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Abstract

In behavior synthesis, an improper resource
sharing may result in a circuit containing false
loops which is non-simulatable or non-timing-
analyzable. Previous approaches solve this prob-
lem during the datapath allocation phase. To
build a false loop free circuit, they may have to
allocate additional functional units other than
those de�ned in the resource constraints. In this
paper, we present an approach to solve the prob-
lem during the scheduling phase. Our schedul-
ing algorithm �nds a schedule which guarantees
to have a false loop free circuit mapping un-
der the given resource constraints. Experiments
show the proposed approach �nds false loop free
schedule for most of the examples without intro-
ducing extra control steps.

1 Introduction

A false path [1] of a combinational circuit is de-
�ned as a path which will never be traversed un-
der any combination of input values. A false loop
[2] is a special case of false path, where the start
point and the end point of the false path are the
same. Because most logic synthesizer, timing
simulator, and timing analyzers cannot handle
false loops, it is therefore desirable to generate a
circuit which contains no false loops.
The HIS system [3] is the �rst behavior syn-

thesis system to tackle the false loop problem. It
solves the problem during the allocation phase.
Given a scheduled code, HIS uses a loop preven-
tion algorithm [2] to generate a false loop free
circuit. Their approach has a drawback that
in many cases a false loop free circuit cannot
be built under given resource constraints. Addi-
tional resources have to added in order to build
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a false-loop free circuit.
Di�erent from the HIS system, we propose

an approach to solve the problem during the
scheduling phase. We use a \resource allocation
graph" to represent a circuit con�guration. A
designer �rst speci�es resource constraints such
as the number and type of functional units to be
used in the data path. The scheduling algorithm
incrementally constructs an acyclic resource al-
location graph which corresponds to a false loop
free circuit mapping under the speci�ed resource
constraints. The objective is to build an acyclic
resource allocation graph using minimal number
of control steps.
The remainder of the paper is organized as

follows. Section 2 de�nes a directed resource al-
location graph to model the false loop problem.
A false loop free scheduling algorithm, which
builds an acyclic resource allocation graph, is
proposed in Section 3. A re�nement algorithm
is presented in Section 4. Section 5 presents a
multiple passes approach to �nd a false loop free
schedule using minimal number of control steps.
Section 6 reports the experimental results. Fi-
nally, concluding remarks are made in Section
7.

2 Resource Allocation Graph

Given a resource constraint, a scheduling algo-
rithm may �nd a schedule that is impossible for
an allocator to come up with a false loop free cir-
cuit. Fig. 1 (a) gives such an example. Suppose
we are given a resource contraint of two adders
(add1 and add2) and one subtracter (sub1). As-
sume the clock cycle time is 100 ns, and the ex-
ecution delay of each functional unit is 30 ns.
By applying the list scheduling [4] algorithm to
the program, we may �nd a schedule as shown
in Fig. 1 (b).
Suppose during data path binding, we assign

operations 2, 4, and 7 to adder add1, operations
3 and 5 to adder add2, and operations 1, 6 and 8
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Figure 1: An Example. (a) The Data Flow Graph. (b) The Scheduled Code. (c) The Resource Allocation

Graph.

to subtracter sub1. Because operation 3 uses the
output of operation 1 and operation 6 uses the
output of operation 5, there will be a connection
between add2 and sub1 which in the real case
will never be used. Thus there is a false loop
between add2 and sub1 for this binding.
To detect false loops, we de�ne a resource allo-

cation graph to represent a circuit con�guration
at the higher abstraction level. Two operations
oi and oj are said to be chained at control step
s, if they are scheduled within control step s and
there is a control and data dependency between
operation oi and operation oj . Let FU(o) de-
note the functional unit to which operation o is
assigned. If operations oi and oj are chained in
a control step, there must be a connecting path
which passes the result of FU(oi) to the input
of FU(oj) in the �nal hardware. We can model
such a circuit con�guration using a resource al-
location graph at a higher abstraction level.

De�nition 1 : A resource allocation graph
G(V;E) is de�ned as a graph, where:

� each vertex in V represent a functional unit
(FU) de�ned in the resource constraint; and

� a directed edge e connecting vertices FU(oi)
to node FU(oj), if operations oi and oj are
chained in a control step.

The following theorem states that we can de-
tect false loops on a resource allocation graph.

Theorem 1 : There is a false loop in the �nal
hardware, if and only if there is a cycle in the
corresponding resource allocation graph.
Proof: Suppose there is a cycle in the resource
allocation graph: FU(r1) ! FU(r2) ! ::: !
FU(rn)! FU(r1). Since it is impossible to ex-
ecute two di�erent operations in functional unit

FU(r1) within the same clock cycle, the loop will
never be executed. Therefore, the loop in the �-
nal circuit is a false loop. Q.E.D.

