large

circuit by using multiple FPGA chips. Partitioning

for multiple FPGAs has several constraints to sat-

isfy so that each partitioned subcircuit can be im-

plemented in a FPGA chip. To obtain satisfactory

results under the constraints, the partitioning is per-

formed in two phases which are the initial partition-

ing for global optimization and the iterative partition-

ing improvements for constraint satisfaction. Experi-

mental results using the MCNC benchmark examples

show that our partition method produces better re-

sults than those of other recent approaches on the

average and that performance-driven partitioning is

e�ective in reducing critical time delays.

I. Introduction

FPGAs (Field Programmable Gate Arrays) are widely

used since a circuit can be implemented simply by pro-

gramming fabricated FPGAs to perform desired func-

tions. Rapid prototyping by using FPGAs, therefore,

can frequently reduce the cost and time required for de-

sign, implementation and veri�cation of a circuit. A

FPGA chip consists of con�gurable logic blocks (CLBs),

input/output blocks (IOBs), and programmable intercon-

nection networks. A CLB contains
ip
ops and lookup

tables which can be con�gured to perform combinational

or sequential logical functions [1].

The density of a FPGA chip is much less than that

of other technologies such as gate array or standard cell.

When the designed circuit is too large to be con�gured

within a single FPGA chip, the circuit has to be par-

titioned into subcircuits so that each subcircuit can be

con�gured within a FPGA chip. To incorporate the addi-

tional constraints, several FPGA partitioning algorithms

has been published recently. [2, 3, 4, 5].

In [6], a bottom-up partitioning approach tailored to

FPGA chips is described, in which functions are selected

and placed on a chip, one by one. Since this method

constructively places each function, the solution may not

be close to the optimum one.

In [3], an iterative improvement algorithm for FPGA

partitioning is reported. At each pass cells are moved

between blocks and the best partition is chosen. The move

is made to decrease the number of pins of source and/or

destination subcircuits.

In [2], a large logic circuit is partitioned into a collection

of subcircuits implementable with devices selected from a

given library. Each chip in the library may have a di�er-

ent price, size, and terminal capacity. In [4], an improved

partitioning method is described, in which the functional

replication capability is added to the partitioning algo-

rithm of [2]. The functional replication reduces the size

of interconnect as well as the total chip cost.

In [5], circuit partitioning for logic emulation is stud-

ied. After local ratio-cut clustering to reduce the circuit

complexity, a set covering partitioning approach is used to

replace the widely adopted recursive partitioning. There

are also algorithms to partition for PLA-based FPGAs

[7].

In this paper, a new hierarchical performance-driven

partitioning algorithm for multiple FPGA implementa-

tion is described. The algorithm consists of two phases.

During the �rst phase, two-level hierarchical partitioning

is performed to �nd a "good" initial solution. The con-

straints are not strictly enforced during the �rst phase.

This is to allow more moves of circuit elements among

subcircuits.

During the second phase, iterative optimization is per-

formed, in which the cost function is dynamically adjusted

for each pass, to �nd an near-optimal solution which sat-

is�es all the constraints.

To illustrate the e�ectiveness of our partitioning algo-

rithm, it is used to partition MCNC partition benchmark

examples and its results are compared with those of [2, 4,

5]. Since the benchmark circuits are already technology

mapped into Xilinx 3000 device families, we can make ex-

act comparisons without worrying about the performance

of technology mapping tools. In most cases, and on the

average, our method outperforms other approaches pub-

lished in [2, 4, 5]. Furthermore, our method signi�cantly

outperforms others when the size of the given circuit is

large.

In Section II, the FPGA partitioning problem is for-

mally de�ned and the objective function is described. In

Section III, the performance-driven hierarchical FPGA

partitioning algorithm is described in detail. In Section

IV, experimental results are shown. Finally, in Section V,

conclusions are summarized.

II. FPGA Partitioning Problem

The input circuit is a netlist of circuit elements of a

target FPGA chip. For example, Xilinx chips have only

one type of circuit elements which are CLBs.

