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Abstract|A simple mathematical framework,

called cluster-cover, is established for several VLSI opti-

mization problems including logic minimization, con-

strained encoding, multi-layer topological planar rout-

ing, application timing assignment for delay-fault test-

ing, and minimization of monitoring logic for BIST en-

hancement. Two paradigms, prime covering and greedy

peeling, are presented for developing both exact and

heuristic algorithms. The paradigms capture gener-

ally applicable ingredients from previously developed

algorithms for individual applications. This makes it

possible to re-use established techniques in new prob-

lems, and provide new insights into existing problems.

The paradigms are simple enough to be amenable to

theoretical analysis. Bounds on the performance of

greedy peeling are derived; these bounds are appli-

cable to many published heuristics which previously

could be evaluated only by benchmarks.

I. Introduction

Optimization problems arise in almost every phase of
VLSI circuit and system design. To handle the ever in-
creasing design complexity and reduce the design cycle
time, e�cient and reliable algorithms are highly desir-
able. But the design of such algorithms has been a great
challenge. Most VLSI optimization problems are not only
large (involve millions of variables and constraints), but
also inherently computationally di�cult (i.e., NP-hard).
Nevertheless, tremendous progress has been made in algo-
rithm development for some of these problems. Perhaps
the best example is two-level logic minimization [1]. Ex-
act algorithms have been developed; these algorithms are
capable of �nding optimum solutions reasonably fast for
large problem instances [4, 5, 14, 17]. A natural question,
and a primary motivation of this research, is \Is it pos-
sible to apply these techniques to other VLSI problems
with similar combinatorial structure?"
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Besides exact solutions many heuristic algorithms, ca-
pable of �nding good approximate solutions e�ciently,
have been developed. Except for some special cases, how-
ever, no analysis of the performance of these heuristics
has been carried out. In practice, the evaluation of both
the e�ciency and robustness of heuristic algorithms relies
heavily on the use of benchmarks. Since benchmarks rep-
resent only a limited class of \real" instances, heuristics
well tuned for benchmarks may turn out to be not as ef-
�cient and reliable for other practical instances. Hence,
the analysis of the performance of various heuristics is
practically important. This is our second motivation.
An abstract framework, called cluster-cover, is estab-

lished in this paper for a class of optimization problems
arising in a variety of VLSI applications. These include
minimization of two-level combinational logic [1, 18], con-
strained encoding for the synthesis of sequential logic [20,
21, 23], multi-layer topological planar routing [3], appli-
cation timing for delay-fault testing [11], and minimiza-
tion of monitoring logic for built-in self-test (BIST) en-
hancement [10]. Using our framework, we describe prime
covering and greedy peeling as two basic paradigms for
developing exact and heuristic algorithms, respectively.
After introducing the cluster-cover framework in Sec-

tion II, we describe �ve optimization problems and formu-
late them in our framework in Section III. In Section IV,
we present prime covering and greedy peeling. In Sec-
tions V, we derive greedy peeling performance bounds.
In Section VI, we use these bounds to justify some exper-
imental results from the literature. Conclusions are made
in Section VII.

II. The Cluster-Cover Framework

A set system is a pair (E;P), where E is a �nite set,
and P is de�ned by an application-speci�c predicate �(P ),
where P is a variable ranging over the set of all subsets
of E. Thus P = fP � E j �(P )g; i.e., a subset P of E is
in P if �(P ) is true.

Example 1: The set system de�ned by E = f1; 2; 3g and
�(P ) : (

P
e2P

e) < 4 has P = f;; f1g; f2g; f3g;f1;2gg:

Example 2: The set system de�ned by E =



f1; 2; 3g and �(P ) : (
P

e2P e) > 2 has P =
ff3g; f1; 2g;f1;3g; f2; 3g; f1; 2;3gg:

We will be interested in two speci�c set systems: A
subset-closed systemy is a one satisfying (1) ; 2 P, and
(2) Y 2 P and X � Y implies X 2 P. A superset-
closed system is a one satisfying (1) E 2 P, and (2)
Y 2 P and X � Y implies X 2 P. Properties 1
and 2 are called nonemptiness and hereditary properties,
respectively. The set systems in Examples 1 and 2 are
subset-closed and superset-closed, respectively.

