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Abstract--- Dueto efficient interconnect structure and
internal parallelism bus-partitioned ar chitecturesarevery
beneficial for sub-micron chip design. This paper presents
anew approach for integrated scheduling and inter connect
binding of bus-segmented data-paths. Experiments show
that the approach provides better results than existing
methods and is quiteflexible.

I. INTRODUCTION
A. Moativation

Dueto asimplelayout, low areaand good extension capability,
busses are the most commonly used interconnection units in
actual chip and system design. In order to satisfy given
timing requirements, the number of busses traditionally is not
constrained during data-path synthesis and determined in a
post scheduling/allocation phase. For the current 1.0+-0.8um
CMOStechnology such astrategy isreasonable because busses
do not impact heavily on chip areaand delay. However, aschip
density increases and transistor sizes are scaled below 0.5um
level, the bus characteristics dominate in design. Experts
predict that if metal lines and interline spacing are narrowing
with the same dope as device feature sizes, data transfers
via long lines in chips fabricated in 0.25um technology will
consume50% of cycletime[1],[2]. Introducinga“‘fat’’ scheme
[3] for global nets reduces this delay but significantly affects
the chip area. Figure 1 plots area estimation results for two (8-
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Figure 1. Area distribution between data path components of
Differential Equation Solver example vs. technology scaling.
(The black marks represent 8-bit implementations, the white
marks show 16-bit implementations)
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Figure 2: The bus-partitioned architecture

and 16-bit) implementations of Differential Equation Solver
Design[4] obtained for different CMOS technologies. In the
experiment, we assumed that both implementations had linear
topology (2 multipliers, 3 adders, 8 registers and 4 busses)[5]
and the width of bus lines was not less than 1um. The figure
clearly shows the price of the ‘‘fat’’ scheme at 0.25um level:
busses occupy approximately half of the total data path area.

I nthe deep sub-micron design, busissuesaremuchimportant
to the chip quality than that of adders or registers, for example,
and can not be ignored until the last stage. In contrast, since
busses are very expensive, their number might be one of
resource constraints in the future chip design.

When the number of busses is limited, bus-partitioning[6]
is an efficient way to achieve high throughput. In a bus-
partitioned architecture (Fig.2), each busis split into segments
which are functionally connected or disconnected by switches.
The disconnected segments can convey different data-transfers
simultaneously. So functional units sharing the same bus
can operate in parallel. The architecture provides an easier
placement, routing and better compaction. Moreover, it is
very suitable for power reduction. By enabling the switchesto
separate electrically the bus segments (with attached hardware
units) which are not active in a clock cycle, the total power
consumption can be lowered as more as twice[ 7].

The partitioned busses, however, has a drawback. Since
each segment can only communicate with its two neighbor
segments, the amount of possible communication between
the segments is severely restricted. As result, the transferred
data can not be available whenever it is required and, hence,
scheduling has to be based on bus binding. An approach to
scheduling of the bus-partitioned architectures with limited
number of communications paths is presented in this paper.



Figure 3: An example

B. Related research

Several high-level synthesis tools support design of bus-
partitioned architectures. APPOLON[8] interactively compiles
abehavioral specification onto a system of 2 segmented buses
and 2 data-paths. ASYL[9] utilizes a rule based approach for
operator, register and bus/segment assignment. PARBUS[6]
applies an iterative approach consisting of scheduling, parti-
tioning of data-flow operations into clusters, linear ordering of
the clusters, register allocation and bus/segment assignment.
Although these synthesizers utilize different methods, they
have one common feature: they assign operations to clock
cyclesand functional unitsassuming no constraintsin schedul-
ing on availability of buses and segments. The communication
conflictsare relegated to the bus/segment binding phase, which
istoo far in the design pipeline to meet the design constraints
by itself. The problem is that not only a sequence of segments
needs to be determined for a data transfer, but also the cycle
steps in which it is going to take place needs to be resolved.
Consider Figure 3which showsthe availability of bus segments
in a data path during 3 cycle steps. Here, bold lines represent
busy segments; thin lines represent free segments. Assume
that value A produced in cycle step 1 in partition 1 is needed
in step 3 in partition 3. Since no path available to convey A
to the partition 3 in one cycle step, the only way to perform
the data transfer is to transmit A first to partition 2 in step 2,
store there temporarily and then transfer it to the destination
in step 3. The existing binding models fail to consider this
decision and hence prevent tools from finding a high-quality
designs. Also no efficient algorithms exist yet which are able
to combine the bus-binding with scheduling. Asresult, either a
large number of busesisrequired to sustain all the parallel data
transfers that might occur on any of the clock cycles or extra
control steps have to be added to the schedule to satisfy the
interconnect requirements. In the best case, several iterations
over scheduling and connectivity binding are needed to obtain
an acceptable design solution.