Let a given circuit have n nodes or CLBs and let V

be the set of nodes and E be the set of nets where a

net e 2 E connects two or more elements of V . Now

the multiple FPGA partitioning problem can formally be

stated as follows :

Problem : Given a hypergraph H(V;E), a cost function

f , and a set of l FPGA chips with size and pin count

constraints (S1, ..., Sl and P1, ..., Pl, respectively), �nd a

mapping � : V ! f1, 2,, l g such that

(i) ai � Si for all i=1,2, ...,l, where ai = f v j �(v) =

i; v 2 V g (size of each node (CLB) is 1.)

(ii) bi � Pi for all i=1,2,..., l, where bi is the number of

nets connecting a node in subcircuit i and another node

in subcircuit j 6= i.

(iii) the given cost function f is minimized.

The cost can be written as the weighted sum of the

number of nets cut by partitioning and the delays on the

timing critical paths. Speci�cally,

f = cut net + r � delay cost

where r is the weighting factor.

Previous partitioning methods [2, 3, 4, 5, 6] did not

consider delays during partitioning. However, one of the

major drawbacks of FPGAs compared to custom chips

is that the speed of FPGA chips is much slower due to

programmability. Sometimes slow speed of FPGAs pro-

hibits FPGAs from being used in real time applications.

Therefore, time delays should be considered and exces-

sive delays should be penalized during partitioning. In

our approach, delays on critical paths are estimated and

are considered during clustering and partitioning. The

best way to minimize delay of a timing critical path is

to put all the elements (nodes) on the path into a chip

(subcircuit). Therefore, it is reasonable to merge several

"closely" connected elements into a cluster and to con-

sider the cluster as an object during the �rst phase of

partitioning. The "closeness" between two connected el-

ements (nodes) is represented by an edge weight.

For example, in Fig 1, let (a; b; c; d; e) be the most

timing critical path, then the edges belong to this path

have weight w1. If the second critical path is (f; c; d; e),

then the edge (f; c) has weight w2, where w1 > w2.

The weights are determined to normalize the criticality

of paths as shown in Fig 2.

f

a b c d e

g

-w1
-w1 -w1

-

-w1

w2

-

Fig. 1. An example of path weighting

-

6

,
,
,
,
,
,
,
,
,

0.5d1 d2 d1 delay

1

w2

w1

weight

Fig. 2 : Net weight vs. path delay

III. Performance-Driven Hierarchical
FPGA Partitioning

The new partitioning method attempts to minimize the

cost while satisfying constraints on the number of I/O

terminals and on the size of chips. Partitioning algorithm

consists of two phases. In �rst phase, clustering-based

partitioning which is modi�ed from [8] is performed. The

objective function of the �rst phase is the weighted sum of

the cut size and the maximum delay. Since we iteratively

move nodes from a subset to another as in [8] to minimize

the objective function, the result may be dependent on the

initial partition. To remove this dependency and to obtain

consistently "good" solution, we partition the clusters N1

times from the randomly generated initial partition and

then choose the best result. The best result is
attened

and optimized once more to �nish the initial partitioning

phase.

During the second phase, the partition result optimized

during the �rst phase is improved to satisfy all constraints

implied by the given FPGA chips. The overall algorithm

of partitioning is given in Algorithm 1.

Algorithm 1 : Multi-Chip Partitioning

/** First phase **/

make clusters();

Perform cluster partition N1 times;

atten the best result obtained from the above;

partition CLBs by GCEP;

/** Second phase **/

while(iteration number is less than 3 or the partition

is improved in previous 3 iterations) f

improve current partition result();

g

3.1 Clustering-Based Initial Partitioning

Clustering of "closely connected" CLBs improves both

of the e�ciency and the performance of partitioning [8,

9], since closely connected CLBs should be assigned to a

single FPGA chip to minimize the cut size and delay. The

clustering is bottom-up. The closeness of two CLBs or

clusters, C and D, is evaluated by the following formula:

closeness(C;D) = cnet(C;D)=MIN (net(C); net(D))

�� � (cl size(C;D)=avg size)

where the variable cnet(C;D) is the sum of common

net weights between C and D, and net(C) is the sum of

net weights in C. The variable cl size(C;D) is the size of

the new cluster constructed when C and D are merged.

The variable avg size is the average size of clusters. The

�rst term represents the attractive force due to common

nets between C and D, and the second term represents

the repulsive force to encourage forming uniformly sized

clusters.