We can easily prove that the scheduled code
in Fig. 1 (b) contains false loops no matter
what the binding is under the given resource con-
straints. Since operation 6 uses the outputs of
operations 4 and 5 at control step 2, we have
directed edges FU(4) ! FU(6) and FU(5) !
FU(6) in the resource allocation graph. Note
that FU(6) is sub1. Since operations 4 and 5 are
scheduled at the same control step, they must be
assigned to di�erent adders. Hence, we have di-
rected edges add1 ! sub1, and add2 ! sub1
in the resource allocation graph. However, be-
cause operations 1 and 3 are chained at control
step 1, a directed edge from FU(1) (i.e., sub1)
to FU(3) (i.e., the adder executes operation 3)
must be added to the resource allocation graph.
Consequently, there is a cycle (i.e., false loop)
between sub1 and FU(3). In other words, there
is no binding for this schedule which is false loop
free.
Thus, to prevent false loops in the �nal hard-

ware, we should do it during the scheduling
phase. We say a scheduled code is a false loop
free schedule if there is a binding which is false
loop free. The problem we study in this paper is:
given a behavior description (in a CDFG) and
resource constraints, �nd a false loop free sched-
ule using minimum number of control steps.

3 False Loop Free Scheduling

In this section, we present a scheduling algo-
rithm to �nd a false loop free schedule under
the given resource constraints. A resource al-
location graph is incrementally modi�ed during



the scheduling process. Our objective is to �nd
a schedule in which the corresponding resource
allocation graph is acyclic.

3.1 The Algorithm

The core algorithm of the scheduling algorithm
is based on the concept of list scheduling [4] [5].
In order to guarantee to have a false loop free cir-
cuit mapping, we perform module binding dur-
ing the scheduling process. Initially, each func-
tional unit in the resource constraint is given a
label and the edge set of the resource allocation
graph is empty. A directed edge which connects
FU(oi) to FU(oj) is added, if operations oi and
oj are chained at a control step. In order to en-
sure that false loops will never occur, we have
to ensure there is no cycle in the resource allo-
cation graph. To construct an acyclic resource
allocation graph, the following rules are applied:

When an operation is scheduled into a
control step, the module it is assigned
to must not violate the topological or-
dering of the resource allocation graph.
When two operations are chained into
a control step, a new edge is added from
its predecessors to represent the chain-
ing between the operation and its pre-
decessors.

Let AV (o; s) denote the set of available re-
sources which can execute operation o at control
step s, P (o) denote the set of direct predecessors
of operation o in the control/data ow graph,
I(s) denote the set of operations scheduled at
control step s, and Pred(r) denote the set of re-
sources which precede resource r. The rules are
elaborated in the following subsections.

3.1.1 Eliminating False Loops

If we don't consider the false loop condition,
we can assign operation o to any resource in
the set AV (o; s). In order to avoid false loops,
some bindings in AV (o; s) must be prohibited.
If operation o is scheduled into control step s,
then it is chained with the operations in the set
CP , where CP is P (o) \ I(s). Therefore, af-
ter we schedule operation o into control step s,
for each operation oi in the set CP a directed
edge from FU(oi) to FU(o) must be added to
the resource allocation graph. Thus in order to
avoid forming a cycle, the following condition,
FU(o) 62 [oi2CPPred(FU(oi)), must be true.
In other words, we cannot assign operation o to
any resource r in the set [oi2CPPred(FU(oi)),
even if r 2 AV (o; s).

3.1.2 Maintaining Resource Sharing

As mentioned earlier, in order to avoid creat-
ing false loops in the �nal hardware, we need to
enforce an ordering to the resources during op-
eration chaining. However, we want to maintain
as much freedom as possible for the operations
for future sharing. Because the resource alloca-
tion graph is acyclic, we can de�ne a level L(r)
for each node r as follows:

1. if Pred(r) = ;, L(r) = 1;

2. otherwise, L(r) = MAXri!rL(ri) + 1.

In order to fully utilize the resources at each
control step, the minimal level functional unit
(in possible solutions) is chosen. This property
maintains as much freedom as possible for the
operation chaining and hence achieves the max-
imal resource sharing.