C. Contribution

This paper proposes a new model for the data-path synthesis
of bus-partitioned architectures and presents algorithms for
scheduling and register alocation. We model the design be-

havior by a stick diagram in which sticks reflect execution of
operations on functional units, storing of variablesin registers
and data transfer through busses. This allows us not only
to combine scheduling, with binding and register allocation
but apply powerful layout generation techniques to find an
efficient solution. The model supports different styles of data-
transfers, single- and two-phase clocking schemes, pre-defined
constraints on number of busses, segments and registers. The
algorithms are based on the model. In contrast to existing
approaches, our first algorithm incorporates bus-binding into
scheduling; it dynamically bindsdata-transfersto bus-segments
as operations are assigned to control steps. The second algo-
rithm integrates bus binding with register allocation to find the
minimal number of registersunder the bus constraints. Itsmain
feature is an extra alocation flexibility, by which a value can
be assigned to different registersin different control steps such
that the total number of registers is minimized.

II. PROBLEM STATEMENT

We suppose that scheduling follows the operation partitioning
phase asit donein [12], and the following inputs are known:

(1) a hypergraph H(V,E,R), whose vertex set V={v} rep-
resents control/data flow graph operations, the directed edge
set E={e} represents dependences between the operations and
the hyperedge set R={r} (unordered subsets of V') represent
partitioning of V' into anumber of clustersry,r2,...,rg, each
of which will be implemented on a separate functional unit.
We assume that the feasibility of clusters is determined, and
thefollowingistrue: Jr =V, r;(r; =0, (¢ # j), | r > 1.

(2) a system architecture with K operational blocks, v
parallel bussesand K bus segmentson each bus. (For simplicity
of explanation, we assume that N = 2). Each operational
block includes one functional unit of a pre-selected type (e.g.
multiplier, adder, ALU) and several registers. The components
of ablock can be connected to corresponding segments of all
paralel NV buses. Depending on the existence of latches, one-
or two-phased clocking is applied to synchronize operations
and data transfers. In the one-phase clocking, reading the data
out of the registers and writing the data to the registers occur
in the same clock phase, while in the two-phase clocking they
take place in different phases. ¢, and ¢1, respectively. In
this case, the system controller outputs a new control word on
every control phase.

Sincethe number of clustersisequal to number of operational
blocks, we assume that mapping i+ : R — Z of clustersr € R
to operational blocksz € Z isknown or can be easily found by
applying the linear ordering algorithm similar to that presented
in [11]. Figure 4 illustrates the linearly ordered hypergraph
representation for the HAL example[4]. In the figure, the
shaded edges represent partitions, the numbered rectangles
represent the operational blocks and the edges between the
rectangles show the number of data-transfers between the
corresponding clusters.

The problem outputs include:

(1) aschedule for the CDFG operations and data-transfers;

(2) assignment of data-transfersto communication busesand
bus segments;

(3) register assignment for each of K functional blocks.

ITI. APPROACH
The problem has been approached in the following two steps:

1. bus-driven scheduling

2. bus-driven register minimization



Figure 4: The HAL example: (a) hypergraph; (b) ordering of
partitions.

A. Bus-Driven Scheduling
A.1. Binding Model

Our scheduling is based on two dimensional binding model
(Z,T) (similarly to [10], where each vertical dice z € Z cor-
responds to an operating block and each horizontal slicet € T
correspondsto atime slot. (The latter isrelated to the phasein-
terval). The model, however, has one main departure as can be
seen from Fig.5. Additionally to modeling of code operations,
we explicitly determine storing of variables on registers and
latches and transferring the variables via busses. The key idea
behind the model is to represent routes of data processing in
time/space domains by abstracting from details of how the data
is transformed and transferred. Each data processing route is
defined by acollection of operational and transportational
sticks. The operational sticks model execution of data-flow
operations on functional units. (We depict them by gray pat-
terns in the figure). The transportational sticks (depicted
by bold lines) model data transfers through time and space
domains without any transformation. The length of a vertical
transportational stick corresponds to time during which avalue
is stored in aregister or latch, whereas length of a horizontal
stick indicates the number of bus-segments required to convey
avalue along operational blocks (i.a space). The symbal (X)
a the intersection of horizontal and vertical sticks reflects
a data transfer between the corresponding bus and register
(latch) pair. The sguare symbol shows data transfers at inputs
(outputs) of functional units. (In order to distinguish data
consumption from data production, the data transfers on inputs
and outputs of functiona units are shown by white and black
patterns, respectively).