For cluster and CLB partitioning, the gradual con-

straint enforcing partitioning (GCEP) method developed

by the authors is adopted [8]. At the beginning, the size

constraints are relaxed and the sizes of partitioned sub-

sets may be severely unbalanced. This allows very
exible

movements of nodes among the subsets. After each pass of

optimization, the size constraints are tightened gradually

so that the desired size constraints are enforced at the �-

nal pass. Thus the GCEP algorithm has the hill-climbing

e�ect and searches a broader solution space.

Our present partitioning algorithm is improved from

the one in [8] in the following respects : (1) The nodes

are moved from a selected subset to other subsets, as

long as size constraints are satis�ed, in [8]. However, in

the present algorithm, nodes are moved out of the se-

lected subset to other subsets and then moved into the

selected subset from others to allow more general bidi-

rectional movements. (2) Each node movement is stored

with its corresponding cost and the minimum cost parti-

tion is chosen among feasible ones after each iteration, in

the present implementation. (3) Cut-net is minimized in

[8], while the weighted sum of cut-net and critical delay

is minimized in the present implementation.

The following is the partition algorithm used for both of

cluster and CLB partitioning. A cell is a cluster of CLBs

for cluster partition and is a CLB for CLB partition. K

is the number of chips (or groups in the algorithm).

Algorithm 2 : GCEP Partitioning

initial partition;

evaluate initial gain;

curr group = 1; /* Initial current group */

bal = INIT BAL; /* INIT BAL = 0.5 */

d� size = avg size � bal;

/* Main optimization */

for(True) f

/* Move out as long as the size of curr group

is not less than (avg size - d� size) */

move out(curr group, d� size);

/* Move in as long as the size of curr group

is not greater than (avg size + d� size) */

move in(curr group, d� size);

/* Check move history and �nd the optimal point.

Then undo moves made after the point */

unmove;

curr group ++;

/* If one iteration is �nished */

if(curr group == K+1) f

curr group = 1;

bal = bal � REDUCTION RATIO;

/* REDUCTION RATIO = 0.9 */

if(bal � FINAL BAL)

break; /* Partition completed */

d� size = avg size � bal;

if(d� size < avg size � FINAL BAL)

/* FINAL BAL = 0.2 */

d� size = avg size � FINAL BAL;

g

g

move out(from group, d� size) f

/* from group is curr group */

while((cell = �nd cell with largest gain such that

j to group j + j cell j � avg size+d� size)

is not empty) f

if(j from group j - j cell j < avg size-d� size)

return;

move cell;

update gain;

store move history with gain;

g

g

move in(to group, d� size) f

/* to group is curr group */

while((cell = �nd cell with largest gain such that

j from group j - j cell j � avg size-d� size)

is not empty) f

if(j to group j + j cell j > avg size+d� size)

return;

move cell;

update gain;

store move history with gain;

g

g

3.2 Partitioning Improvement Step

The partition improvement is performed based on the

gain (cost reduction) of moving a CLB from a chip to

another. The movements are made in the decreasing order

of gain. Violations of the constraints on the numbers of

CLBs and pins are re
ected to the cost by adding penalty

terms. When there are violations left at the end of an

iteration, the penalty values for the violated constraints

are increased. When the violated result is not improved

during three consecutive iterations, the algorithm reports

Table 1: Partition improvement for s38584
CLB Pin

Iteration � � over
ow over
ow cut net

Initial - - 54 1 770
1 1 1 34 1 748
2 2 2 1 0 790
3 3 2 0 0 791

a failure and terminates. The cost function including the

penalty terms can be written as

cost = cut net + r � delay cost+ ��CLB overflow

+ � � Pin overflow

The �rst and second terms are explained in Section 3.1.

The default value of r is 1 and the user may change it if

desired. The values of � and � are dynamically adjusted.

The third and fourth terms will become zero when the

constraints on the number of CLBs and on the number of

pins are satis�ed.

The partition improvement algorithm is very similar

with the GCEP partitioning algorithm given in Algorithm

2. The di�erences are in that (1) bal is �xed (bal =

FINAL BAL), (2) � is increased by 1 if CLB count is

violated for a subcircuit(group) and � is increased by 1

if pin count is violated, after execution of the main opti-

mization 'for' loop, (3) CLBs are moved only if gain is pos-

itive in procedures, move in and move out, and (4) the

main optimization loop terminates when violation or cost

is not improved during three consecutive iterations, in the

partition improvement procedure. The initial values of �

and � are 1. Experimental results show that performance-

driven partitioning can be completed after 2-4 iterations.