3.2 An Example

Let's apply the false loop free scheduling algo-
rithm to the example given in Section 2. As-
sume we are given two adders (add1 and add2)
and one subtracter (sub1) as the resource con-
straint. Assume the clock cycle time is 100 ns,
and the execution delay of each functional unit
is 30 ns.
Initially, the set E of edges in resource allo-

cation graph is empty. Thus the level of each
node is 1. The scheduling starts with control
step 1. Operations 1, 2, and 3 are assigned to
sub1, add1, and add2, respectively. Operation 3
is chained with operations 1 and 2 at this control
step. Therefore, we need to add directed edges
FU(1) ! FU(3) and FU(2) ! FU(3) to the
resource allocation graph. As a result, we have
the ordering that sub1 precedes add2 and add1
precedes add2.
Next, we move to control step 2. Operations

4 and 5 are assigned to add1 and add2, respec-
tively. Then, we move to operation 6. We have
that AV (6; 2) is sub1. Note that P (6) is f4; 5g
and I(2) is f4; 5g. It means operations 4 and 5
are the predecessors of operation 6 for chaining
at this control step. Therefore, if we assign op-
eration 6 to sub1, the edges FU(4) ! sub1 and
FU(5) ! sub1 must be added into the resource
allocation graph. However, since sub1 precedes
FU(5) (i.e., add2), sub1 cannot use the output of
add2. Otherwise, a cycle between add2 and sub1
will be formed. Hence, we cannot assign oper-
ation 6 to the functional unit sub1. There are
no binding available for operation 6. Therefore,
we cannot schedule operation 6 in this control
step, even if sub1 has not been sealed. The next
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Figure 2: After False Loop Free Scheduling is Fin-

ished. (a) The Scheduled Code. (b) The Resource

Allocation Graph.

operation to be scheduled in the ready queue is
operation 8. Since it has no dependency pre-
decessor scheduled at this control step, we can
assign Operation 8 into the current control step.
Next, we move to control step 3. Operation 6

is chosen from the ready queue, Since AV (6; 3)
is sub1, we assign operation 6 to sub1. Finally,
operation 7 is chosen from the ready queue, The
set AV (7; 3) is fadd1; add2g. Note that neither
add1 nor add2 precedes sub1 in the resource al-
location graph. Therefore, the set of possible
solutions Sol is the same as AV (7; 3). Because
L(add1) is less than L(add2), we assign oper-
ation 7 to add1; i.e. FU(7) is add1. A new
directed edge FU(6) ! FU(7) is added to rep-
resent the chaining of operations 6 and 7.
After we complete the task of false loop free

scheduling, we obtain the scheduled data ow
graph as shown in Fig. 2 (a). Di�erent from the
scheduled code shown in Fig. 1 (b), operations 6
and 8 are respectively scheduled at control step
3 and 2 instead. A topological ordering of re-
sources has been de�ned after the scheduling is
�nished. The ordering is sub1! add1! add2.

4 Resource Allocation Graph

Re�nement

The objective of resource allocation graph re�ne-
ment is to improve the binding of module assign-

ment during the scheduling phase. Let oi
s
) oj

denote that operations oi and oj are chained at
control step s. We de�ne a chaining path c as fol-

lows: c : o1
s
) o2

s
) ::::::

s
) on, where o1 has no

predecessor and on has no successor within con-
trol step s. During the scheduling, a path P1:
FU(o1) ! FU(o2) ! :::::: ! FU(on) is formed
in the resource allocation graph to represent the
chaining path c. Assume there is another path
P2 : r1 ! r2 ! :::::: ! rn in the resource allo-
cation graph. Let o(ri; s) denote the operation
to be executed on functional unit ri at control
step s. We can relocate the chaining path c from
path P1 to path P2 by interchanging operations
oi and o(ri; s) for 1 � i � n, if the following
conditions are satis�ed:

1. Functional unit ri can execute operation oi,
for 1 � i � n;

2. Functional unit FU(oi) can execute opera-
tion o(ri; s), for 1 � i � n; and

3. After the interchange, no new edge is
formed in the resource allocation graph.

Because the resource allocation graph ob-
tained by the scheduling algorithm is acyclic, we
can impose a topological ordering to the edges.
We try to remove the edges according to the se-
quence of their topological ordering. Our goal is
to remove as many edges as possible such that
the number of edges is minimized. Let C(e) de-
note the set of chaining paths which are realized
by owing through edge e. An edge e is remov-
able if all the chaining paths in C(e) can be re-
located to other paths without owing through
e.

5 Multiple Passes Scheduling

As mentioned earlier, our goal is to �nd a false
loop free schedule using a minimal number of
control steps. Since the scheduling algorithm im-
poses limitations on the resource sharing, it may
introduce extra control steps. In some cases,
the extra control steps are unavoidable. How-
ever, in many cases the extra control steps can
be avoided by reordering the execution of oper-
ations. In order to minimize the number of con-
trol steps, our idea is to make several passes of
scheduling to compact the false loop free sched-
ule.
The multiple passes scheduling algorithm is

outlined in Fig. 3, where CDFG is the con-
trol/data ow graph and init RAG is the initial
resource allocation graph. The set of edges in
init RAG is empty. The algorithm goes through



Procedure Multiple Passes Scheduling

Begin

direction=top down;
(SCDFG,SRAG)= False Loop Free Schedulng(
CDFG,init RAG,direction);
Sopt RAG=RAG Re�nement(SRAG);
loop

