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Abstract O In this paper, we present a hardware-software Ptolemy [5] need pin-level model of processoffieir

cosimulation environment for heterogeneous systems. To be anagpproaches are most accurate but take muobre
efficient system verification environment for the rapid sjmulation time.

prototyping of heterogeneous systems,the environment In this paper, we present eardware-software

provides interface transparency, simulation acceleration, cosimuation environment for heterogene tems. To be

smoothtransition to cosynthesis, and integrated user interface an efficient svstem verificatioenvironment forthe rapid
and internal representation. As an experimental example, a Yy P

heterogeneous system is cosimulated and prototyped Prototyping of a heterogeneowsystemwhich consists of
successfully, which shows that our environment can be a useful Poth hardwareand software componentshe environment

heterogeneous system specification/verification environment provides interface transparency, simulation acceleration,
for rapid prototyping. smooth transition tosystem prototype synthesis from
simulation, and integratediser interfaceand internal
representation. The resultargnefits of those featurase as
|. INTRODUCTION follows: the modularity of cosimulation components, no
need of processor models, target architecture independence,
Cosimulation refers to the simulation béterogeneous and theconcepual simplicity and easiness in establishing
systems whosehardware andsoftware components are and expanding the environment.

interacting. Traditionally, the task hagen performednly The rest of this paper is organizedfalfows: Section I
after theprototypehardwarebecame availabland with the presents theoverview of our cosimulation environment.
help of in-circuit emulators and/or other techniques [1Bections I, IV, V, and Vldescribethe details of the
With hardware-software codesign, it is essentiaveédfy environment - interface transparency, simulation

correct functionality evenbefore hardware is built. In acceleration, smooth transition tsystem prototype
contrast to theonverional(or homogeneous) simulation ofsynthesis, and integratedser interface and  internal
digital hardware, cosimulation should care for theepresentation, respectively. After describihg application
interaction among hardware and software components.  of our cosimulation environment to remlstem prototyping
The available techniquesfor hardware-softwaras an experimental example in Section VII, we conclude
cosimulation tradeoff among a number of factors such asvith some remarks on future work in Section VIII.
performance, timingaccuracy, model availability. In [1],
Rowson classifiedcosimulation techniques into several
classes accomig to thefactors. The processor model |I. H ARDWARE -SOFTWARE COSIMULATION ENVIRONMENT
availability dominates thechoice of techniques. Becker,
Singh, and Tell[2] performed cosimulation of a network As shown in Fig. 1, the environmelmas three elements
interface unit on a distributed network using Cadencefor the execution of cosimulation: saftware process
Verilog-XL simulatorand Unix socket. They use@++ and running C program, aimulation process executirgartial
Verilog in describing thesoftware and the hardwarehardware model in/HDL, and acustom board emulating
components, respectively.Their cosimulation is a remaining hardwaremodel. Inter-process communication
combination of synchronized handshaked cycle accurate (IPC) routines connect thao processetroughsocket IPC
processor model. Thomas, Adamsand Schmit's on a single Sparc CPU. Ptolemy, which is a framework for
cosimulation scheme [3] is similar to [2], lbeir technique simulation andprototyping of heterogeneous systems, is
is based on synchronizedandshake with ngorocessor extended to provide a user interfacend internal
model. Cosimulation techniques of Poseidon [4] angpresentation for system specification and verification.



A. Simulation Levels Extended Ptolem
The environment supports cosimulation at any y
abstraction levels. Initially, the specification  of systemmodel
heterogeneous system is given\VRIDL and Cfor core R
hardware and software components. Then simulation models / \
for interfaceare generated automaticaipd added to the
cores, thereby allowing cosimulation \ary abstract level. C-program |<—»| VHDL model HW model
Fig. 2 represents the abstrdevel cosimulation. As shown (FPaA)

in the figure, the interface simulation models are mainly IPC
routine calls with appropriate parameters.