We now present our cluster-cover framework. We have
a set E, a predicate � on the set of subsets of E that
de�nes a subset-closed system (E;P), and a predicate �
on the set of subsets of P that de�nes a superset-closed
system (P; C). The set E is the ground set, � is a com-
patibility predicate, the subsets in P are clusters, and the
elements in a cluster are said to be compatible. The com-
patibility relation needs not be transitive. The subsets in
C are covers, and � is a coverability predicate. We are
interested in a coverability predicate de�ned as follows:
Given �, 0 < � � 1, an �-cover is a set of clusters that
contains at least the fraction � of the ground elements.
In Fig. 1 the ground set E is fa; b; cg; suppose

some application-speci�c predicate � gives clusters fa,bg,
fb,cg, and all their subsets, including ;. This compatibil-
ity relation is not transitive: fa; bg and fb; cg are clus-
ters, but fa; cg is not. If � = 2

3 , the set of �-covers
is C = fC1; : : : ; C5; : : :g, where C1 = ffag; fbgg, C2 =
ffag; fcgg, C3 = ffbg; fcgg,C4 = ffa; bgg, C5 = ffb; cgg,
and the remaining covers are all the supersets of the �rst
�ve. The empty cluster is ignored.

;

C

E

P

all

supersets

fb; cgfa; bgfag

a c

C1 C4

fbg fcg

C5C3C2

b

Fig. 1: A cluster-cover example.

The following questions arise frequently. The maximum
k-cluster problem is: Given an integer k, �nd at most k
clusters that together contain as many ground elements
as possible. When k = 1, this is the maximum cluster
problem. The minimum �-cover problem is: Given a
fraction �, �nd an �-cover that contains as few clusters
as possible. When � = 1, this is the minimum cover
problem, or the exact cover problem.
The cluster-cover framework is related to two mathe-

matical concepts. The �rst is a set cover. For a ground

yA subset-closed system is called an independence system in [13].

set E, and a set P of subsets ofE, a set cover is a collection
of subsets from P that together cover all the elements in
E. Cluster cover di�ers from set cover in two aspects:
(1) our subsets are implicitly given by an application-
speci�c predicate, and (2) our set of subsets is subset-
closed. The second concept is a matroid [6, 13], which is
a subset-closed system (E;P) that obeys the combinato-
rial aspect of the Steinitz exchange principle:

� If X;Y 2 P and jXj < jY j, then there exists a y 2

Y �X such that X [ fyg 2 P.

We do not require this condition to hold in our framework.
The cluster-cover framework models the structure of

many applications. The maximum k-cluster and the min-
imum �-cover problems provide a framework for many
optimization problems, such as those discussed next.

III. Five Cluster-Cover Problems

Five applications are now cast into our framework.
Logic minimization and constrained encoding are well un-
derstood; multi-layer topological planar routing and ap-
plication timing for delay-fault testing are newer and less
explored, and monitoring-logic design for BIST enhance-
ment is very recent.

Problem 1: Logic Minimization

Combinational logic minimization [1, 18] is a problem of
minimizing the cost of the circuit implementing a Boolean
function. A Boolean function f of n variables is usually
(incompletely) speci�ed by its on-set , the set of input val-
ues x 2 f0; 1gn such that f(x) = 1, and its o�-set , the
set of input values such that f(x) = 0. Each element in
f0; 1gn is a minterm. Let the on-set be the set of ground
elements. A set of minterms contained in a single cube in
f0; 1gn that does not have any minterms from the o�-set
is a cluster; such a cube is an implicant of f . The exact
cover problem is of great practical interest [1, 18].
To illustrate this, consider a Boolean function with on-

set fx1x2; x1x2g and o�-set fx1x2g. Then fx1x2; x1x2g
is a cluster, because both minterms are included in impli-
cant fx1g. This cluster is also the minimum-cost cover.

Problem 2: Constrained Encoding

This fundamental problem [21, 23] arises in race-free
state assignment for asynchronous sequential machines,
in delay-free realizations of asynchronous machines with-
out essential hazards, in optimum state assignment for
synchronous machines, and in PLA decomposition. Here,
the so-called dichotomy , i.e., a pair of disjoint subsets of
a given set of \states," is a ground element. For example,
a = (f1; 2g; f3g), b = (f2g; f4g), and c = (f1g; f2; 3g) are
dichotomies on the set f1; : : : ; 4g. Two dichotomies are
compatible if no two states appearing in a single subset
of one dichotomy appear in di�erent subsets of the other.
For example, (a; b) and (b; c) are compatible pairs, but



(a; c) is not. A set of mutually compatible dichotomies is
a cluster, which can also be represented by a dichotomy.
For example, a and b can be represented by (f1; 2g; f3; 4g).
The structure of this example is illustrated in Fig. 1. The
maximum cluster problem is to �nd a dichotomy that
includes as many ground dichotomies as possible. The
minimum cover problem is to �nd a minimum number of
dichotomies that cover all the ground dichotomies. Both
problems are of interest to sequential logic synthesis [21].

