
A Hardware/Software Codesign Method for Pipelined

Instruction Set Processor Using Adaptive Database

Nguyen Ngoc Binh, Masaharu Imai, Akichika Shiomi, and Nobuyuki Hikichi*

Department of Information * Software Technology Department
and Computer Sciences

Toyohashi University of Technology Software Research Associates, Inc.
Toyohashi, 441 Japan Tokyo, 170 Japan
Tel: +81-532-47-0111 Tel: +81-3-3942-4405

Fax: +81-532-48-9079 Fax: +81-3-3942-4416
e-mail: peas@imaisun.tutics.tut.ac.jp

Abstract| This paper proposes a new method to

design an optimal pipelined instruction set proces-

sor using a formal HW/SW codesign methodology.

First, a HW/SW partitioning algorithm for select-

ing an optimal pipelined architecture is introduced

brie
y. Then, an adaptive database approach is pre-

sented that enables to enhance the optimality of the

design through very accurate estimation of the per-

formance of a pipelined ASIP in HW/SW partition-

ing. The experimental results show that the proposed

methods are e�ective and e�cient.

I. Introduction

One of the key issues in the ASIP (Application Spe-
ci�c Integrated Processor) design is the optimization of

the instruction set and CPU architectures of ASIPs. Be-
cause the performance of an ASIP is heavily a�ected by
the choices of these architectures, it is essential to select

the optimum instruction set and CPU architectures with
the maximum performance under the constraints of chip

area and power consumption for example. These designs
used to be done by computer architects taking advantage
of their experience and intuition, but in the ideal ASIP

development environment, they should be automatically
performed by the system.

In order to realize the ideal ASIP development envi-
ronment, an integrated design system for ASIPs named

PEAS-I (Practical Environment for ASIP development
{ type I) was proposed and its prototype has been devel-
oped [1]. The PEAS-I system accepts a set of applica-

tion programs written in C language and their associated
data and some design constraints. The system pro�les

the application programs and generates the CPU core de-
sign as well as the application program development en-
vironment, such as compiler and simulator. The PEAS-I

system employs a formal method to synthesize an opti-
mal instruction set processor by solving Instruction set

implementation Method Selection Problems (IMSP) [2].

IMSP-2 (IMSP type 2) [2] and IMSP-2P (for Pipeline) [3]
are resource-constrained design with the consideration of

resource sharing.
The HW/SW partitioning addressed in the previous

PEAS-I is based on the �xed expected execution cycles
of software implemented operations, which have been ap-

plied to any application program so far. In practice, how-
ever, their variation depends on input data of the opera-

tion. Therefore, it is di�cult to estimate the performance
accurately. As a result, the generated design might not be
optimal becasuse of the misselection of Functional Units

(FUs). In this paper we propose an approach to enhance
the optimality of selected architecture with an accurate

performance estimation. This is one of the most distin-
guished features of PEAS-I compared to other HW/SW
codesign systems such as ASIA [4] and CASTLE [5].

The architecture of an ASIP synthesized by the PEAS-I

system is based on the GNU C Compiler (GCC) abstract
machine model [6]. The PEAS-I CPU is pipelined archi-
tecture with four stages: IF (Instruction Fetch & decode),

EX (EXecution), MEM (MEMory access) and WR (Write
back to Register �le), respectively. Please refer to Ref. [7]

(or [3]) for more detail. The essence in IMSP algorithms
is selection of FUs to be added to minimum HW compo-

nents called `Kernel' to achieve the design goal for given
design constraints (in particular, the highest performance
of a designed ASIP for gate count and power consumption

constraints).

The GCC Register-Transfer Language (RTL) opera-
tions are divided into primitive and basic operations.
The primitive operations contain the minimum operations

that can be included in the ASIP chip so that it can exe-
cute any C program. The primitive operations should be

implemented in HW `Kernel', which consists of an ALU,
a one-bit shifter, and a register �le. The basic operations
contain other C operators that are not included in the

primitive operations. A basic operations can be imple-
mented using some HW choice (such as fast or slow hard-

ware modules) or using a software subroutine (run-time

routine) that uses primitive operations and some other
basic operations.