After a target architecture is determiramad an intdace
is synthesized, more detailed simulation models for the

Fig. 1. Cosimulation environment

interface are generatednd insertedthereby allowing
detailed level cosimulation. VHDL model
C-program (running on

B. Software Process A; IVSim)
Software process is a process executing ardgram P R Ao .

which is the software component. Since we use pu— y

“synchronized handshake” simulation technique [1], there is | IPC || foreignIPC |

no need for processor modelée communicationbetween routines | sqcket ipC|_procedures | :

hardware andsoftware is donehrough a synchronizing L trrrrerrrrrrrgeeesprerrrrrrrrrrrres

handshake implemented using Ursigcket[6]. Using this _ ) )
technique, thesoftwarecan run athe workstatiorspeed Fig. 2. Cosimulation at the abstract level

even though overall speed will be dommated by the ) _ _
hardware simulator performance. regardless of the abstractitavels of cosimulationThe IPC

routines are implemented using Unsocket. Theyare:
C. Hardware Simulation Process socketinitialization procedureilit_socke}, socket closing
Hardware simulation process is a processning a Procedure dlose_sockgt socket read  procedure
VHDL simulator, whichexecutes ahardware model in (read_sockgt and socket write procedurerite_socket
VHDL. Our simulator, IVSIM(SNU ISRC \HDL
SIMulator), is avVHDL simulator based on an event-driven

compiled codesimulation algorithm with aconcept called 1. I NTERFACE TRANSPARENCY
modified ‘gateways’, to improve simulation performance ) ) _ )
substantially [7]. The simulator is implemented about Our  cosimulation ~ environment  provides  users

10,000 lines of C++ language (excludiMyiDL parser and transparency about communication interfadeetween
procedural interface routines of IVDBNU ISRC WDL Software coreand hardwareore regardless oftarget
Development Bolkit [8], which are invoked while data @architectures and communication protocols. This is
structures are builtand generates C routines faevery —especiallyimportantfor detailed level cosimulation. Once
concurrent statements MHDL. The generated C routinesthe userselectsthe target architectuend communication

are linked with Ccode forthe simulatiorcore and then Protocol, he or shean concentrate on the functionality
executed for a given test vector. simulation of the hardware andoftware components

Another important feature of IVSIM ighat it can without having to conceraboutthe details of the interface
recognizeandsupport ‘foreign’ attribute defined igHDL- ~ OF communication. To providéne interfacdrangarency in
93 [9]. The attribute enablessgstem to be described by not2 single processor cosimulation environment, we
only VHDL but also non-VHDL procedures such as IP@hplemented the following points:
routines in C-language. Using the attribute, if we declaf® Process modularity - Weegard hardware ansbftware
IPC routines as foreign proceduresid invoke them at COmMponents as separg®cesses(VHDIsimulationprocess
appropriate places in architectuteodies of aVHDL and C programprocess, respectivelyyunning on an
descriptionthey can also be linked with €odesgenerated identical processandcommunicating with each othenly
for hardware descriptioand simulatiorcore as mentioned through IPC channels during the simulation.
above.The resultanexecutable codsimulates thewhole (i) Automatic interface model generation - Appropriate
hardware component communicating with tiseftware simulation models(in the form of IPC routinasad VHDL

component. models) forthe interfacéetweenthe two components are
generated by invoking automatic interface model generator
D. Interface with parameters according to the chosen communication

The interface model for simulation is based on Unix IPcRrotocol and the target architecture as shown in Fig. 2 and 3.



(iii) Automatic interface model call/instantiation - To

simulate  hardware-software interface communication................ _
correctly, interface simulation models should be inserted : C-program
appropriate places in the C programd VHDL model. For @ :
complete transparency, IPC routine call insertion an wrte_socket(
interfface VHDL model instantiation irsystem components : :
is automated through the combination of automatt
generation technique and the extensioRtolemy(described :
in Section VI). ForvVHDL description of hardwareart, a
top-level entity is newly defined to accommodate
synchronized handshake using IPC routines. Irtdpdevel
entity, IPC routines are declared as forgmocedures and
then calls forthem are placed within a concurrgnbcess
statement which cares for actual synchronized handshake.
The corehardware component to be simulatat relevant
interface  modelsare also instantiated asmponent
instances within the entity.