Problem 3: Topological Planar Routing

Fig. 2 has two rows of terminals marked by numbers. Ter-
minals with the same number form a net , and each net
is a ground element. Two nets are compatible if they
can be routed in a plane without crossing. For example,
nets 1, 2 and 3 (solid) in Fig. 2 form a cluster. Nets 4
and 5 (dashed) form another cluster. The maximum clus-
ter problem is to �nd a maximal set of nets that can be
routed in one plane. The minimum cover problem is to
�nd the minimum number of planes such that all the nets
can be routed without crossing. Both problems are of
practical interest [3].
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Fig. 2: Example of multi-layer topological routing.

Problem 4: Application Timing Assignment

The combinational circuit of Fig. 3 has two primary inputs
(I1 and I2), two primary outputs (O1 and O2), and �ve
gates (G1 to G5) [11]. Associated with each gate and wire
is a delay : e.g., G1 has delay 0, and the wire from I1 to
G1 has delay 10. Delay-fault testing involves a sequence
of test patterns at the primary inputs. Let Ti be the time
of applying a signal to input i. For example, we may have
the application timing assignment TI1 = 0 and TI2 =
5. For a timing assignment we denote by Tj the latest
time for signals to arrive at output j from all the inputs.
(TO1 = max(0+10+0+5+5; 5+5+0+10+5) = 25, and
TO2 = max(0+10+0+10+5; 5+5+0+5+3+2+5) = 25.)
For a path from input i to output j, the time allowed for
signal propagation is Tj � Ti, which may di�er from the
total delay of that path; this di�erence is the slack of the
path. (Path I1!G1!G4!O1 has TI1 = 0 and TO1 = 25.
Since its delay is only 20, it has slack 5. ) We de�ne the
delay slack for each delay as the minimum of the path
slacks of all input-to-output paths that include this delay.
(The wire delay between G1 and G4 has slack 5.)
For timing assignment TI1 = 0 and TI2 = 5, only the

wire delay between G1 and G4 has nonzero slack (5), and
the sum of all the delay slacks is 5. For timing assignment
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Fig. 3: Example of application timing assignment.

TI1 = TI2 = 0, we have TO1 = 20, and TO2 = 25. Now
path I2!G2!G3!G5!O2 has slack 5. Also the wire
delays between G2 and G3, and G3 and G5, have nonzero
slack (5). The sum of the delay slacks is 10.
A key observation in [11] is that delay slacks a�ect the

size of the delay fault detectable by any test set. To im-
prove the quality of delay-fault testing, we need an appli-
cation timing assignment that keeps delay slacks as small
as possible. However, the slack of a delay d cannot be
made arbitrarily small; the length of a longest input-to-
output path minus the length of a longest input-to-output
path including delay d forms a slack lower bound for d.
The multiple-test application timing assignment prob-

lem is as followsz: Given a fraction, �, 0 < � � 1, �nd the
smallest number of application timing assignments such
that, for � of the delays, there exists at least one timing
assignment for each delay that enables it to achieve its
slack lower bound. The single-test application timing as-
signment problem is to �nd an assignment such that as
many delays as possible achieve their slack lower bounds.
In our framework, we take the circuit delays as ground

elements. Then a subset of delays forms a cluster if all
the delays in the subset can achieve their slack lower
bounds under a single timing assignment; this is called
a consistent-tight set in [11]. The multiple-test applica-
tion timing assignment problem is the maximum k-cluster
problem, whereas the single-test application timing as-
signment problem is the minimum �-cover problem.

