
Enhancing a VHDL Based Design Methodology with
Application Specific Data Abstraction

Abstract: VHDL has successfully been introduced into the
design methodology for VLSI ASICs. This paper describes a
high-level data abstraction and supporting tool that enhance
this methodology in the telecommunication application domain.
A significant performance gain was obtained by introducing the
data abstraction outside the VHDL simulator. The enhanced
methodology has been used in current ASIC designs with good
results.

I. INTRODUCTION

The introduction of VHDL in the development
methodology for VLSI ASICs shifted the design paradigm
from capture-simulate to describe-validate-synthesize [1].
Much effort has been put into the research on synthesis [2].
As a result, today synthesis systems have sufficient quality
for designing ASICs, when the utmost performance of the
technology is not needed [3]. When ASICs are the end
product, for example for microprocessor vendors, the
deterioration caused by synthesis tools is not always
acceptable. The introduction of synthesis raised the level of
functional abstraction from gate-level schematics to RTL.
This paradigm shift made it possible to use a longer part - of
the overall shorter - development time on the function rather
than on implementation aspects. I.e., instead of drawing
schematics more time can be spent on validating the
behavior of the design.

This paper concentrates on validation of ASIC designs at
the RTL and gate-level. This work is related to the
telecommunication application domain, specifically SDH1 [4]
for telecommunication networks. In this application domain
RTL VHDL is quite convenient for capturing the functional
aspects of the design. The natural data types bit and
bit_vectors [5] are convenient for the functional aspects but
are cumbersome to use for representation of data from the
environment. This is caused by the large amounts of data
needed. Thus, seen from a designer's viewpoint, the main
problem is presently handling stimuli and response data.

SDH transmission networks are the backbone for
transport of all kinds of telecommunication traffic. The

1 SDH, Synchronous Digital Hierarchy, is used in this

paper, but the ideas and results can easily be transferred to
SONET.

novelties of SDH compared to the previous PDH2 are
inherent management and surveillance capabilities. These
features have caused increased interest in design
methodologies for VLSI ASICs. SDH network elements
process huge amount of data. An SDH terminal multiplexer
can have an aggregate rate of 2.5 Gbit/s, whereas the more
complex cross-connects process hundreds of Gbit/s. Thus,
even if the basic processes are still multiplexing and
demultiplexing, the new SDH functions has introduced
functionally more complex processing in the equipment.

II. ASIC DESIGN METHODOLOGY

This section elaborates on where in the ASIC design flow
the data manipulation is needed. In a strict Phase-Review
methodology [6] each phase is performed as a separate task.
The next phase is not started before the previous phase has
been concluded with an approval at the final review.

Figure 1 shows an implementation of the Phase-Review
process for ASIC design. The situation is idealized; it does
not capture the inevitable iterations or the concept of
concurrent engineering [7]. For the purpose of this paper the
model is, albeit, sufficient to demonstrate the benefits of the
developed methodology and tools.

R
e

vie
w

IV

Mask layoutGate-level netlistRTL VHDL

R
e

view

R
e

vie
w

R
e

viewASIC specification

I II III

R
e

view

V

ASIC test

Figure 1. Phase-Review methodology for ASIC development.

RTL validation is required to ensure consistency between
ASIC specification and RTL VHDL(Review II). Furthermore
the RTL validation is the basis on which the gate-level
implementation is validated (Review III).

The following section elaborates on the options available
for design reviews and especially reviews II and III in Figure
1. Also, the reason for using validation and not verification is
discussed in the next section.

III. DESIGN REVIEWS

There are basically two methods for checking
consistency; formal verification and simulation [8,9]. Formal
verification requires a description of the specification and

2 PDH, Plesiochronous Digital Hierarchy

Lars Lindqvist
DSC Communications A/S
NKT Allé 85
DK-2605 Brøndby
DENMARK

Center for Integreret Elektronik,
Institut for Datateknik, DTU
DTU - Bygning 344
DK-2800 Lyngby, DENMARK

E-mail LLq@ne.dk E-mail LLq@id.dtu.dk

implementation in a formal system. The formal system needs
to include proper behavioral and temporal abstractions. The
behavioral abstractions should, for instance, cope with the
left-outs in the specification; i.e., the don't care set. The
temporal abstractions should handle, for example, the case of
a sequential algorithm specification versus its scheduled
implementation. Furthermore an automatic proof-system is
needed. The proof-system should be capable of proving
certain properties of a design (specification verification) and
to prove equivalence between design descriptions
(implementation verification). It should perform the proofs
automatically and find a descriptive counter-example in case
of contradiction. Such a formal system and accompanying
tool are not available yet, as for all but the simplest designs.
Nevertheless, the theoretical basis is on its way, and formal
verification will certainly play a role in future design
methodologies when the tools and interfaces mature.

