
Reclocking for High Level Synthesis

Pradip Jha Sri Parameswaran Nikil Dutt

Information and Computer Science Dept of ECE Information and Computer Science
University of California, Irvine The University of Queensland University of California, Irvine

CA 92717, USA QLD 4072, Australia CA 92717, USA

Abstract| In this paper we describe, a powerful

post{synthesis approach called reclocking, for perfor-

mance improvement by minimizing the total execu-

tion time. By back annotating the wire delays of de-

signs created by a high level synthesis system, and

then �nding an optimal clockwidth, we resynthesize

the controller to improve performance without alter-

ing the datapath. Reclocking is versatile and can be

applied not only for wire delay consideration, but also

for bit{width migration, library migration and for fea-

ture size migration supporting the philosophy of de-

sign reuse. Experimental results show that with re-

clocking, the performance of the input designs can be

improved by as much as 34%.

I. Introduction

High-Level Synthesis (HLS) is composed of many
NP-Complete problems, hence many decisions such as
scheduling, allocation and binding, are made at an early
stage of the design process without good estimates of
layout-level information (e.g., wire-lengths and exact
area/delay information). Since HLS techniques tradition-
ally do not take into account physical design e�ects, the
performance predicted by HLS tools needs to be recal-
culated after back-annotation of physical design informa-
tion into the RT design. One could attempt complete
resynthesis of the datapath and control by running HLS
again with the back-annotated physical design informa-
tion; however, redoing the scheduling and allocation steps
with the new physical design information may generate a
completely new datapath for which the previously back-
annotated physical design information is useless.

To overcome this dilemma of design, we suggest the
resynthesis of the controller alone without changing the
overall circuit connectivity. That is, to keep all datapath
connectivity and all controller | datapath connectivity
the same, and change the controller design itself through
a technique called reclocking. The controller design can
have a di�erent number of states from the initial design,
and the controller logic will be di�erent from the initial
design. Since resynthesis of the controller does not change
the delays very much, we feel that changing the controller
design will not adversely a�ect the wire delays.

Another important motivation for this work is design
reuse. The design of datapath is a complex process and
completed datapaths are often candidates for design reuse
in new projects. Furthermore, with changes in technology
libraries (or the requirements for faster designs), system
designers would often like to re target existing datapath
designs to new libraries, migrate designs to larger bit-
widths, or simply speed up the design to create newer ver-
sions with di�erent cost/performance attributes. These
design scenarios motivate the need for techniques that al-
low rescheduling of controllers for a �xed datapath under
varying technology library or component attribute con-
ditions. Note that controllers typically have automatic
standard-cell implementation and can be easily re imple-
mented through logic synthesis tools.

In this work, we describe reclocking, an approach that
modi�es the controller without changing the datapath to
improve the performance by reducing the total execution
time. Given an initial schedule for the design behavior
and the updated delays (back-annotated or with a new
library) for various paths in the design, our approach �rst
�nds a clock-width (reclocking) that leads to minimal ex-
ecution time. It then reschedules and resynthesizes the
controller based on this new clock-width.

We demonstrate the e�ectiveness of our approach by
applying reclocking to various design scenarios using four
sets of experiments. In the �rst experiment we apply re-
clocking to the outputs of HLS and show its e�ectiveness.
The second experiment applies reclocking to an RT level
design back-annotated with wiring delays obtained from
physical design. The last two experiments establish the
design reuse capability of our approach by applying re-
clocking in migrating designs to di�erent bit-widths and
di�erent libraries respectively. These experiments show
improvements in performance by as much as 34% by ap-
plying our reclocking approach to HLS benchmarks.

The rest of this paper is organized as follows. Section II
describes related work. Section III de�nes the problem of
reclocking, given an initial schedule and datapath delays.
Section IV describes techniques to �nd the optimal clock-
width for di�erent types of input behavior and presents an
algorithm for reclocking. Section V demonstrates the e�-
cacy of our approach by applying reclocking on standard
HLS benchmarks for di�erent design scenarios. Section

VI concludes with a summary.