Problem 5: Monitoring Logic Design for BIST

Built-in self-test (BIST) is widely used in VLSI. A typical
BIST structure is shown in Fig. 4, and consists of a test
generator, a combinational circuit under test (CUT), and
a multiple-input signature analyzer. The test generator
produces a test sequence for the CUT. The signature an-
alyzer compresses the output sequence of the CUT into
a signature, and compares it to the correct signature. If
the two signatures di�er, the CUT is faulty. However, if
the CUT is faulty, the signature may be correct because
of data compression; this is called aliasing .
To overcome aliasing, [10] proposes a BIST structure of

Fig. 4. The output y is the �rst bit of the signature; we
call it the key. If the CUT is correct, the value of the key is
f0(x). The test sequence includes all input combinations;

zThe formulation in [11] is slightly di�erent.
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Fig. 4: An augmented BIST structure.

hence f0 is completely speci�ed. In the presence of a fault,
output y is determined by some other completely speci�ed
Boolean function fi, i = 1; : : : ; l. The monitoring circuit
predicts the correct value of the key with the aid of two
incompletely speci�ed Boolean functions y0 and y1. The
\0-cover circuit" computes y0 such that y0(x) = 1 implies
f0(x) = 0, the \1-cover circuit" computes y1 such that
y1(x) = 1 implies f0(x) = 1. To detect faults fi, functions
y0 and y1 must satisfy

1. y0 = 0 implies f0 = 1.

2. y1 = 0 implies f0 = 0.

30. The on-sets of y0 and y1 are such that, for each
fi; i = 1; : : : ; l, there exists at least one input pat-
tern x for which the output y0(x)fi(x) + y1(x)fi(x)
of the monitoring circuit is 1.

If fi(x) 6= f0(x) = 0, we say that x 0-distinguishes fi.
If fi(x) 6= f0(x) = 1, we say that x 1-distinguishes fi.
Condition 30 can be replaced by 3, 4, and 5.

3. Each fi; i = 1; : : : ; l, is either 0-distinguished or 1-
distinguished by at least one pattern x.

4. y0 = 1 for all 0-distinguishing patterns.
5. y1 = 1 for all 1-distinguishing patterns.

The new logic minimization problem here is: Given fi; i =
0; : : : ; l, design a minimum-cost circuit with outputs y0
and y1 that satis�es 1{5.
Table 1 [10] shows the correct function f0, and three

faults f1, f2, and f3 undetectable because of aliasing.
Fault f1 is 0-distinguishable by 001 and 1-distinguishable
by both 110 and 011; faults f2 and f3 are 0-distinguishable
by 001 and 000, respectively.
An input pattern x can 0-distinguish a set of faults, or

1-distinguish them, but not both. Thus y0(x) = 1 implies
y1(x) = 0, and y1(x) = 1 implies y0(x) = 0. According
to the terminology in logic synthesis, the on-set of y0 is
the set of 0-distinguishing patterns, and the on-set of y1
is the set of 1-distinguishing patterns. Hence, the set of
implicants of y0 is disjoint from that of y1. This problem
is illustrated in Fig. 5: Each minterm distinguishes a set

Table 1: Example to illustrate BIST enhancement.

test pattern x f0 f1 f2 f3
000 0 0 0 1
100 0 0 0 0
010 0 0 0 0
110 1 0 1 1
001 0 1 1 0
101 1 1 1 1
011 1 0 1 1
111 1 1 1 1

of faults; each implicant includes a set of minterms; and
a cover is a set of implicants.
Because the relation between faults and minterms is

easily obtained from the given table in linear time, the
problem can be simpli�ed so that it �ts our framework.
The set of faults constitutes the ground set. A cluster
is a set of faults that can be distinguished by minterms
included in one implicant. A cover is a set of clusters that
covers all the faults. Now the problem considered in [10]
is to �nd a cover that contains as few clusters as possible.

�x1�x2 x2x3

f1 f2 f3

x1x2

000 110 011001

y0-imp.y0-imp. y1-imp.

Fig. 5: Three-level hierarchy for monitoring-logic.

011

000

110
001001

x2x3�x1�x2 x1x2

f1 f3f2

y0-cluster y1-cluster y1-cluster

Fig. 6: Cluster-cover for the monitoring-logic example.

Our framework for the example is shown in Fig. 6. The
o�-set of y0 is f110,101,011,111g. The o�-set of y1 is
f000,100,010,001g. Faults f1, f2, and f3 form a y0-cluster,
because all they are 0-distinguishable by a set of minterms



included in the implicant x1 x2. The minimum-cost cover
is x1 x2.
An extension of the work in [10] is the maximum k-

cluster problem. The problem is to design a circuit having
a given area so as to cover as many faults as possible.
Our framework leads to a precise formulation of the

monitoring-logic minimization for BIST enhancement.
The paradigms described next provide, for the �rst time,
both exact and heuristic algorithms for this minimization.