Fig. 3 shows the relevant interface elements for hardwatiendshake technique, hardware simulation time dominates
part andhow theyare created(oselectedand combined to overall cosimulation time [1]. As hardwasebcompaents
provide the overall simulation model of interface, whictare added and/or refined incrementally, thehole
enables detailed level cosimulation, accordingtaoget cosimulation time gets longerThis problem can be
architectureand communication protocol. If a usejives alleviated by simulation acceleration through incremental
only the hardware ansoftware coreghe interface elements prototyping [11]. At any timeluring the cosimulation of a
are automatically created by generatorssefected from heterogeneous system, ahgrdware subcomponemthose
libraries. function is already verified through simulation is

Function or role of each interface element is as follows: synthesizedndprototyped with FPGAshusbecome aart
(i) IPC handlertakes care of reading/writing dateom/to  of hardwareprototype afterwardNewly added(or refined)
the software procesasing foreign IPC routines. It handleshardware subcomponents(incremental part)daseribed in
IPC jobs byhandshaking. llso interfacesind translates VHDL and simulated.Becausethe part which islready

top-level
entity of
VHDL
description

e .I. .I. .I. .I. . .I .....
decoder/ H
signal register

channel unit F——

[ _+_ e
IPC handler

HW prototype

standard device
or HW prototype

IPC
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7 from library
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write_socket()
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Fig. 3. Interface generation or selection from library

between IPC routineand channel unit. It isreated by a
generator.

(i) Channel unit represents the abstract simulatiaalel of
a physical channetlevice such as DMAcontroller. It is
selected from interface library.

(i) Decoder/signal register is insertdmbtweenhardware
core and channel unit tovercomethe difference in the

prototyped with FPGAsremains as hardwarerototype
during the rest of cosimulation of thgstemand weneed to
simulate onlythe incremental part, we caeduce the time
spent inVHDL simulation considerabland consequently
overall cosimulation timeThis process which consists of
incremental part definition/simulatiorand  incremental
prototype synthesis/addition will continuetil the whole

width of data transfeand the limitation in the number of function of the hardware componentfigly verified. When

pin of hardware prototype device such as FPGA. It is creatg® cosimulation ofwhole system isfinished, full-scale
by a generator. prototype ofthe hardware component is already obtained.
(iv) Top-level entity acts as a top-level container whiclFig. 4 depicts theconcept of incremental prototyping
gathers all other interface elemeritsterface elements are process.
interconnected using component instantiateomd signals Fig. 5 shows the execution environment of the
declared in the entity. acceerated cosimulation. It consists of a general purpose
Among those elements, hardwarecore and CPU(Sparc processor in a Sparc Classic workstasind) a
decoder/signal register will be mapped into real hardwatgistom board. The CPU is incharge of runningyHDL
prototypeusing FPGA. Wherstandardbus architecture is simulation process for incremental hardware
used, a standard channdevice such as SBus DMA subcomponents, C myoamprocess for software component,
controller [10] is used as a physical devicedbannel unit. and CAD tools for the synthesis of hardwaretotypes. The
If user-defined bus ochannel is used, channehit also custom board consists of a FPGA(Xilinx 4010 [12Hd bus
should be a part of hardware prototype. interface. TheFPGA is used tamplement the hardware
prototype. The communicatiobetweenthe CPU and the
custom board is don¢éhrough SBus [13]. To interface
between SBusand hardwar@rototype, we used &Bus
DMA Controller chip(LSI Logic L64853A [10])and some
Our cosimulation environmenprovides a facility to control logic. Theyareprovided as gart of theSBus-based
accelerate cosimulation. In cosimulation using synchronizeglototype development board(Dawn VME DPS-1[14]) which

IV. COSIMULATION ACCELERATION



—® migration from VHDL sim. to HW prototype
MM vHDL-simulated (incremental part)

corresponding devicdriver calls or 1/0 function calls for
the software component. Fdne hardware componernbp-

[ HW-prototyped level entity with foreign interface procedure declaration is
function stripped offand thecorresponding interface hardwaredel
of HW HW function is inserted. Since thisnodification of each component
component is completely specification for the cosynthesis is very simple and limited to
defined and a minimumdegree, it is possible to provide a smooth and
prototyped fast transition from cosimulation to tikesyntheis of system
prototype in ourenvironment. Fig. 6 depicts the transition
from cosimulation to cosynthesis.
time -
Fig. 4. Incremental prototyping process VI. INTEGRATED USERINTERFACE AND INTERNAL

REPRESENTATION

To provide an integrated user interfased internal
representation, we extended PtolerRjolemy[15] is being
developed at University atalifornia, Berkeley as a block-
diagram oriented environmentfor simulation and
prototypng  dfeterogeneous systems. Instead of trying to
capture allpossible models of computationsto one all-
encompassing model, thetolemy kernel implements an
object-oriented open architecturetenables any extensible
model to be definedand added seemlessly.Thus,
heterogeneous systems can be spedaifsény differenfevels
(pf abstraction and semantics for the various subcomponents.