Simulation requires an executable model of the design;
e.g., a VHDL simulator and a VHDL description of the
design. VHDL has been selected as basis for the development
methodology, because of the broad range of tools available.
The simulator and the model form the basis but are only
useful with a suitable set of stimuli and proper analysis of the
response. A suitable set of stimuli is the first hurdle. In
theory for a combinational circuit all possible input
combinations are needed and for sequential circuits all
possible input combinations with the circuit in all possible
states are required. This is of course not realistic for all but
the smallest designs, and is the reason for the interest in
formal verification. Sufficing with less than the theoretical
requirement is the working solution today. This means that
only validation and not verification is done. Thus, insight by
the designers is required to select the stimuli set.

Having selected the stimuli and run the simulation the
second hurdle occurs, analyzing the response. For small
response sets this can be done by inspection or better by
comparing with an expected response set. Inspection is based
on human operation and thus requires a compressed
representation of the information. Manual inspection of large
response sets is not a secure way of detecting errors. Using
the comparison approach requires a reference. This reference
can be a direct reference where a one-to-one equivalence can
be determined, but this demands creation of such a reference
set. Indirect comparison is done by checking properties in the
response according to a reference set with a higher level of
abstraction.

The consequence of the above is that simulation of VLSI
ASICs for SDH at the RTL and gate-level requires a
substantial amount of input data and generates a
correspondingly large set of output data. A solution to the
problem of generating input for simulations and analyzing
simulation output will be discussed in the next section.

IV. SDH DATA MODEL

The solution to handling the large amounts of data is
abstraction. A formalism for describing SDH data has been
established. ETSI3 recommendations [10] define the SDH
data structures and network element functions in a layered
fashion much like a software protocol stack. In this work, a
set of SDH tokens and values have been defined based on the
ETSI terminology. Tokens correspond to the information
types present in each layer. Values define the actual
information. To incorporate the notion of time, rules for
specifying SDH data by sequences of SDH tokens have been
defined. The resulting ASCII files are called SDHdm scripts.
The SDHdm scripts and the supporting program SDHdm
constitute the SDH data model.

The SDHdm program performs translation between
SDHdm scripts and SDH data. The reason for not using the
SDHdm scripts directly as stimuli for the VHDL simulations
was ease of implementation and diversity. Lexical analyzers
and parsers are easily created with lex/yacc tools. The
implementation also benefits from an object oriented
implementation; e.g., multiple instances of a layer are
created as multiple object instances of the corresponding
layer class. The diversity is obtained by having both a C++
(SDHdm) and a VHDL interpretation (the design) of the
SDH recommendations. Because the source code differs in
both structure and syntax, errors caused by cut-and-paste are
eliminated; i.e., error replication is avoided. Finally,
execution of binaries compiled directly from C++ was
expected to be faster than VHDL simulation. The
experimental results listed later confirm this assumption.

The paradigm for using the SDH data model is shown in
Figure 2. The expand process takes an SDHdm script as
input and produces the corresponding stimuli set in bit or
byte format as needed. The response files generated from
either RTL or gate-level simulations are interpreted by a
condense process. This process condenses the response file
by translating the data to the SDHdm script syntax.

V. EXAMPLE

A part of SDH, termed multiplex section adaptation, is
used as an example of the application of the SDH data
model. The basic unit in SDH signals transmitted between
network elements is the STM-14 frame. An STM-1 frame is
shown in Figure 3. It has 9 rows and 270 columns. Each
position contains one byte. Rows are transmitted one after

3 ETSI, European Telecommunication Standards Institute
4 STM, Synchronous Transport Module.

SDHdm
script

SDHdm
Expand

Stimuli
(Bit/Bytes)

RTL VHDL
simulation

Response
(Bit/Bytes)

SDHdm
Condense

SDHdm
script

Gate level
simulation

Response
(Bit/Bytes)

SDHdm
Condense

SDHdm
script

Figure 2. Paradigm for using the SDH data model.

another. The STM-1 is synchronous to the network element
clock, which generates the STM-1. In SDH the STM-1 frame
contains one VC-45. The VC-4 is not necessarily
synchronous to the network clock. To absorb phase and
frequency variations between the VC-4 clock and the STM-1
frame clock, the VC-4s are floating within the AUG6 area of
the STM-1. As shown in Figure 3, a pointer in the AUG
points to the beginning of a VC-4. The pointer is always in
the same position of the STM-1 frame. Note that a VC-4 will
normally be divided over two STM-1 frames. The pointer in
the current STM-1 marks the beginning of a VC-4 that ends
just before the position pointed to by the pointer in the
following STM-1 frame.