IV. Prime Covering versus Greedy Peeling

We now describe two paradigms for the optimization
problems with the cluster-cover structure. We categorize
the heuristics developed for each problem of the previous
section.

A. Prime Covering

Prime covering is an exact approach to solving the min-
imum �-cover problem. It consists of two stages, cor-
responding to the clusters and covers of Fig. 1. First,
the set of clusters is generated. Because it is subset-
closed, only maximal clusters|for which the addition of
one more ground element will violate the predicate|need
to be found. Maximal clusters are called primes.
In the second stage the standard set-cover problem is

solved by the branch-and-bound method, in which the
solution space is successively partitioned. A cluster is
selected|this is called branching|and the problem is ex-
amined, �rst assuming that the cluster is in the minimum
cover, and then that it is not. Bounding refers to gener-
ating lower bounds that can be used to prune the search
space.
To obtain a good lower bound for the objective function

at each branch, either a compatibility graph or a con
ict
graph can be used. A compatibility (con
ict) graph has
ground elements as vertices. An edge joins two vertices
if the corresponding ground elements are compatible (in-
compatible). The number of vertices in the maximum
independent set in the compatibility graph (which equals
the number of vertices in the maximum clique in the con-

ict graph) is a lower bound on the size of the minimum
cover. In practice, �nding the maximum clique is easier
than �nding the maximum independent set [18].
The choice of the branching cluster is based on the intu-

ition that ground elements present in only a few clusters
are \hard" to cover. To measure this \hardness," each el-
ement is assigned a weight|the reciprocal of the number
of clusters in which it appears. The weight of a cluster is
the total weight of all its elements. The cluster that ap-
pears in the independent set and is of maximum weight
is chosen as the branching cluster.
Prime covering can be converted into a greedy heuristic

by not using backtracking. The solution obtained is then
an upper bound for the minimum cover.

The set-cover problem is NP-hard [9]. In the worst case,
the number of branches needed for �nding an optimum
solution is exponential in the number of primes. The ver-
sion of the algorithm without backtracking, or even greedy
peeling, can be used for set covering. However, the num-
ber of primes can be exponential in the number of ground
elements. Furthermore, the construction of primes is usu-
ally time- and space-consuming for problems de�ned by
complicated compatibility predicates. Hence, prime cov-
ering is normally used as a paradigm for �nding optimum
solutions to relatively small problems or those for which
the clusters can be easily constructed.

B. Greedy Peeling

Greedy peeling solves both the minimum �-cover and
the maximum k-cluster problems in a uni�ed manner. It
constructs directly the clusters needed in the �nal solu-
tion. Its description in terms of our framework is given
in Fig. 7. We have a ground set E and an integer k. The
initial solution is an empty cover C (line 2). The core of
greedy peeling is a subroutine that solves the maximum
l-cluster problem (l � k; typically l = 1 is used). The
algorithm iterates dk

l
e times (lines 3 to 6). At each iter-

ation, the subroutine is �rst invoked to �nd a set Pi of l
clusters and the subset Ei of elements covered by Pi (step:
solve); then the elements covered by Pi are removed from
E (step: peel-o� ); and, �nally, the newly found set Pi of
clusters is added to the solution (step: augment). The
algorithm returns the computed cover C and the set of
elements not covered by C.

GREEDY PEELING(E; k)

1 E0  E

2 C  f g

3 for i = 1 to dk
l
e do

4 (Pi; Ei) max l-cluster on E0 /*solve*/
5 E0  E0 �Ei /*peel o� */
6 C  C [ Pi /*augment*/
7 return (C;E0)

Fig. 7: Paradigm of greedy peeling.

Theorem 1 Greedy peeling yields an optimum solution
for the maximum k-cluster problem, if the compatibility
predicate � satis�es one of the following properties:

1. Transitivity: For any x; y; z 2 E, �(fx; yg) and
�(fy; zg) imply �(fx; zg).
2. Steinitz exchange property: If X;Y 2 P and jXj <
jY j, then there is a y 2 Y �X such that X[fyg 2 P.