For hardware-software codesign, we ateveloping
we use for preliminary experimen&PU is alwayshe bus HeteroDomain where heterogeneous modesy coexist in
master ofSBustransactions presently. To send(receive) dafd€ Same representation. Figsffows an conceptual design
to(from) the hardwareprototype, software process andow under the extendelétolemy enwionment. Initially, the
VHDL simulation process should write(reatfitato(from) USEr Of system designer represents the abstraystem
the device driver program. Thesoftware and VHDL model(or “universe” in thePtolemy terminology) which

simulation processes communicate eaafher through consists of hierarchical blocks(“galaxies”) or atomic
socket IPC as mentioned above blocks(“stars”) with only data 1/O ports. The internal

Current implementation of cosimulatioacceleration representation Of, each atorr-ﬁxlnck. may beeither C or
facility is based on the following assumptions: VHDL model, whichdoesnot imply implementation ahis
() Processes in Sparc CPWHDL simulation and C level of abstraction. According tthe user’s selection of

program processesare theonly master of the bus partitioning option, it ighen partitioned intd GC Danain
transactions through SBus. (C Code Generation Domain)and VHDLF Domain

(i) The hardware component is a synchronous circuit. ~ (FunctionalVHDL Code Generation Domain) automatically

(iii) Clock signal is applied to th&HDL simulator as an ©" manually. If we perform manual partitioning, the initial
input vectorand therfed tothe hardwargrototype by
the simulator via SBus.

(iv) Hardware prototype is fast enouttat beforethe end of _
the currentVHDL simulation cycle which consists of @ Coning o, [Coogan | VHDL e
eventhandling and updatingalues, etc., computation by IVSIM) ) with Decoder
the hardware prototype for that cycle is finished. HSMA M

IPC  |.g foreign IPC :
1| routines |SocKetIRC| procedures |:

custom board

Sparc CPU
CAD tools
-

device driver SBUS interface

SBUS v

Fig. 5. Execution environment of accelerated cosimulatio

cosimulation ————————» cosynthesis

:( DD calls -
1| /O calls |{Comm.

V. TRANSITION ToO COSYNTHESIS

IF simulation
library /
generaor

After cosimulation, thesystem componentsnust be
synthesized as the physical components on silected
target architecture. For thesynthesisthe invokes to the

; . g \ Fig. 6. Transition to cosynthesis from cosimulation
interface simulation modelsare replaced with the



representation may impke manually pationedgraph as ~ Lempel-Ziv Compression Algorithm
shown in the second template of Fig. 7. The next athiah
the user has to do jast to “run”(or cosimulate) theystem

after selecting some architecture options to be explained
(—<]
below. ] }

The Ptolemy partitions the universe inttwo separate 10 Fork ] M

model-specific universes aftanserting the appropriate LzBut o

communication blocks(sendand receive stars) at the

boundary of these universéighe communicatioblocks are

selected according tihe user-specified architecture options J
.

such as thelevel of abstraction orthe communication
protocol. First, assumihat wechoose to cosimulate at the
abstract level. In our exampl®yo universes to generate C .ng
code(for software componentsand VHDL code(for
hardware components) are createbpectivelyand the Fig. 8. An example of system specification in Ptolemy
communication stars aselected to usthe UNIX socket for graphical environment
cosimulation.Note that thesendand receivestars do not
imply that thecommunication protocol is a message-passirgystem was cosimulatehd prototypedusing our approach.
type. Instead, they do imply where communicati@tween Initially, the system contained only a C program
two different models arises. In Ptolentile kernebbject to implemening Lempel-Ziv lossless data compression
generate the code is called “target”. While we useléfault algorithm(called LZ77 or LZlalgorithm) [16]. Fig. 9
target for C code generation, we havedeveloped the represents the skeleton of the program.
CosinTarget which generates ¥HDL code for abstract Then thesystem was manuallyartitioned intosoftware
level cosimulation. CosimTarget replaces th@nd hardwarecomponents resulting in a mixture of a
communication stars into 8ocket InterfacéStar andadds hardware component implementing parsing stepd a
protocol-related signal sthat the modified modelcan be software componenimplementing the remainingteps -
cosimulated. On the othérand, if we select theption for initialization, coding,buffer updating, andfile I/O. After
the detailedlevel cosimuhtion, notonly communication inserting IPC routine calls in the components,pgegformed
stars but also appropriate communication models fabstract level  cosimulation.  After the target
emulating communication channel are inserted from ttaschitecture(Sparc + SBus + custom FPGA board) and
interface library. communication protocol(SBus) were determinkdrdware
In Fig. 7,only the first graph iwisible tothe user. Other interface elements(described in Sec. Ill) were generated or
graphs are internally generated by Btelemy,thus hidden selected from librarandadded to the hardware component
from the user. Wshow an example of system specificatiodor detailed level cosimulation. Fig. 10 represents the
using Ptolemy user interface in Fig. 8. simulation models of IPChandler and channel unit(E-
channel ofSBus DMA controller). Due tthe limit of space,
description of the other simulatiomodels such as
VIl. E XPERIMENTAL EXAMPLE decoder/signal register, hardware cagd top-level entity
are omitted. After combiningll simulationmodels, the