Thusthe Figure 5 showsthat value el generated by operation
olintime step 1, phase (¢2) is transferred to aregister in the
same operational block 1, stored their and then in step 2, phase
¢1, it is transmitted back from the register to the ALU of the
same block. The symbols A and 57 mark the border registers.

The user can restrict the maximal number of registers in
each operational block or the number of busses in the design
by specifying the number of availabletracks (dotted linesin the
figure) in corresponding hardware or time slots, respectively.
In this case, sticks are located on the available t racks only.
Consequently, acode operation can be assigned to atime/space
dot if and only if sticks, which model the propagation of its
input data, can be routed to the slot. The model has severa
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Figure 5: A binding model for the HAL example

advantages. (1) It clearly shows what bus segments are busy
in each clock phase, how many registers are required to
support the behavior and where the registers are located. The
maximum density of the vertical transportational sticks across
al time steps defines the number of registers required. A
register belongs to that operational block whose vertical slice
containsthe register’ s stick. By extending the horizontal sticks
which convey avalue from one block to another, we can easy
reassign thevalueto avacant register such that thetotal number
of registersin the design is reduced. Such ability of valuesto
be stored on different registers during their lifetimesintroduces
anew degree of freedom which has not been exploited before
in bus-oriented synthesis.

(2) It explicitely models utilization of i/o ports at each clock
phase. Hence, constraints on i/o ports can be easily considered.

(3) The model unifies scheduling, register alocation and
connectivity binding tasks and allows to solve them concur-
rently by moving from timing domain to space domain and one
task to another while preserving the integrity of the tasks.

(4) Themodel allowsusto formulatethe high-level synthesis
as a layout design problem and thus apply a well elaborated
theory of layout design to find effective solutions.

Based onthe model, the scheduling problem may be stated as
follows: Given alinearly ordered hypergraph H(V,E,Z), define
locationsand lengths of sticks S, S, that map thenodesv € V
and the edges e € E into two-dimensional grid (Z,T') such
that the stick area is minimized under the constraints:

e Yy, €V — Sv(vi) nSv('Uj) =0
Ve; € E — S.(e;) ) Se(ej) = 0 (nostick overlapping);
o Yv; € z, — S,(vj) € z, (assignment of operational
sticksis given);

o VShoriz ¢ ¢ (t € T) — |JS. < N (the number of
horizontal tracksis limited);



One approach to this problem is to use simulated annealing
when operations are randomly moved to slots such that a
cost function with factors of module cost, execution time and
interconnection is minimized[10]. While the approach is able
tofind good solutions, the considerabl e execution time makesa
direct solution more desirable. Therefore a heuristic algorithm
was devel oped.

A.2. Scheduling Algorithm

The backbone of our agorithm is a list scheduling tech-
nique[15]. Unlike others, our list scheduler determines data-
transfer routes and binds them to buses simultaneously as
scheduling proceeds. The process is simplified by the fact
that assignment operations to functional units (or blocks) is
done before scheduling, therefore the source of asignal and its
destination are known. However, such a scheduling becomes
more complicated in that an unfortunate decision can lead to
a deadlock, when the transferring of data to FU’s inputs is
impossible. Therefore a check for the deadlocks must pre-
cede assignment of operations to control steps. The following
ALGORITHM 1 outlines our scheduling method.
ALGORITHM 1
INPUT: H(V,E, Z)
OUTPUT: 7.V —-t,n . E — g
begin
forall z € Z do
GET_READY_OPYV,, LIST.), FU, — free
endfor
t = 0; Tlist = §; Dlist = 0);
while ALIST; # 0) do
t=t+1;
for all z € Z do
if LIST, # 0then
begin
if (FU, isfree) then
select v with the highest priority;
Tlist = Tlist + (v, 2);
endif
end
endfor
Dlist=CHECK_DEADLOCK(G cyrreni, Tlist, t);
if (Dlist # ()
then Tlist=DELETE(Tlist,Dlist);
endif
if (Tlist # 0) then
{ SCHEDULE _OP(Tlist,t);
DELETE({LIST,,z = 1,ldots,| Z |},Tlist);
Geurrent = chrrent"i'OUT—TRACE(T“g)a
SEGMENT_ALLOCATOR(G cyrrent, t);
}; endif
for all z € Z do
GET_READY_OPS(V,, LIST,);
endfor
endwhile;
end