II. Related work

Various techniques have been proposed to improve the
performance of a given design. At the logic level, Leiser-
son and Sax introduced the concept of retiming[6]. The
technique moves registers across combinational logic to
improve performance. Retiming allows the minimization
of cycle time or the reduction of the total number of reg-
isters. However, as we approach submicron feature sizes,
wires contribute signi�cantly to delays. Since wire delays
can only be known after layout, the original retiming tech-
niques cannot be applied, { the introduction of registers
will change the layout, and thus the timing. Malik et.
al [8] and De Micheli [4] described methods to improve
upon the original approach by changing the circuit topol-
ogy and using a non-constant delay model. Our work is
dual to retiming in the sense that instead of modifying the
datapath by moving registers and latches, we reschedule
the controller by selecting the best clock-width to improve
the performance.

Work has been done to improve the circuit performance
at the high-level design phase. Camposano and Ploger
[2] describe the application of retiming to high-level syn-
thesis. [1] describes an approach that reduces the clock-
width at the resource sharing and assignment phases of
synthesis. [14] maps the RT-level components of the de-
sign in such a way so as to meet a required performance
bound. They apply a combination of microarchitectural
and logic optimization techniques to synthesize RT-level
components. The above mentioned works either mod-
ify the datapath or incorporate performance improvement
techniques during the high-level design phase. Ours is
a post-synthesis technique that can incorporate detailed
physical-design information and therefore more accurately
model the �nal design.

Narayan and Gajski [9] use a simple method to esti-
mate clock-widths in high-level synthesis. This method
exhaustively searches through the possible clock cycles in
1 ns increments to estimate a clock-width for high-level
synthesis. They have not taken wiring or placement into
account, nor have they taken the critical paths into ac-
count. Since they consider all possible latch to latch tim-
ing including false paths to estimate the clock-width, their
clock-estimation may be pessimistic. No results are avail-
able as to the di�erences between estimation and �nal
results. There is also no suggestion as to how to �nd the
best clock-width which does not lie on an integer nanosec-
ond clock-width.

In this work, we show that the optimal clock-width lies
on an integer division of the largest delays of each state,
and that it can be found by searching fewer points in the
delay space than the method proposed in [9]. Using this
optimal clock-width we then proceed to reschedule the
controller to improve the design's performance.

III. Problem Definition

The output of high-level design is typically speci�ed by
a datapath and a controller in a Finite State Machine with
Datapath (FSMD) model [5]. The datapath consists of a
netlist of RT level components such as ALUs, registers,
multiplexers, etc. The controller generates control signals
for each component in the datapath based on the status
signals generated by the datapath components. The con-
troller is represented by a �nite state machine that spec-
i�es what operations are to be performed in each state.
Figure 1(a) shows an example design that consists of a
3-state controller and a datapath with an adder and a
multiplier. Note that all the \+" functions in this design
are single-state operations, whereas the *" function is a
two-state operation. In other words, the data transfer for
the unicycle \+" function is completed in a single clock,
whereas the data transfer for the multicycle *" function
requires two clock cycles.
Given a datapath and an initial schedule (FSM of the

controller), reclocking �nds a new clock-width that min-
imizes the execution time. This could mean that some
of the data transfers that were scheduled to execute in
one clock cycle may now take multiple clock cycles to ex-
ecute. Alternatively, in another design, some functional
units which took multiple clock cycles can now take just
one clock cycle. Figure 1(b) shows the design after re-
clocking. The *" function now takes 3 clock cycles. The
clock-width has been reduced from 15ns to 10ns, which
in turn leads to the reduction of the execution time (45ns
to 40ns). Note that only the structure of the controller
has changed. Neither the datapath nor the connectiv-
ity between the datapath and the controller (control and
status lines) have changed. Since the datapath and the
connectivity remain unaltered in reclocking, we will con-
sider only the controller in our problem formulation and
examples.
Given a scheduled behavior, the problem of reclocking is

de�ned in terms of the set of states, the delays associated
with each state, and the delays of multicycle operations.
Let S be the set of states in the controller:

� S = fsijsi is a state in a controller.g

Each state si activates a set of data transfers. Each data
transfer incurs a delay, given by the maximumdelay value
for various paths that are activated for this data transfer.
We de�ne state-delay, di, as the maximum delay for all
the data transfers activated in si. Note that for reclocking
purposes, we need to consider only the maximumdelay in
each state, that is, state-delay. For example, the controller
in Figure 1(a) has three state-delays d0; d1 and d2, one for
each state. The state-delay d0 (for s0) is the sum of the
delays involved in moving data from registers to adder
inputs, performing \+" operation and storing the result
back into the register.
We also de�ne, MD, the set of delays associated with

multicycle operations:

+ *

Datapath

Control

Status

(b)

Controller

+

+ 0
1

2
+*

3

40

+ *

Datapath

Control

Status

(a)

Controller

+

+ 0

1

2

+*45

Clock−width = 15

Clock−width = 10

Fig. 1. Reclocking of controller (a) Initial design (b) Final design

� MD = fmdijmdi is the delay of a multicycle
operation.g

Note that mdi is not associated with a speci�c state of the
controller. For example, the controller shown in Figure
1(a) has only one multicycle delay md0 associated with
the *" operation.