The remainder of the paper is organized as follows: Sec-
tion 2 presents a HW/SW partitioning problem and algo-

rithm brie
y. Section 3 describes the adaptive database
approach. Section 4 demonstrates the e�ectiveness and

e�ciency of the proposed method. The last section gives
conclusions and future work.

II. HW/SW Partitioning Algorithm

IMSP-2 does not consider pipeline characteristics such

as pipelined FUs and pipeline hazards. Hence, we cannot
use it to design an optimal pipelined ASIP. In particular,
it cannot deal with the pipeline execution cycles of the

ASIP accurately. In this section, we describes a method
to evaluate pipeline hazards accurately when all the basic

operations are implemented in HW.

A. De�nitions and Notations

The HW/SW partitioning problem in the current ver-
sion of PEAS-I is de�ned as follows [2]:

For a whole set of all candidate instructions represent-

ing a given application domain, select a set of implemen-

tation methods which maximizes the performance of the

CPU under the constraints of chip area and power con-

sumption, taking into account the functional module shar-

ing relation among instructions.

In order to formalize IMSP-2P we need the following
de�nitions and notations:

(1) \n" denotes the total number of basic operations to

be considered.

(2) \xi" denotes an implementation method that real-
izes operation #i, where xi may be HW choice or
SW, 0 � i � n. Then X = (x

0
; x

1
; :::; xn) is a combi-

nation of implementation methods to be considered.
(x

0
denotes HW `Kernel' to implement all primitive

operations and SW modules).

(3) \a(xi)" and \p(xi)" denote the area and power con-
sumption required for implementation method xi re-
spectively, where 0 � i � n.

(4) \A max" and \P max" denote the available chip

area and the maximum power consumption allowable
for the computing modules in the ASIP chip.

(5) \N" denotes the total number of basic blocks in the
application program's GCC RTL code.

(6) \t(Bj ; X)" denotes the execution cycles needed to

execute basic block Bj using a combination of imple-
mentation methods X, where 1 � j � N .

(7) \Fj" denotes the execution frequency count of basic
block Bj in the given set of application programs,

where 1 � j � N .

(8) \cj" denotes clock cycles needed to de�ne control
(e.g., branch delay) from block Bj to another one,

where 1 � j � N . Here, it is assumed that all
branches are taken and delay slot scheduling is not

performed.

(9) \b" denotes execution cycles reduced by un-taken

branches in execution of the given application pro-
gram.

B. IMSP-2P Formalization

Find a solution vector

X = (x0; x1; � � � ; xn)

which minimizes the objective function:

T (X) =

NX

j=1

fFj � (t(Bj ; X) + cj)g � b ; (1)

subject to the constraints

X

xi2S

a(xi) � A max; (2)

X

xi2S

p(xi) � P max; (3)

where

S =

n[

i=0

fxig (4)

C. Outline of the IMSP-2P Solver

The key point in computing Eq.(1) is how to get

t(Bj ;X). We have developed a HW/SW partitioning-
oriented pipeline scheduling algorithm [8] to estimate

t(Bj ;X) for basic block Bj under con�guration X. The
pipeline control hazards are addressed in introducing the
coe�cients cj . Note that the number of clock cycles

due to control hazards is equal to
PN

j=1(Fj � cj) � b

. The pipeline scheduling algorithm detects and resolves

all types of data hazards and structural hazards by en-
suring that no more than one instruction can be issued or

completed at each control step.
The IMSP-2P can also be solved using the branch-and-

bound method as IMSP-2 can. One of the most important
issues in solving problems e�ciently by this method is to
�nd a tight lower-bound function to prune as many non-

optimum solutions as early as possible. For more detail
please refer to Ref's. [3] and [7]. Note that coe�cient b

was not introduced in the previous IMSP-2P formaliza-
tion in Ref. [3]. Please note that the module sharing
capability and heuristic reordering are the same as in the

IMSP-2 solver.
The input to the IMSP-2P solver includes information

from the Application Program Analyzer (APA), in the

previous section, and a module information database

of HW/SW modules for implementing basic operations

[7]. The output of the IMSP-2P solver includes the opti-

mum implementation method of each basic operation and

pipelined schedules of basic blocks. The instruction set of

the designed ASIP will include the primitive operations

as default and those basic operations that are selected to

be implemented in HW. The algorithm automatically in-

tegrates the functional module sharing basic operations

into one HW module whenever possible.