The agorithm uses a priority list LIST, for each cluster
z € Z. Thefunction GET_READY_OPSscans the set of nodes,
V., determines if any of unscheduled operations in the set
are ready (i.e. al its predecessors are scheduled), deletes
each ready node from the set V, and appends it to LIST,.
Initialy, all nodes that do not have predecessors are inserted
intotheappropriate LI ST,. Thewhileloop extractsthe highest
priority operation from each list LI ST, whose corresponding
functional unit is free, and maps the operation to the slot (z, ¢)
if there is no deadlock in data transfers. The priority is given
to an operation which has:

(i) minimum {mobility(v) — urgency(v)},
where mobility(v) = ALAP(v) — ASAP(v),
urgency(v) = ASAP(u) — {ASAP(v) + delay(v)} and u
isadirect successor of v;

(ii) the longest path to the output;

(ii1) the large number of successors.

The set of highest priority operationsis stored in list T'list.
The function CHECK_DEADLOCK determines nearest loca-
tions(z,, t,) and (zp, ) of thesticks (52, S%) whichhave been
assigned to input data-transfers of the operations v € Tlist,
and tries to find traces from them to the slot (z,%) without
deadlocks. The trace is built first down till horizontal slice ¢
and then in left (or right) direction till vertical dlice z. The
LEFT_EDGE agorithm[13] isused to map horizontal tracesto
N bussesin each dicet. The sticks which already are assigned
to the dlice ¢ are also considered. A deadlock exists when
the number of horizontal traces to be assigned to the dlice ¢
exceeds the number of tracks V. In this case, the function
CHECK_DEADLOCK tries to map the untraced data transfers
tothe upper dicest — 1,t — 2,.. ., ts0urce. |f it SUCCEES, the
tracing down is applied again to connect the obtained horizontal
traces with free segments of the destination slice ¢. The func-
tion returnsthe set G .urrent Of traces constructed and the list,
Dlist, of deadlocked operations v € Tlist whose input data
transferswere not traced at the current step #. These operations
are deleted from the T'list by function DELETE(Tlist,Dlist).
Theremaining in T'list operations are then sticked (i.a. sched-
uled) to time step ¢ and del eted from the corresponding priority
list LIST,. Thelength of an operational stick equals the sum:
t + delay., where delay., is the delay of afunctiona unit in
block z. For all this time, the functional unit,z is considered
busy. Thefunction OUT_TRACE(TIist) routesthe datafromthe
scheduled operations to the first free bus. The function SEG-
MENT_ALLOCATOR maps the constructed traces G ¢y, rrent tO
sticks. Figure 5 shows the results of applying the algorithm to
the HAL example. (Here, a 2-phase clocking scheme with the
input latching has been considered).

Extensions of the algorithm

Operator chaining: For the chained operations, specific
edges are needed in the hypergraph representation. The func-
tion GET_READY_OPSincludes both chained operationsin the
specific LI STy which has the highest priority among the other
lists. Among the operations in the chain, the first operation
has the highest priority. All the chained operations are sticked
to the same horizontal dlice ¢ as others. The binding however
differs in that the function OUT_TRACE traces the chained
datatransfers only in horizontal direction, because no registers
and latches are alowed. If both chained operations belong to
the same cluster, the OUT_TRACE assigns a stick to a free
track segment in the same vertical dice. If they belong to
different clusters (e.g. z1,z2), the stick is assigned to free
segmentsin z1, 22 aswell asin between, respectively. A dead-
lock in this caseis solved by adding an extratrack between the
corresponding blocks.

Multicycle operations: For these operations we use corre-
sponding multicycled delay values.

Pipelining: The pipelined functional units are considered
busy for a specified number of phases which correspond to
the delay of the pipelined stage. Operations can be assigned to
the different pipelined and thus share a functional unit in one
clock cycle.