The Execution time (ET) for a design is given by the
product of the number of clock cycles(NC) required to
perform the intended behavior of the design and the clock-
width(CW): ET = CW � NC. Given a controller with
set of states S and a set of state-delays, along with a set
of multicycle delays, reclocking �rst �nds the optimum
clock-width with minimum execution time for the design.
It then reschedules the controller in order to �t the new
clock-width. The minimum clock-width is determined by
the largest of the following factors: the maximumclocking
frequency of component libraries, data setup time of reg-
isters and the controller propagation time and the control
setup time of the registers.

A. Assumptions

In this work, we make three assumptions: one, the
rescheduling of the controller does not alter the size and
therefore the delay of the controller appreciably; two
the datapath { controller connectivity length remains the
same after controller rescheduling; and three if the behav-
ior contains non-straight line code, an execution trace (or
branch probabilities) are given.

In the next section, we present some results for reclock-
ing. We use these results to develop an algorithm to �nd
the optimal clock-width and reschedule a given design.

For the rest of the paper, we use the term \code" and
\controller" interchangeably.

IV. Reclocking

In straight line code, we don't have branches; the con-
trol ows sequentially through all the states of the code.
Thus the execution time (ET) for straight line code is
given by: ET = CW � NS. where NS is the number of
states in the controller.

A. Straight-line code with unicycle and multicycle opera-

tions

As previously mentioned, a multicycle operation re-
quires more than one state for its completion. With the
introduction of the multicycle operations, we need to con-
sider both the state-delays and the set of multicycle de-
lays,MD. Given a straight{line code with multicycle and
unicycle operations, we have to reschedule the controller,
given a minimal clock-width tmin such that the execution
time is minimized.

Theorem 1 In a straight-line code with single{state and

multi{cycle operations, the optimal clock-width with min-

imal execution time will lie on an integer division of one

of the state-delays, multicycle delays, or on tmin.

Proof: Let us assume that the optimal clock-width,

toptimal, is not equal to an integer division of a state-

delay, a multicycle delay or tmin. Let us consider an-

other clock-width, tbetter, which is smaller than toptimal by

an in�nitesimally small value �t. Let tbetter be given by:

tbetter = toptimal � �t. Since toptimal does not lie on one

of the integer divisions of any of the multicycle delays, state

delays or on tmin, there is a slack in clock utilization for each

operation. Thus, with tbetter which is smaller than toptimal

by an in�nitely small value, each of the critical operations in-

cluding the multicycle operations will require the same num-

ber of states as is required with toptimal. Thus, the schedule

with tbetter requires the same number of states as is required

by the schedule with toptimal. Hence, tbetter reduces the ex-

ecution time as compared to toptimal. This contradicts our

assumption that toptimal is the optimal clock-width. Hence,

the optimal clock-width will lie on the integer divisions of

one of the state-delays, multicycle delays or on tmin.

The above proof establishes su�cient conditions for the
optimal clock-width. Consideration of multicycle delays
are necessary to get the optimal clockwidth.

B. General code

Next, we consider an unrestricted controller. In gen-
eral, a controller could have branches and loops. We as-
sume that a static trace of the schedule is given. That
is, we know, in advance, how many times each of the
states are executed. Given an unrestricted code with uni-
cycle as well as multicycle operations, a trace of the exe-
cution (states s1; s2; � � �sn occurring i1; i2 � � � in times re-
spectively), and a minimal clock width tmin, we need to

�nd the optimal clock-width and then reschedule the con-
troller such that the execution time is minimized.

Corollary 2 In an unrestricted code with static trace,

unicycle and multicycle operations the optimal clock width

will lie on one of the integer divisions of state-delays or

multicycle delays or tmin.

Proof : From the static trace of the unrestricted code

we know that each state occurs an integer number of times.

Since each of the states must occur an integer number of

times, the unrestricted code can be \unrolled" to make it a

straight-line code. Thus, Corollary 2 reduces to Theorem 1.