III. Adaptive Database Approach

So far it was assumed that the execution cycles of a SW

implemented operation is �xed to the expected execution

cycles for any application program. Estimation errors for

designs with SW implementations range from 15% to 30%

for the IMSP solvers as shown in the next section. As a

result, the selected architecture as well as the instruction

set may not be optimal. In this section we propose a

method to generate an adaptive database of expected ex-

ecution cycles of SW implemented operations for a given

application program with associated input data.

A. Getting the Input Data of Each Basic Operation

Using the application program analyzer (APA) of the

PEAS-I system to pro�le the given application program

we get a sequence of all input data of each basic opera-

tion through running the program. We denote Gi as a se-

quence of all input data of basic operation #i (1 � i � n).
Let Gi be

Gi = (g(1)
i

; g(2)
i

; :::; g(fi)
i

) ;

where fi is the number of elements in Gi as the same exe-

cution frequency count of basic operation #i in execution

of the application program. Note that g
(j)

i
can be a tuple

depending on the number of operands of basic operation

#i. Then, the number of cycles needed to execute SW

implemented basic operation #i with input data g
(j)

i
is

denoted as �i(g
(j)

i
).

B. Evaluation of Execution Cycles

We can use the run-time subroutine for each basic oper-

ation #i and run it with each g(j)
i

to get �i(g
(j)

i
) by using

the PEAS-I simulator, as performed in Ref. [9]. However,

the time needed for getting all �i(g
(j)

i
) is about as same as

the time for running the APA with all operations to be im-

plemented in SW. This method is very time consuming.

In order to reduce the computation time, we introduce

formulae to estimate execution cycles of SW modules for

basic operations with given input data.

Let A and B be operands in the instruction of the form

`OP C, A, B' with the meaning C A OP B, where

OP is an operation. We de�ne

s(A) =

�
1; if A < 0 ;
0; otherwise;

and s(B) is de�ned similarly. left(B) denotes the posi-

tion of the leftmost `1' in the binary presentation of B
(counting from the right on the left). one(B) denotes the
number of 1's in the binary presentation of B. Investigat-
ing assembly codes of SW modules in the current PEAS-I

system, we have found the following formulae. Please

note that these formulae depend on the algorithms used

in run-time routines for basic operations.

�mul(A;B) = 26 + s(A) + s(B)

+ 7 �maxf0; left(jBj)� 1g (5)

�umul(A;B) = 13 + 7 �maxf0; left(B)� 1g (6)

�div(A;B) = 278 + s(A) + s(B) + one(jAj=jBj) (7)

�udiv(A;B) = 263 + one(A=B) (8)

�mod(A;B) = 278 + s(A) + s(B) (9)

�umod(A;B) = 263 (10)

�ashr(A;B) = �ashl(A;B) = �lshl(A;B)

= �lshr(A;B) = 20 +
X

j;BITj(B)=1

(2j+1 � 1) (11)

�extendhi(A) = 10 + BIT15(A) (12)

�extendqi(A) = 8 + 3 �BIT15(A) (13)

�z extendhi(A) = 2 (14)

�z extendqi(A) = 1 (15)

where BITj(B) is the value of bit j in the binary presen-

tation of B (bit 0 is the rightmost bit).