Conditional operations. We assume that disjointness of
operationsisdetermined before scheduling. Mutually exclusive
operations and data transfers can occupy the same spatial and
temporal location. Therefore, they are scheduled so asto usethe
same hardware (functional units, registers and bus/segments)
at the same time.



B. Bus-Driven Register Minimization

Research on register minimization in a post-scheduling phase
has already resulted in many effective techniques which em-
ploy the Left-Edge Algorithm, clique partitioning algorithm,
bipartite edge coloring agorithm, scanline sweep algorithm,
simulated annealing, etc. Good surveys of the previous efforts
in this field can be found in [14],[15]. Comparing to related
techniques, our algorithm has two main features; (1) It com-
bines regi ster assignment with bus-binding to obtain a minimal
number of registers under the bus constraints. (2) It utilizes
an extra alocation flexibility by breaking the lifetime of each
value into segments of one control step and allows different
segments of avalue to be assigned to different registers.
The agorithm can be outlined as follows.
ALGORITHM 2
INPUT: H(V, G, Z,T)
OUTPUT: H(V,G*, Z,T)
begin
G* =G,
GET_LIFETIMESG*,TG);
CList=LEFT_EDGE(G*,TG);
for all Chnl € CList do
Clist=DELETE(CList,Chnl);
for all intrv=EMPTY_INTRVL(Chnl) do
search=.true,;
z;=LOCATION(intrv);
t,=START(intrv);
t.=END(intrv);
OvList=OVERLAP(intrv,Clist) do
while (OvList# @Asearch) do
2;=LOCATION(l);
Glist=TRACE(z; — z;j, ts, t.);
if (Glist£ 0) then
G*=SEGMENT_ALLOCATOR(G*, Glist);
search= false;
endif
endwhile
endfor
endfor
end

The function GET_LIFETIMES extracts vertical nets from
the set of al nets G and determines their lifetimes (set T'G).
The function LEFT_EDGE runs the Left-Edge algorithm that
allocates the vertical nets to a set of channels C'List. (The
allocation is done for each vertical slice separately). If there
is an empty interval intrv in these channels, the algorithm
determinesitsstart and endtimet,, ¢, respectively, thevertical
grid slice z, where the interval is located and the list Ov List
of nets which overlap the interval. The while loop determine
the location of the first-left overlapping net, and exams the
possibilities to move its cut < t,,t, > to vertical dice z;.
The function TRACE searches for two deadlock-free paths
in horizonta dlices t,,%., respectively, to convey data from
zj t0 z; and back. If both the data-transfers possible, the
function SEGMENT_ALLOCATOR maps the set of routed
segments (Glist) to nets. These iterations continue for all
empty intervals.

Figure 6 illustrates how the ALGORITHM 2 works on an
example. Applying the L eft-Edge algorithm, we can assign the
7 vertical nets g; + g7.(shown by the bold lines) to 4 channels
Chy + Chy. Since the second channel has an empty space in
the slice t3, the algorithm will try to fill it by the cut of the net
g6 (Fig.6 (b). If the tracing of the corresponding data transfers
is possible (nets nl,n2), the algorithm will alocate the nets
to 3 channels only and hence will save 1 register. Figure 7
shows how the algorithm reduces the number of registersfrom
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Figure 6: An illustration of the Algorithm 2.
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Figure 7: The final schedule of the HAL example.

10 (Fig.5) to 8 inthe HAL example.

IV. EXPERIMENTAL RESULTS

The proposed scheduling approach was implemented in C
language on SUN 3 system. The scheduling algorithm has a
complexity of O(|V| * |E|log | E|) where |[V] is the number of
nodes in the CDFG, |E| is the number of edges. The register
minimization algorithm has a complexity O(|E|log|E|). To
demonstrate the efficiency of the proposed approach, two
examples were used. The first one is Differential Equation
Solver or HAL example (Fig.6) and the second is the 5-th
order elliptic wave filter [16]. The filter contains 26 additions
and 8 multiplications. Table 1 compares our scheduling
results for these examples with the results of PARBUS system
which implements the existing technique for synthesis of bus-
partitioned architectureg[6]. In both examples, latches have
been inserted at the input and output ports of the functional
units and the two-stages pipelined multiplier delay was used.
The HAL examples was designed by 1 multiplier and 1 adder,
while in Elliptic Filter design 2 adders and 1 multiplier were



Table 2: Scheduling results of the Elliptic Filter

3* 3+ 2* 2+ TF 2+ T*(pipelined), 2+
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