The first byte in the VC-4 is called J1, and contains one
byte of a multiframed trail trace identifier. A trail trace
identifier is a 16 byte string in E.164 format [10]. The AUG
pointer can take values from 0 to 782 corresponding to the
783 possible locations of the J1 byte within the AUG. Only
every third position in columns 10 to 270 of the STM-1are
legal J1 positions.

One way to test that the RTL VHDL model of the pointer
interpreter (PI) finds the correct position of the VC-4 is:
Generate stimuli that contain STM-1s with embedded VC-4s
that have a recognizable trail trace identifier. Since the trail
trace identifier is 16 bytes at least 16 frames are required.
Sixteen frames contains 311 kbits. This test will in the
following by referred to as the small test.

The pointer value is continuously adjusted based on
buffer fillings in the network element generating the STM-1.
The algorithm for adjusting the pointer values prescribes a
minimum spacing of 3 frames between pointer operations.
Increment and decrement pointer operations adjust the
pointer value and the VC-4s are moved correspondingly in
the AUG by inserting stuffing or extra data, respectively. To
perform a thorough test of the pointer interpreter all pointer
values should be entered via both increment and decrement
operations. Such a test requires 2*4*783 frames; i.e., 6264
frames containing 122 Mbits. This test will in the following
by referred to as the large test.

5 VC-4, Virtual Container of 4'th order.
6 AUG, Administrative Unit Group.

By now it should be clear that generating these stimuli
sets by hand is out of the question. Thus, prior to the
conception of the SDH data model, simulation of a connected
pointer generator (PG) and pointer interpreter was the only
solution to perform the validation. But the pointer generator
will not during normal operation perform the required
pointer operations. Even if forced to do the required
operations, still no VC-4 data will be included without a
VHDL model of the VC-4 generator. Furthermore the back-
to-back interface of a pointer interpreter and pointer
generator through a pointer buffer (PB) should also be
checked. The complete test scenario is shown in Figure 4.

PI

PB

PG

ASIC 1 ASIC 2 ASIC 3

PG

VC4
Source

PI

VC4
Sink

Figure 4. Test scenario for pointer interpreter and generator.

The SDH data model breaks the connections between the
ASICs as shown in Figure 5.

PI

PB

PG

ASIC 1 ASIC 2 ASIC 3

PG

VC4
Source

PI

VC4
Sink

Response
(Bit/Bytes)

SDHdm
Condense

SDHdm
script

Stimuli
(Bit/Bytes)

SDHdm
Expand

SDHdm
script

Response
(Bit/Bytes)

SDHdm
Condense

SDHdm
script

Stimuli
(Bit/Bytes)

SDHdm
Expand

SDHdm
script

Figure 5. Test scenario for pointer interpreter and generator using the SDH data model.

The solutions for the two mentioned tests are quite simple
using the SDH data model. The input script for the small test
is shown in Figure 6

Expanding the input scripts results in two data files in
byte format. As can be seen in the Table 1 the raw size ratios
between input script and the stimuli file range from 102 to
105. The generated stimuli can be used as input for
simulation of both ASICs 2 and 3 in Figure 5.

Condensing the stimuli files generated by the above
expand operations corresponds to analyzing the response
from simulations of ASIC 1 and 2 in Figure 5. The results
are presented in Table 2. The condense ratios are not as
impressing as the expand ratios, but the ratios only cover the
size relationship between the two representations.

AUG

1

9

1 270

1

9

1 261

J1

pointer

STM-1

VC-4

Figure 3. STM-1 and VC-4.

The post processing and interpretation are much easier on
the condensed version of the data than on the actual bits and
bytes. Figure 6 shows the condense result from the small test.
For the small test the main check is that the J1 eventually
becomes " VC-4 trail trace". For the large test the J1 remains
" VC-4 trail trace" while the pointer values and types,
indicated by the AUPTR token, change as expected.

Figure 6. SDHdm scripts.

By using the standard UNIX utility grep it is possible to
filter the condense scripts very effectively. In this case
searching for the pointer token AUPTR and the trail trace
identifier token J1 is useful. Extending the filtering to
remove NORMAL pointers and J1s with the expected values
further reduces the data to inspect. Table 3 lists the file sizes
after post processing with grep.