C. Evaluation of Average Execution

Cycles

The average execution cycles of SW implemented ba-
sic operation #i for the given application program are
de�ned as follows:

�(#i) = b

Pfi
j=1 �i(g

(j)

i)

fi
c (16)

These values replace the old values in the database to run
the IMSP solvers. The revised database is adaptive to the
application program.
In order to reduce the computation time, we de�ne Ui

as a set of di�erent (unique) elements in Gi as follows:

Ui =

fi[

j=1

fg
(j)

i g (17)

and de�ne ki(u) as frequency count of u in Gi. Then,
Eq.(16) can be rewritten as follows:

�(#i) = b

P
u2Ui

ki(u)� �i(u)

fi
c (18)

Note that
P

u2Ui
ki(u) = fi and jUij is much smaller than

fi as shown later in Table 2.

IV. Experiments and Results

The IMSP-2P algorithm with the adaptive database
approach has been implemented in C and examined on
a workstation. A set of sample programs has been per-
formed to evaluate the e�ectiveness and e�ciency of the
algorithm.

A. Sample Programs

The sample programs used in the experiments are as
follows:
(1) ESS : Equation System Solver program, which solves
a system of two linear equations using Cramer's rule.
(2) IMC : Inverse Matrix Calculator program that com-
putes the inverse of a non-singular 3 � 3 matrix using
Cramer's rule.
(3) di�eq : A program for solving a second order di�eren-
tial equation from Ref. [10].
These sample programs were fed to APA of the PEAS-

I system. The code optimization was performed by the
GCC [6].

B. Module Library

We use a module library with both non-pipelined
FUs and pipelined FUs such as multipliers and di-
viders generated using a high-level synthesis system
called PARTHENON [11] and cell library VSC470.lib

TABLE I

Expected execution cycles of SW implementations

Basic #Cycles Basic #Cycles

Operation Operation

div 216 mul 96

udiv 202 umul 91

mod 214 trunchi 2

umod 201 truncqi 1

ashl 31 extendhi 10

ashr 31 extendqi 9

lshl 31 z extendhi 2

lshr 31 z extendqi 1

(0.8�mCMOS) from VLSI Technology, Inc. A 16 MHz
clock was assumed in the design of HW modules. The
database contains 14 basic operations, each of them
has di�erent implementation methods ranging from 2 to
11. The number of leaf nodes in the search tree is of
112�74�28 = 74; 373; 376. The whole search tree ranges
from 8:2�107 to 1:5�108 nodes depending on the order of
variables (xi's) to be examined. Therefore, it is necessary
to have an e�cient strategy to explore the search space
to get an optimal solution in a reasonable time.
Part of the HW module information database used in

the experiments is described in Ref's. [3] and [7]. An-
other part of the module database contains the expected
numbers of execution cycles for each basic operation to be
implemented by software subroutine. This part is shown
in Table 1, where the values were obtained as the average
of execution cycles in running the corresponding subrou-
tine with random input data. So far, these values are
considered as �xed (therefore, non-adaptive) to any ap-
plication program in the HW/SW partitioning process.

C. E�ectiveness

We demonstrate the IMSP-2P using the adaptive
database approach for the IMC, ESS and di�eq programs.
The IMSP-2P selected the optimum partitioning for dif-

ferent values of area constraint. The power consumption
was ignored to simplify the experimental cases.
FUs needed to implement basic operations for these

sample programs are a multiplier, a divider, a barrel-
arithmetic shifter, an extender and so on, where the mul-
tiplier and the divider can be pipelined or non-pipelined.
Figures 1 and 2 show estimation errors by IMSP-2

and IMSP-2P, respectively, using the �xed (non-adaptive)
database. Note that IMSP-2P can estimate the execution
cycles much more accurately than IMSP-2. That is, esti-
mation errors are below 1.3% for designs with gate count
constraints exceeding 22 Kgates, where all operations can
be implemented in HW. On the other hand, the estima-
tion errors by IMSP-2 range from 5% to 20% because of

TABLE II

Generation of Adaptive Database

i Basic IMC program ESS program di�eq program

Operation fi jUij �(#i) fi jUij �(#i) fi jUij �(#i)