Table 1 shows partition of the largest benchmark circuit,

s38584, with 2904 CLBs and 292 I/Os. The circuit is par-

titioned into 22 FPGA chips. Each chip has 144 CLBs and

96 I/O pins. The total CLB overflow is 54 and the total

Pin overflow is 1 for the initial solution. After the �rst

improvement iteration, there are still violations, therefore

� = 2 and � = 2 are used for iteration 2. After iteration

3 (� = 3, � = 2), a feasible partition has been obtained.

IV. Experimental Results

The new partitioning algorithm has been implemented

by using "C" programming language on DEC3000 work-

station running UNIX operating system.

Table 2: Xilinx Chip Types.

Chip Type Device Cost #IOBs #CLBs

1 XC3020 1.00 64 64
2 XC3030 1.36 80 100
3 XC3042 1.84 96 144
4 XC3064 3.15 110 224
5 XC3090 4.83 144 320

Table 3: Benchmark Examples.

Circuit #CLBs #IOBs #NETs #PINs

c3540 283 72 489 1645
c5315 377 301 699 2409
c6288 833 64 1472 3438
c7552 489 313 921 2924
s5378 381 86 628 2332
s9234 454 43 716 2671
s13207 915 154 1377 5309
s15850 843 102 1265 4977
s38584 2904 292 3884 17483

The MCNC benchmark circuits are technology-mapped

for Xilinx 3000 series FPGAs. In Table 2, the types of

Xilinx 3000 series chips are listed with the device names,

the device costs, the number of IOBs and the number of

CLBs. Benchmark circuits are shown in Table 3. Chip

types and the benchmark examples listed in Table 2, 3

are also used in [2, 4].

4.1 Partitioning for a Minimal Cost

First, we compare our partition results with those of [2,

4] based on the total chip cost needed to implement each

circuit. Since several types of chips were used in [2, 4] for

a circuit, the number of devices used are listed in the col-

umn "Device Distribution" in Table 4. We partitioned the

same circuits by using only one type of chips. After par-

titioning, if it is possible to substitute a chip by a cheaper

one, then it is substituted. The initial chip type was deter-

mined experimentally for minimal cost. Our method has

produced about 12% better results on the average than

those of [2, 4]. Furthermore, our method signi�cantly out-

performs other methods when the size of the given circuit

is large.

To compare with the results of [5], we used only type

5 (XC 3090). The minimum number of chips required to

implement each circuit is shown in Table 5. "RFM" is the

recursive Fiduccia-Mattheyses method [10] and its results

Table 5: Partitioning Results

Circuit RFM [5] NEW
#FPGAs #FPGAs #FPGAs

s15850 4 3 3
s13207 7 6 4
s38417 12 10 8
s38584 17 14 14

Total 40 33 29

are quoted from [5]. Again, our method (NEW) produces

substantially better results.

4.2 Partitioning for Minimal Delay

Since there has not been a report on performance-

driven FPGA partitioning, we can not make comparisons

with other results. Therefore, we present our results with

and without delay optimization. For delay optimization,

the delay-cost is added to the cut-net cost and the to-

tal cost is minimized. For delay estimation, we assume

that CLB-to-CLB delay is 4 ns and chip-to-chip delay is

20 ns. The results are summarized in Table 6. In the

table, Delay lower bound shows the achievable minimum

delay of the longest critical path, i.e., this is the delay

when all CLBs are con�gured within a single FPGA chip.

Then the maximumdelays are shown when the devices in

the NEW column of Table 4 are used, with and without

performance optimization. These results show that delays

can be reduced by using the performance-driven approach

without increasing the chip cost. The last column shows

the maximumdelays when all the devices are replaced by

type 5 (XC3090). Since larger chips are used, the delay

can be signi�cantly reduced.