The execution times for the SDHdm software are
considerably shorter than for a corresponding VHDL
simulation. For example testing ASIC 2 can be done as
indicated in Figure 4 using VHDL models for all three
ASICs. The alternative shown in Figure 5, using the SDHdm
to generate and analyze data, is much faster. Typical
simulations of the ASICs in this work at RTL take in the
order of minutes per frame. The duration of course depends
on the number of blocks included in the simulation but
reflects actual experience. Therefore the execution times in
Table 1 and Table 2 indicate a performance gain in the order
of 103.

7 Test executed on a Sun SPARCstation 20 model 61.

VI. CONCLUSIONS

To evaluate the applicability of the SDH data model, it
was introduced to ASIC designers working on commercial
projects. The designers were developing ASIC of sizes up to
several hundred thousands gates. The confrontation of the
model with a real life design scenario of course resulted in
numerous additional features, but also led to a very thorough
evaluation of the applicability. By now simulations of all but
the simplest blocks use the SDH data model extensively. Part
of the success was due to the abstraction of data it self.
Designers were able to alter their stimuli for even large
simulations in a few minutes, and to analyze large response
sets more thoroughly than before. Another cause of its
success was the point of diversity as mentioned before.
Because the software represents an independent
implementation of the recommendations a number of bugs
were revealed.

The flexibility and performance of the SDH data model
make it possible to validate designs more thoroughly and
faster than before. This is a key factor in securing the design
process and to reduce time-to-market for products.

The SDH data model covers the SDH relevant parts of the
multiplexing hierarchy. It would be fairly simple to extend
the model to cover SONET. The basic idea of a domain
specific data model should also be applicable to other
domains than telecommunication. The conclusion is thus,
that a significant performance gain can be obtained by
handling high-level data abstraction outside the VHDL
simulator.

VII. REFERENCES

[1] D. Gajski and L. Ramachandran. Introduction to high-level
synthesis, IEEE Design & Test of Computers, Winter 1994.
[2] R. Camposano and Wayne Wolf, editors. High Level VLSI
Synthesis, Kluwer Academic Publishers, 1991.
[3] L. Lindqvist. "Evaluating the applicability of current VHDL
synthesis tools to an industrial top-down development procedure",
in Proceedings of VHDL International Users' Forum Fall 93
conference.
[4] M. Sexton and A. Reid. Transmission Networking: SONET and
the Synchronous Digital Hierarchy. Artech House, 1992.
[5] IEEE. IEEE Standard VHDL Langauge Reference Manual, 1987
edition.
[6] R. E. Kmetovicz. Five steps to on-time software development. In
Engineering Software (a supplement to Electronic Design), October
3, 1994.
[7] Donald E. Carter and Barbara Stilwell Backer. Concurrent
engineering: The product development environment for the 1990s,
Mentor Graphics, 1991.
[8] J. Staunstrup. A Formal Approach to Hardware Design, Kluwer
Academic Publishers, 1994.
[9] M. Yoeli, editor. Formal Verification of Hardware Design,
IEEE Computer Society Press, 1990.
[10] ETSI. prETS 300 417 (former draft ETS DE/TM-1015).

Table 1 Expand results

Test Expand script
[bytes]

Stimuli file
[bytes]

Expand ratio SDHdm execution time7

[CPU sec.]
Small 209 131,400 629 0.6
Large 494 45,851,300 92,820 199.7

Table 2 Condense results

Test Response file
[bytes]

Condense script
[bytes]

Condense ratio SDHdm
execution time7

[CPU sec.]
Small 131,400 587 224 2.5
Large 45,851,300 449,525 102 1006.1

Input to Expand Output from Condense
{
 MS-AI = NORMAL ;

 S4-CI() = NORMAL ;
 J1() = " VC4 trail trace" ;

 {
 AUPTR() = NDF ;
 AUPTR() = 0 ;
 } FOR 1 FRAME ;
 {
 AUPTR() = NORMAL ;
 } FOR 17 FRAMES ;

} FOR 18 FRAMES ;

{
 MS-1-AI = NORMAL ;
 AUPTR(1) = UNKNOWN ;
 ...
} FOR 2394 BYTES
{
 ...
} FOR 2394 BYTES
{
 MS-1-AI = NORMAL ;
 AUPTR(1) = NORMAL 0 ;
 {
 ...
 } FOR 33669 BYTES
 {
 S4-CI(1) = NORMAL ;
 J1(1) = " VC4 trail trace";
 } FOR 3915 BYTES
} FOR 38304 BYTES

Table 3 Post processed condense results

Test Filter Extracted
[bytes]

Condense ratio Grep script execution time7

[CPU sec.]
Small J1 139 945 1.0

AUPTR 25 5,256
Large J1 139 329,900 10.5

AUPTR 44,530 1030

	ASP-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