This completes the proof.

C. Algorithm for reclocking

Algorithm IV.1 : Reclocking for straight-line code

INPUT: A controller(CUi) ,and tmin
OUTPUT: Rescheduled controller(CUo) with optimal

clock-width

1 D = state-delay(CUi);
2 etmin =1;

3 foreach di 2 D loop

3.1 j = 1;

3.2 while di=j > tmin loop

3.2.1 t = di=j;
3.2.2 et =EXECUTION TIME(t; CUi);

3.2.3 if (et < etmin) then

3.2.3.1 cw = t;
3.2.3.2 etmin = et;

3.2.4 end if

3.2.5 increment j;
3.3 end loop

4 end loop

5 CUo = RESCHEDULE(CUi; cw);
6 Return CUo;

Now we incorporate the above results into an algorithm
that �nds the optimal clock-width for a controller and
then reschedules it to �t the optimal clock-width. Algo-

rithm IV.1 lists the steps for reclocking of a controller.
This algorithm takes as input a controller speci�cation in
terms of states, state-delays, multicycle delays and mini-
mum clock-width, tmin. The �rst section of the algorithm
extracts the state-delays and the multicycle delays. The
second section of the algorithm �nds new clock-widths by
dividing each of the delays by incremental integers until
a speci�ed low clock-width is achieved. For each of these
clock-widths, the algorithm computes the execution time.
The clock-width yielding the minimum execution time is
chosen as the optimal clock-width. The �nal section of
the algorithm reschedules the operations with the opti-
mal clock-width.
In Algorithm IV.1, CUi, CUo and tmin refer to the

input controller, output controller and the minimum
clock-width respectively. For a given clock-width t and
input controller, function EXECUTION TIME(t; CUi)

Component Delay type Delay value

Register set-up 3.3ns

Register propagation 3.3ns

2-input mux propagation 5.7ns

3-input mux propagation 6.0ns

4-input mux propagation 6.0ns

5-input mux propagation 6.8ns

6-input mux propagation 6.8ns

Alu propagation 18.4ns

Multiplier propagation 80.5ns

TABLE I
Delay values for 32-bit components from VDP300 library

�nds the execution time. Note that in order to �nd
the execution time, the controller is to be rescheduled
for the given clock-width t. Also, for non straight-line
code, the trace counts of CUi have to be converted to the
trace counts of CUo. Function RESCHEDULE(CUi; cw)
reschedules the input controller CUi for the given clock-
width cw. The variables etmin and cw represent the min-
imum execution time and the current best clock-width re-
spectively. The algorithmhas a complexity of O(n+m)2c,
where n is the number of states in the input controller and
m is the number of multicycle operations. The iteration
count c represents the maximum number of integer di-
visions that has to be considered for a state-delay or a
multicycle delay.

V. Experimental Results

In this section we present the results of our experiments
on some HLS benchmarks. First, we demonstrate reclock-
ing on designs with realistic component delays. Then we
apply our technique on designs with physical design infor-
mation such as wiring delays. Finally, we present experi-
mental results that demonstrate the bit-width and library
migration capability of our approach.

A. Designs with realistic delays

We applied our methodology on two designs from the
literature and two designs generated by high-level synthe-
sis tools[10]. We have used VTI [12] as the target library
for these examples. Table I lists the delay values for the
relevant components: a register, multiplexers, a multi-
plier and an ALU. For the examples in this section, we
assume that the minimal clock width (tmin) is provided
by the user and that it is 20ns. Also, since the trace of
execution for the non-straight line designs is not given,
we assume the code to be straight line code.

Table II shows initial and �nal schedules for the four
examples. The initial schedule in this �gure refers to the
schedule from literature[13][7] or generated by synthesis
tools. These schedules include a few multicycle opera-
tions. The table in Table II shows percentage improve-
ment in performance.