1 mul 720 562 52 180 153 52 868 852 48

2 div 653 314 279 377 130 280 147 117 283

3 mod 383 46 278 317 70 278 147 117 278

4 ashl 1648 48 21 1226 42 21 829 85 21

5 extendqi 1080 36 8 1809 42 8 409 66 8

6 z extendqi 1193 37 1 1825 48 1 512 72 1

0

5

10

15

20

25

30

35

40

15 20 25 30 35

ES
TIM

AT
IO

N
 ER

RO
R

(%
)

AREA CONSTRAINT (Kgates)

IMSP-2 Error for ESS

IMSP-2 Error for IMC

IMSP-2 Error for diffeq

Fig. 1. Estimation errors by IMSP-2

not taking into account the pipeline characteristics. In
addition, for designs with SW inplementations, the exe-
cution cycle estimation reported by IMSP-2P will contain

some error up to 32% as in the case of IMSP-2 besause
the execution cycles of SW modules depend on the appli-

cation program.

The analyzed results as well as statistics of the exper-
iment for generating adaptive database are shown in Ta-
ble 2, where there are 6 basic operation types met in these

application programs. Note that the number of unique
input data (i.e, jUij) is much smaller than the frequency

count (i.e., fi) for basic operations #3 { #6.

Using the generated adaptive database the IMSP-2P
solver selected the �rst optimal solutions exactly, whereas
IMSP-2 may not. Note that the performance estimation

errors by the IMSP-2P solver are below 1.1%, 2.7%, 1.3%
for any area constraint as shown in Figure 3 for IMC,

ESS, di�eq, respectively.

0

5

10

15

20

25

30

35

40

15 20 25 30 35

ES
TIM

AT
IO

N
 ER

RO
R

(%
)

AREA CONSTRAINT (Kgates)

IMSP-2P Error for ESS

IMSP-2P Error for IMC

IMSP-2P Error for diffeq

Fig. 2. Estimation Errors by IMSP-2P

D. E�ciency

The proposed method is quite e�cient. Table 3 shows
the SPARCstation 10 (SS-10) CPU time in seconds for

performing each experiment. The CPU time needed for
APA to pro�les an application program is below 20s.
Then, an adaptive database can be generated within 0.1s.

An optimal ASIP architecture is decided by the so-called
Architecture Information Generator (AIG) with the IMSP

TABLE III

CPU time in seconds

CPU* time for ESS IMC di�eq

APA 19.7 16.5 6.2

Adaptive DB 0.1 0.1 0.1

AIG (IMSP-2P) 2.6 2.3 2.1

Total 22.4 18.9 8.4

* SPARCstation 10

0

5

10

15

20

25

30

35

40

15 20 25 30 35

ES
TIM

AT
IO

N
 ER

RO
R

(%
)

AREA CONSTRAINT (Kgates)

IMSP-2P Error for ESS

IMSP-2P Error for IMC

IMSP-2P Error for diffeq

Fig. 3. Estimation errors by IMSP-2P using adaptive database

solvers. For a given area constraint, AIG with the IMSP-
2P solver has taken CPU time of 2.6s, 2.3s, and 2.1s,

which is average for IMC, ESS, and di�eq, respectively.

Thus, PEAS-I accepts as input a C written applica-
tion program and design constraints. Using the proposed

method, we can get an optimal pipelined ASIP architec-
ture within a few seconds (below 25s) as shown in Table

3 for the total time.

V. Conclusion and Future Work

We have proposed an e�cient method to design an op-

timal pipelined instruction set processor in the PEAS-I
system. The method with IMSP-2P is introduced as a
HW/SW codesign problem formalization and as an ex-

tension of IMSP-2. The IMSP-2P selects the implementa-
tion method of the operations that implement a pipelined

ASIP instruction set so that the performance goal is max-
imized under the given gate count and power consump-

tion constraints. Then, we proposed an adaptive database
approach to reduce the execution cycle estimation error.
The e�ectiveness of the IMSP-2P algorithm was demon-

strated through design examples. The method estimates
the performance of a designed pipelined ASIP accurately

for most designs. The algorithm is so e�cient that the
optimal solution was obtained within a few seconds on a

conventional workstation.