As an experimental example, a lossless data compressidgiailed level cosimulation was dosaccessfullyand the
result wasthe same as the result of the abstiaet|

e

| —
LZPacket LZCompress

HETERO DOMAN cosimulation.
CRYE <)
® 1277_compression()
N partition {
/* fields of code word - maxlength, pointer, last symbol */
S int maxlen, ptr;
> char Isym;

abstract level interface generation &
simula!ioi/ Ne[ailedlevelsinwla!ian PP s sgs 3e .
initialize(); /* initialization */
N VHOLF DOMAIN

for(; ;) {

‘ ; shift_and_feed(); /* file in & buffer update */
parse(&maxlen, &ptr); [* parsing */
Isym = buf[bhalf + maxlen];
put_code(ptr, maxlen, Isym); /* coding & file out */

}

Fig. 7. Conceptual design flow under extended Ptolemy Fig. 9. The skeleton of the C program of LZ77 algorithm



entity IPC_handler is
port (maxlen : in bit_vector(3 downto 0);
pointer : in bit_vector(3 downto 0);
data : out bit_vector(6 downto 0);

end IPC_handler;

architecture behave_IPC_handler of IPC_handler is
procedure init_socket; -- foreign procedure declaration
procedure read_socket;  -- foreign procedure declaration
procedure write_socket;  -- foreign procedure declaration
procedure close_socket;  -- foreign procedure declaration
signal signal_id, input_data, output_data : integer;
begin
init_socket;
process
read_socket(signal_id);
read_socket(input_data);

read_socket(signal_id);
write_socket(output_data);

end process;
end behave_IPC_handler;

(@)

procedure E_Chamh Read is CLK LN Mt
begin E_CS\ I—

wait until CLK="1; E_READ

E_CS\<= 0 — L

E_READ <='1; E_DAS\ S

E_DAS\ <=1} E_RDY\

wait until E_RDY\ =‘0";

....... E_AD[15:0] data [ +——

\ end E_Chanel_Read; | PA[23:0] <

Fig. 10. Simulation models of (a) IPC handler and
(b) channel unit(E-channel read cycle protocol of
SBus DMA controller).

Then the hardwarecomponent of thesystem was
prototyped with an FPGAThe resultant hardwaresed 645
CLBs of Xilinx’s 4010 FPGA [12].With the FPGA clock of
6.25 Mhz, we obtained speedup ofl.7 over the
implementation usingonly software component. lihis
experiment, some ofhe system prototyping tasksvere

performed manually becauske environment had not yet

been completely established.

VIIl. C ONCLUSION

In this paper,
cosimuation

we present

environment for heterogeneousystems

prototyping. To be an efficient system verificatiorh6]
rapid prototyping dfieterogeneous

environment forthe

chardware-software

the environment supports special features: interface

transparency, cosimulation acceleration, smooth transition to

system prototype synthes#énd integratediser interface and
internal representations. Theesutant benefits of those
features are the modularity cbsimuation components, no
need of processor models, target architecture independence,
and theconceptual simplicityand easiness in establishing
and expanding the environment.

On-going and future works are as follows:

(i) Complete the implementation of the environment.

(ii) Extend interface model generator and library.

(ii) Generalize the environment to various target
architectures including general purpose microprocessors
or microcontrollers, DSPsand ASICs. Currently, the
system works only for Sparc + SBus + ASIC architecture.

(iv) Apply our approach to variousystem prototyping
examples.
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