Designs Initial schedule Final schedule Improv.
NC ET(ns) NC ET(ns)

HAL 7 723.8 23 476.1 34.20%

(2mult+2alu)

HAL 17 885.7 33 861.3 2.75%
(1mult+1alu)

Elliptic �lter 21 1094.1 50 1080.0 1.29%
(1mult+2add)

Elliptic �lter 19 982.3 42 907.2 7.64%
(2mult+2add)

TABLE II
Performance improvement for designs from HLS

Designs Initial schedule Final schedule Improv.
NC ET(ns) NC ET(ns)

Elliptic �lter 70 1702.4 29 1645.7 3.88%
(1mult+1add)

Elliptic �lter 50 1227.0 50 1227.0 0.00%
(2mult+2add)

TABLE III
Experimental results for designs with wiring delays

For each design, we report number of states(NS) and
execution time(ET) for the initial and �nal schedule after
reclocking. We observe that substantial improvements in
execution time can be achieved by reclocking the con-
troller. The improvements for the three examples are
2.65%, 1.29% and 7.64%.

B. Back-annotation with wire delays

We now apply the reclocking algorithm to designs, tak-
ing into account wiring delays obtained from physical de-
sign. Recall that since physical design information such
as wiring delays are not available during synthesis, the
clock-width and the schedule generated may not be opti-
mal. In this experiment, we demonstrate how reclocking
can improve the performance of the designs when wiring
delays are taken into account. We considered two designs
for elliptic �lter and estimated the wire-length for each
net in the design [13]. The estimation was based on the
3.0 micron VTI library. Then we recalculated the state
delays incorporating these wire delays.
In order to perform a comparative study, we �rst calcu-

lated the clock-width with state-delays that do not con-
sider wire delays. Then, we �nd the clock-width and the
schedule for the state-delay that incorporates wire-delays.
Table III describes experimental results for two designs.
Note that this experiment is based on a 3.0 micron tech-

nology. In this technology, wire delays are signi�cantly
smaller as compared to the component delays. For exam-
ple, in our experiments, wire delays are of the order of 3.0
ns as compared to 150 ns delay of multiplier. However, as
we move to sub-micron technologies, wire delays become
major factors.

C. Bit-width migration

Next we discuss experimental results for bit-width mi-
gration. In bit-width migration, the design has been gen-
erated for a particular bit-width and is now being reused

Designs Initial schedule Final schedule Improv.
NC ET(ns) NC ET(ns)

HAL 27 936.9 33 861.3 8.07%

(1mult+1alu)

HAL 16 552.0 23 476.1 13.75%
(2mult+2alu)

Elliptic �lter 21 1094.1 50 1080.0 1.29%
(1mult+2add)

Elliptic �lter 19 982.3 42 907.2 7.64%
(2mult+2add)

TABLE IV
Experimental results for migrating designs across

bit-width

Component Delay type Delay value

Register set-up 3.3ns

Register propagation 3.3ns

2-input mux propagation 5.7ns

3-input mux propagation 6.0ns

4-input mux propagation 6.0ns

5-input mux propagation 6.8ns

6-input mux propagation 6.8ns

Alu propagation 15.4ns

Multiplier propagation 43.7ns

TABLE V
Delay values for 16-bit components from VDP300 library

(with the same schedule) for a di�erent bit-width. An
increase in the bit-width increases the delay in some com-
ponents while keeping it constant in others. If the same
schedule is used as before, we would get sub-optimal per-
formance; reclocking can improve the performance of the
new design.
Table IV presents experimental results that compare

designs with and without reclocking for migrating 16-bit
designs to 32-bits. In this experiment, we �rst calculate
the state delays using delay values for 16-bit components
(Table V) from the VTI library. Using these delays, we
�nd an optimal schedule for the 16-bit design. Next,
this design is upgraded to 32-bits without reclocking, i.e.,
without changing the schedule. The initial schedule in Ta-
ble IV refers to this design. The �nal schedule is achieved
by reclocking the controller based on delays of 32-bit com-
ponents from the VTI library. From Table IV we observe
that the reclocked designs are better than ones without
reclocking in performance by as much as 13.75%.

D. Library migration

We also applied our technique for porting designs from
one library onto another library. We considered four de-
signs that have been optimized for the 16-bit VTI[12] li-
brary and retargetted them onto the 16-bit Cascade[3] li-
brary. Table VI shows delays for 16-bit components from
the Cascade library.