Using the adaptive database and introducing the new
formula for execution cycle estimation in IMSP-2P we en-

hance the optimality of the solutions and reduce perfor-
mance estimation error remarkably. Experimental results
show that IMSP-2P gave the �rst optimal solution for any

gate count constraint with performance estimation errors
of below a few %. The primary goal of selecting the �rst

optimal architecture with low estimation error has been
achieved in the PEAS-I HW/SW Codesign system.

Our future work includes the development of a HW/SW

partitioning algorithm for pipelined ASIP design with the

least gate count under a given execution cycle and power
consumption constraints, as well as for the design with the

lowest power consumption under gate count and execution
cycle constraints.

Acknowledgments

Authors would like to express their thanks to NTT
Communication Science Laboratories, VLSI Technology,
Inc., Science Create, Co. Ltd., Japan, for their kind assis-
tance. This research is supported in part by Grant-in-Aid
for Scienti�c Research No's. 07558038 and 07680353 from
the Ministry of Education, Science and Culture, Japan.

References

[1] Sato, J., Alomary, A., Honma, Y., Nakata, T., Shiomi,

A., Hikichi, N., and Imai, M.: \ PEAS-I: A Hard-

ware/Software Codesign System for ASIP Development,"

IEICE Trans. A, Japan, Vol. E77-A, No. 3, pp. 483 { 491,

Mar. 1994.

[2] Alomary, A., Nakata, T., Honma, Y., Imai, M., and Hi-

kichi, N.: \ An ASIP Instruction set Optimization Algo-

rithm with Functional Module Sharing Constraint," Proc.

of ICCAD'93, pp. 526 { 532, 1993.

[3] Binh, N.N., Imai, M., Shiomi, A., Hikichi, N. and Sato,

J., \Extension of Instruction Set Design for Pipelined Ar-

chitecture in PEAS-I System," Proc. of DA Symposium,

IPSJ, Japan, Vol. 94, No. 5, pp. 211 { 216, Aug. 1994.

[4] Huang, I-J. and Despain, A.M., \Synthesis of Instruction

Sets for Pipelined Microprocessors,"Proc. of DAC'94, pp.

5 { 11, 1994.

[5] Wilberg, J., et al., \Design Flow for Hardware/Software

Cosynthesis of a Video Compression System," Proc. of

Codes/CASHE '94, Grenoble, France, 1994.

[6] Stallman, R.: Using and Porting GNU C Compiler, Free

Software Foundation, Version 1.40, 1991.

[7] Binh, N.N., Imai, M., Shiomi, A., and Hikichi, N., \A

Hardware/Software Partitioning Algorithm for Pipelined

Instruction Set Processor," Proc. of EURO-DAC'95,

1995. (to appear)

[8] Binh, N.N., Imai, M., Shiomi, A., Hikichi, N., Honma,

Y., and Sato, J., \An E�cient Scheduling Algorithm for

Piplined Instruction Set Processor and Its Application

to ASIP Hardware/Software Codesign," IEICE Trans. A,

Vol. E78-A, No. 3, pp. 353 { 362, Mar. 1995.

[9] Binh, N.N., Imai, M., Shiomi, A., and Hikichi, N., \Opti-

mal Instruction Set Design through Accurate Execution

Cycle Estimation of Software Modules," Proc. of the 8th

Karuizawa Workshop on Circuits and Systems, IEICE,

Karuizawa, Japan, pp. 79 { 84, Apr. 1995.

[10] Paulin, P.G., Knight, J.P., and Girczyc, E.F.: \HAL: A

Multi-paradigm Approach to Automatic Data Path Syn-

thesis," Proc. of DAC'23, pp. 263 { 270, 1986.

[11] Nakamura, Y., Oguri, K., Nagoya, A.: \Synthesis from

Pure Behavioral Descriptions," in High-Level VLSI Syn-

thesis, Camposano, R., and Wolf, W., eds, pp. 205 { 229,

Kluwer Academic Publishers, 1991.

	ASP-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