V. Conclusions

The problem of partitioning a large circuit for multiple

FPGA implementation is considered. In addition to �nd-

ing a feasible partitioning, the objective function is chosen

to reduce the total cost of devices used in the partitioning

and the delay on the critical paths. Experimental results

show that new method outperforms other approachs [2,

4, 5] by more than 10% and it can reduce the maximum

delay signi�cantly when performance-driven optimization

is used.

Table 4: Partitioning Results
[2] [4] NEW

Circuit Device Total Total Device Total CPU
Distribution Cost Cost Distribution cost (sec)

c3540 f0, 0, 3, 0, 0g 5.52 4.56 f0, 3, 0, 0, 0g 4.08 9
c5315 f2, 1, 2, 0, 0g 7.03 6.92 f0, 6, 0, 0, 0g 8.16 11
c6288 f0, 0, 4, 2, 0g 13.66 13.76 f0, 0, 6, 0, 0g 11.04 38
c7552 f0, 0, 4, 0, 0g 7.36 7.36 f0, 6, 0, 0, 0g 8.16 18
s5378 f0, 0, 1, 0, 1g 6.67 6.19 f0, 0, 0, 2, 0g 6.30 14
s9234 f0, 0, 0, 1, 1g 7.98 7.98 f0, 1, 3, 0, 0g 6.88 26
s13207 f3, 5, 4, 0, 0g 17.16 18.12 f1, 11, 0, 0, 0g 15.96 375
s15850 f0, 0, 2, 2, 1g 14.80 14.97 f0, 10, 0, 0, 0g 13.60 272
s38584 f0, 5, 15, 4, 1g 51.83 51.19 f0, 1, 21, 0, 0g 40.00 1308

Total 132.01 131.05 114.18

Table 6: Delays on Critical Paths.
Chip types For Chip
in Table 4 type 5

Delay Without With (XC3090)
Circuit lower perform. perform. perform.

bound opt. opt. opt.

c3540 132 172 172 168
c5315 88 168 128 108
c6288 396 620 532 456
c7552 84 164 136 116
s5378 72 132 84 84
s9234 56 124 92 84
s13207 72 212 180 144
s15850 72 244 216 136
s38584 68 204 160 132

Total 1040 2040 1700 1428
(%) (100) (196) (163) (137)

References

[1] Xilinx, Inc., The Programmable Gate Array Data
Book, Xilinx, San Jose, 1994.

[2] R. Kuznar, F. Brglez and K. Kozminski, "Cost Mini-
mization of Partitioning into Multiple Device," Proc.
of 30th Design Automation Conference, pp. 315-320,
1993.

[3] N.-S. Woo and Jaeseok Kim, "An E�cient Partition-
ing Circuits for Multiple-FPGA Implementation,"
Proc. of 30th Design Automation Conference, pp.
202-207, 1994.

[4] R. Kuznar, F. Brglez and B. Zajc, "Multi-way Netlist
Partitioning into Heterogeneous FPGAs and Min-
imization of Total Device Cost and Interconnect,"
Proc. of 31th Design Automation Conference, pp.
238-243, 1994.

[5] N.-C. Chou, L.-T. Liu, C.-K. Cheng, W.-J. Dai, and
R. Lindelof, "Circuit Partitioning for Huge Logic
Emulation Systems," Proc. of 31th Design Automa-
tion Conference, pp. 244-249, 1994.

[6] W. O. McDermith, "A Bottom-Up Approach to
FPGA Partitioning," in Proc. IEEE Custom Inte-
grated Circuits Conference, pp. 5.4, 1992.

[7] Z. Hasan, D. Harrison and M. Ciesielski, "A Fast
Partitioning Method for PLA-Based FPGAs," IEEE
Design and Test of Computers, pp. 34-39, Dec.,
1992.

[8] H. Shin and C. Kim, "A Simple Yet E�ective Tech-
nique for Partitioning," IEEE Trans. on VLSI Sys-
tems, Vol. 1, No. 3, pp. 380-386, Sep. 1993.

[9] C. W. Yeh and C. K. Cheng, "A General Purpose
Multiple way Partitioning Algorithm", Proc. 28th
Design Automation Conference, pp. 421-426, 1991.

[10] C. M. Fiduccia and R. M. Mattheyses. "A Linear-
Time Heuristic for Improving Network Partitions",
Proc. 19th Design Automation Conference, pp. 175-
181, 1982.

	ASP-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