Table VII shows the percentage improvement in perfor-
mance for the four designs. The initial and �nal schedules

Component Delay type Delay value

Register set-up 0.9ns

Register propagation 2.8ns

2-input mux propagation 2.3ns

3-input mux propagation 3.4ns

4-input mux propagation 3.4ns

Alu propagation 13.1ns

Multiplier propagation 27.0ns

TABLE VI
Delay values for 16-bit components from Cascade library

Designs Initial schedule Final schedule Improv.
NC ET(ns) NC ET(ns)

HAL 27 442.8 29 426.3 3.73%
(1mult+1alu)

HAL 17 232.9 17 232.9 0%
(2mult+2alu)

Elliptic �lter 21 617.4 40 588.0 4.76%
(1mult+2add)

Elliptic �lter 19 558.6 36 529.2 5.26%

(2mult+2add)

TABLE VII
Experimental results for migrating designs across

technology

refer to the VTI and Cascade libraries respectively. We
observe that the improvement in performance is in the
range of 0-5.26%.

VI. Summary

In this paper we have described reclocking, a power-
ful post{synthesis approach for performance improvement
by minimizing the total execution time. We can accom-
modate designs created by a high level synthesis system
and back annotate the wire delays to the design. Hav-
ing extracted the delays we are able to rescheduling the
controller to improve performance without altering the
datapath.

We described techniques for �nding the optimal clock-
width and proved optimality of our results under various
input behavior assumptions. Furthermore, our results sig-
ni�cantly prune the search space for �nding the optimal
clock-width as compared to previous approach. An al-
gorithm for reclocking was presented based on the above
results.
We ran several experiments to demonstrate applicabil-

ity of our approach for back-annotation of physical design
information into HLS, as well as for design reuse at the
RT-level. Our experimental results show that with re-
clocking, the performance of the input designs can be im-
proved by as much as 34%. Based on these experiments,
we believe that our reclocking technique has tremendous
applicability in linking HLS with physical design. As we
approach sub-micron feature sizes, wire delays become
signi�cant, and can even approach functional unit delays;
we described a concrete technique for back-annotation of

these delays into the output of HLS to allow realistic mod-
elling of physical design e�ects. We also believe that our
techniques support the philosophy of design reuse, specif-
ically in the areas of bit-width migration, library migra-
tion, and feature-size migration.

References

[1] S. Bhattacharya, S. Dey and F. Brglez, "Clock PeriodOptimiza-
tion During Resource Sharing and Assignment," Proc. Design
Automation Conference, pp. 195-200, June 1994.

[2] R. Camposano and P. G. Ploger, "Retiming and High Level
Synthesis,"Proceedings of the Sixth High Level Synthesis Work-
shop, pp191{201, 1992

[3] "Cascade Design Automation Databook," Cascade Design Au-
tomation, Bellevue, WA, 1992.

[4] G. De Micheli, "Synchronous Logic Synthesis: Algorithms for
Cycle{Time Minimization," IEEE Transactions on Computer{
Aided Designs, pp63{73, 1991.

[5] D. Gajski, N. Dutt, A. Wu and S. Lin, \High-Level Synthesis:
Introduction to Chip and System Design," Kluwer Academic
Publishers 1992.

[6] C. E. Leiserson and J. B. Saxe, "Retiming Synchronous Cir-
cuitry," Laboratory for Computer Science, MIT, 1988

[7] P. G. Paulin, J. P. Knight and E. F. Girczyc, "HAL: A Multi-
paradigm Approach To Automatic Data Path Synthesis," 25

Years of Electronic Design Automation, pp587-594, 1986.

[8] S. Malik, E. M. Sentovich, R. K. Brayton, and A. Sangiovanni-

Vincentelli, "Retiming and Resynthesis: Optimizing Sequential
Networks with Combinational Techniques," IEEE Transactions

on Computer{Aided Design, pp74{84, 1991

[9] S. Narayan and D. D. Gajski, "System Clock Estimation based

on Clock Slack Minimization," European Design Automation
Conference (EuroDAC), September 1992.

[10] L. Ramachandran and D. Gajski, "An Algorithm for Compo-
nent Selection in Performance Optimized Scheduling," IEEE

International Conference on Computer-Aided Design, 1991.

[11] "Toshiba ASIC Gate Array Library," Toshiba Corporation,

Tokyo, Japan, 1990.

[12] "VDP300 CMOS Datapath Library," VLSI Technology Inc.,
California, November 1991.

[13] A. C. Wu, V. Chaiyakul and D. D. Gajski, "Layout-AreaMod-
els for High-Level Synthesis," Proc. International Conference

on Computer-Aided Design, pp. 34-37, November 1991.

[14] N. Vander Zanden and D. D. Gajski, "MILO: A Microarchi-

tecture and Logic Optimizer," Proc. Design Automation Con-
ference, pp. 403-408, June 1988.

	ASP-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