In general, greedy peeling is a heuristic for �nding ap-
proximate solutions. Often, step solve is approximated
by a heuristic. We now describe two techniques for im-
proving the solution quality of greedy peeling. First, one
can build local search on top of greedy peeling; this gives



rise to iterative greedy peeling , which works as follows:
Suppose we �nd a solution by greedy peeling after k iter-
ations. The kth iteration was introduced, since there is a
nonempty set E0 of ground elements not covered by the
�rst k�1 iterations. The set E0 thus appears to be \hard"
to cover. Therefore, we start a new run of greedy peeling
by \insisting" that the �rst iteration peel o� E0. This can
be done by using a modi�ed local search heuristic. The
other technique is to prevent the peeling from being too
greedy by imposing certain problem-speci�c criteria, e.g.,
balance criteria in constrained encoding [21, 23].
Note that greedy peeling can be applied to the second

stage of prime covering for solving the set-cover problem,
as mentioned earlier. But the chief advantage of greedy
peeling over prime covering is the avoidance of the com-
plicated and time-consuming process of cluster generation
for cluster-cover optimization.

C. Taxonomy of Cluster-Covering Heuristics

We classify various heuristics developed previously for
some VLSI optimization problems that �t our frame-
work as prime covering or greedy peeling. Prime cover-
ing includes algorithms for combinational logic minimiza-
tion [1, 18] and constrained encoding [7, 20, 23]. Included
in the category of greedy peeling are the constrained en-
coding algorithm of [21], the topological planar routing
algorithm of [3], the application timing algorithm of [11],
and the monitoring-logic optimization algorithm of [10].

V. Performance of Greedy Peeling

The quality of the solution by greedy peeling will be
measured by the performance ratio of the greedy peeling
result to the result of an optimal solution.

Theorem 2 Suppose that the maximum l-cluster problem
can be solved with a performance ratio �, and let r =
dk
l
e; then the performance ratio of greedy peeling for the

maximum k-cluster problem is


 � 1� (1�
�

r
)r :

We note that 
 has the following properties:

� When r = 1, then 
 = �.
� 
 is a decreasing function. Since limx!1(1� a

x
)x =

(1
e
)a; 
 is bounded by 1� (1

e
)�. Note that 0 < � � 1.

When � = 1, then 
 is bounded by 1� 1
e
= 0:632.

� The derivative of the performance ratio with respect
to � is @


@�
� (1 � �

r
)(r�1): If r = 1, then @


@�
= 1. If

r!1, then @


@�
� e��.

� The derivative of the performance ratio with respect
to r is @


@r
� �

(r)2
(1� �

r
)r ln(1� �

r
):

Theorem 2 is based on a generalization of the perfor-
mance analysis of a greedy heuristic for topological planar
routing [3] to problems of the cluster-cover structure. We

have extended it in two directions: each peeling has a
performance ratio � (instead of 1), and each peeling may
take l � 1 clusters. Theorem 2 establishes that, if a max-
imum cluster can be obtained, greedy peeling has a guar-
anteed performance ratio 
 (at least 0.632) for solving the
maximum k-cluster problem. That is, the number of ele-
ments covered by k clusters found by greedy peeling is at
least 63.2% of the number covered by the optimal solu-
tion. Note that 0 � 
 � 1 for the maximization problem.

Theorem 3 The performance ratio 
 of greedy peeling
for the minimum cover problem is bounded from above by
log jP j, where P is the largest cluster.

Theorem 3 is a direct adaption of the work of [12], [15]
and [2]. It states that, if we insist on covering all the
ground elements by greedy peeling, then the number of
clusters used may be log jP j times the number of clus-
ters actually needed. Note that here 1 � 
 � 1 for the
minimization problem.
In view of a very recent discovery in [16] that, for any

0 < c < 1=4, the set-cover problem cannot be approxi-
mated within ratio of c log jEj in polynomial time unless
NP � DTIME (jEjpoly log jEj)|a very unlikely event|the
greedy peeling heuristic is likely the best-possible approx-
imation algorithm for the optimization problems of the
cluster-cover structure. This means that, though sophisti-
cated heuristics (e.g., based on prime covering) may some-
times produce better results, they are likely to have the
same asymptotic performance as simple greedy peeling.