(S0

CDFG
,S0

RAG
)= False Loop Free Scheduling(

CDFG,Sopt RAG,inverse(direction));
S0

opt RAG
=RAG Re�nement(S0

RAG
);

if (jSCDFGj = jS0

CDFG
j)

then

if (cost(Sopt RAG) � cost(S0

opt RAG
))

then return (SCDFG);
else return (S0

CDFG
);

else

SCDFG=S
0

CDFG
;

Sopt RAG=S
0

opt RAG
;

forever;
End;

Figure 3: Multiple Passes Scheduling.

several passes of scheduling in top-down man-
ner and bottom-up manner alternatively. The
�rst pass performs false loop free scheduling in
top-down manner and produces a scheduled code
SCDFG. During each pass in the loop itera-
tion, S0

CDFG
and SCDFG represent the scheduled

codes produced in this iteration and the previ-
ous iteration, respectively. The loop iteration
terminates if the number of control steps does
not decrease; i.e., jSCDFGj = jS0

CDFG
j. Upon

termination of the algorithm, we select one from
the two scheduled codes SCDFG and S

0

CDFG
as

our solution.
At the beginning of each pass, it invokes

the subroutine False Loop Free Scheduling to
produce a false loop free schedule and an acyclic
resource allocation graph. Next, the subroutine
RAG Refinement improves the resource allo-
cation graph and then returns the re�ned one.
The goal of each pass is to �nd a more compact
false loop free schedule; i.e., to �nd a scheduled
code S

0

CDFG
whose number of control steps is

less than (at most, equal to) the number of con-
trol steps of SCDFG. The goal can be achieved
by using the scheduling strategy similar to [5].

6 Experiments

We have implemented the proposed scheduling

algorithm in C running on a Sun Sparc worksta-
tion and integrated it into a behavior synthesis
system [6]. A wide range of benchmarks from
the open literature, including Di�eq [7], Ellip [7],
LPC [8], a segment of FFT [9], Filter [10], QRS
[11], and Knapsack [12], are used to test the ef-
fectiveness of the new approach. The experiment
shows that the proposed approach synthesizes
false loop free circuits without introducing extra
control steps.
We compare the results produced by schedul-

ing algorithms using and without using false loop
avoidance. Table 1 tabulates the results with
constraints on the number of adders (#add),
the number of subtracters (#sub), the number
of ALUs (#alu), and the number of multipli-
ers (#mul). The column Without Avoidance
gives the scheduling result without false loop
avoidance, including the number of control
steps (#Stepsls), and if it contains a false
loop which cannot be eliminated under the re-
source constraints or not (oop). The col-
umn With Avoidance gives the scheduling re-
sult with false loop avoidance, including the
number of control steps obtained by false loop
free scheduling (#Stepsflfs), the number of con-
trol steps obtained by multiple passes scheduling
(#Stepsmps), and the number of passes to per-
form multiple passes scheduling (#passes). The
example Ex is the example given in Fig. 1 (a).
Experiments show that examples Ellip, LPC,

FFT, Filter and Ex contain false loops if false
loop avoidance is not used in the algorithm.
However, using false loop avoidance heuristic in
the algorithm, a false loop free schedule can be
found using the same number of states. We were
able to �nd false loop free schedules using min-
imum number of states in one pass except LPC
and Knapsack. In examples LPC and Knapsack,
the second pass in multiple-pass scheduling will
reduce the number of control steps by one.

7 Conclusions

In this paper, we presented an approach to gen-
erate a schedule which guarantees to have a false
loop free circuit mapping under the given re-
source constraints. A directed resource alloca-
tion graph is de�ned to model the circuit con-
�guration, such as operation chaining and re-
source sharing, at the higher abstraction. The
goal of the scheduling algorithm is to construct
an acyclic resource allocation graph which corre-
sponds to a false loop free circuit mapping, while
using minimum number of states. Benchmark
data shows that most false loop free circuits can
be built without introducing extra control steps.



Design Constraints Without Avoidance With Avoidance
#add #sub #alu #mul #Stepsls oop #Stepsflfs #Stepsmps #passes

Di�eq 0 0 2 2 3 no 3 3 2

3 0 0 1 8 yes 8 8 2

Ellip 4 0 0 2 7 no 7 7 2
5 0 0 2 6 yes 6 6 2

LPC 0 0 2 2 11 yes 12 11 3

FFT 0 0 2 2 5 yes 5 5 2

4 0 0 1 9 yes 9 9 2

Filter 4 0 0 2 7 yes 7 7 2

5 0 0 2 6 yes 6 6 2

QRS 1 1 0 0 37 no 37 37 2
2 2 0 0 28 no 28 28 2

Knapsack 0 0 2 1 18 yes 19 18 3

Ex 2 1 0 0 3 yes 3 3 2

Table 1: Scheduling Results.
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