VI. Justification of Previous Empirical Results

We examine some experimental results reported in the
literature on the use of greedy peeling in two VLSI design
applications. In particular, we show how our analysis is
con�rmed by empirical evidence.
Table 2 shows experimental results of [11] for applica-

tion timing assignment. The parameter � in the table is
1=�. The authors make the following observation [11]:
For some examples, there are relatively large di�erences
in the number of assignments required for � = 1:1 and
� = 1. In other words, while the slack lower bound of a
huge fraction of the fault sites is achieved by the �rst few
assignments, a large number of new assignments may be
needed to achieve the lower bound for the remaining few
sites. Clearly, Theorem 2 indicates that the �rst few
assignments can achieve the slack lower bound of a large
fraction of the fault sites. Theorem 3, combined with the
observation that greedy peeling is likely the best-possible
approximation algorithm, implies that a large number of
assignments (log jP j times the number of assignments ac-
tually needed, where jP j is the size of the largest cluster)
may be needed by greedy peeling to achieve the slack
lower bound for the remaining few sites.
Another remark in [11] is that the number of assign-

ments does not seem to grow with the size of combina-



Table 2: Results of application timing assignments.

#assignments to achieve

circuit #edges #fault sites � = 1:1 1.05 1

c432 225 432 1 1 1
c499 1312 499 3 3 11
c880 419 880 4 5 5
c1355 1312 1355 5 7 9
c1908 807 1908 1 1 1
c2670 1143 2746 4 5 5
c3540 724 3540 3 5 15
c5315 2978 5315 5 5 8
c6288 784 6283 5 5 8
c7522 3544 7553 4 5 10

tional circuits. This is true from our analysis, since the
number of assignments depends only on the size of the
maximum independent set of the compatibility graph in
terms of the cluster-cover framework, which may not nec-
essarily grow with the size of combinational circuits.

The following two open questions are also posed in [11]:
Can the TAT multiple heuristic be improved to bring the
number of assignments for � = 1 closer to that for
� = 1:1? Is there a good lower bound for the num-
ber of assignments necessary to achieve � = 1. For the
�rst question, from Theorem 3 and the observation that
greedy peeling is likely the best-possible approximation
algorithm, it is very unlikely that the heuristic can be
improved to bring the number of assignments for � = 1
closer to that for � = 1:1 in such a way that the heuristic
still runs in polynomial time. For the second question,
the prime covering paradigm provides an optimum solu-
tion for the number of assignments necessary to achieve
� = 1.

The same observations have been made regarding ex-
perimental results on multi-layer topological planar rout-
ing (Table 3) [3]. First, we can have a planar routing for
the majority of nets. (: : :) Given a relatively large num-
ber of routing layers (say, more than four layers), we can
route most of the nets without vias. Second, insisting on
planar routing for all the nets is very costly, i.e., it re-
quires a large number of routing layers. Although we can
have planar routing for over 60% of the nets in the �rst
�ve layers, we need 4-13 layers to route the remaining 20-
40% of the nets. Therefore, it is unrealistic to insist on
planar routing for all the nets.

We note that the reason why it is unrealistic to insist
on planar routing for all the nets may come from the
characteristic of the greedy peeling heuristic, not from
the property of the original problem. Greedy peeling may
result in a large number of layers, even though the num-
ber of layers actually needed is not very large. It will
be interesting to apply prime covering to �nd the exact
number of layers needed and to validate this observation
experimentally.

Table 3: Results of multi-layer topological routing.

circuit 1L 2L 3L 4L 5L total layer

bus 41% 58% 70% 79% 83% 9
ex1 38% 52% 66% 76% 80% 9

ex3a 45% 59% 68% 75% 79% 11

ex3b 31% 53% 68% 75% 79% 10
ex3c 37% 55% 62% 70% 75% 13

ex4b 41% 57% 68% 75% 81% 13

ex5 31% 48% 59% 70% 83% 9
ex5b 31% 48% 60% 71% 79% 11

deut 23% 38% 50% 58% 63% 18

VII. Concluding Remarks

This paper has established that the widely studied two-
level logic minimization shares the same combinatorial
structure|cluster-cover|as many other VLSI-CAD op-
timization problems. All these problems can be cast into
two meta-problems, called maximum cluster and mini-
mum cover. They only di�er in the de�nition of the com-
patibility predicate.
Prime covering is a paradigm for �nding exact solu-

tions. Remarkable progress has been made recently to-
wards the use of prime covering to solve very large logic
minimization problems [4, 5, 14, 17]. Our work provides,
for the �rst time, a systematic foundation for applying
these techniques to other cluster-cover problems.
A simple heuristic called greedy peeling is characterized

in this paper. We derived certain conditions for a compat-
ibility predicate which guarantee that greedy peeling pro-
duces optimum solutions. We have obtained theoretical
results on the performance of greedy peeling, and applied
them successfully to explain experimental results reported
in the literature.
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