
Stoht - An SDL-to-Hardware Translator

Ivanil S. Bonatti Renato J.O. Figueiredo

Faculty of Electrical Engineering Faculty of Electrical Engineering

University of Campinas University of Campinas

Campinas, SP Brazil 13081-970 Campinas, SP Brazil 13081-970

Fax: +55-192-391395 Fax: +55-192-391395

e-mail: ivanil@dt.fee.unicamp.br e-mail: rjof@dt.fee.unicamp.br

Abstract| This article presents a language trans-

lator that allows the use of SDL as a front-end, high-

level graphical description tool for hardware design. A

subset of this language is proposed for hardware de-

sign, including a synthesisable model for SDL's signal-

based communication. An algorithm to translate this

subset to fully synthesisable VHDL is proposed and

implemented in a public-domain software package.

I. Introduction

The gap between speci�cation and implementation of

digital circuits is responsible for a good deal of design

e�ort spent in the mapping of a given speci�cation into

a real system. The development of behavioral Hardware

Description Languages, remarkably VHDL [8] [9], and the

availability of Electronic Design Automation (EDA) tools

that make use of such languages have allowed the descrip-

tion of hardware at a higher level. Gate-level synthesis is

straightforward from a VHDL description if the VHDL

code respects synthesis constraints.

The goal of this work is to place the hardware design

closer to its speci�cation, without losing the implemen-

tation capability. This will be accomplished by using

CCITT's SDL (Speci�cation and Description Language

[1]) as a graphical description tool.

A proposal of using SDL for VHDL-based hardware

design was introduced in [4], and further re�ned in [7],

covering simulation aspects, and in [3], covering synthe-

sis. In [6] an intermediate language interfacing system-

level (SDL) and implementation-level (VHDL) languages

is presented, and a software/hardware co-design approach

based on this language in proposed in [5].

The use of a speci�cation language such as SDL for

hardware design o�ers advantages when compared to

VHDL-based hardware design: graphical capture, higher

level of abstraction, better documentation and easier ap-

proach to a hardware/software co-design methodology, by

using automatic code generation and high level synthesis.

This article proposes the use of a subset of the SDL

language, consisting of its most usual elements (system,

blocks, substructures, processes, states, signals, tasks and

decisions) to the hardware design and the application of

some constraints to allow e�cient synthesis. This subset

can be mapped to synthesisable VHDL with the mapping

rules also proposed in this article.

The main contribution of this work is the speci�cation

of a exible hardware model of SDL's signal exchanging

scheme for communication synthesis. Low-cost implemen-

tations (in terms of hardware area) can be achieved with

the simpli�cation of SDL's �nite queue model for sig-

nals arriving in processes. Such property is attractive

for the design of embedded circuits using programmable

logic. This algorithm can be used in the design of general-

purpose digital circuits; it's not geared to any speci�c ap-

plication.

The �rst part of this article focuses on which elements

of SDL are supported and the constraints that are applied

to this SDL subset to make the description e�ciently syn-

thesisable. The next part covers the translation algorithm

itself that is implemented in the Stoht translator.

Along this text the SDL reserved words are written in

bold lowercase, with the �rst letter uppercase (such as

Process), while VHDL reserved words are written all

uppercase (such as PROCESS), unless they can be dis-

tinguished by context.

II. The SDL scope

A. Elements supported

The most usual SDL elements are supported by the al-

gorithm, and are well suited for the behavioral description

of digital systems:

System: may contain blocks, channels, signals and

data de�nitions.

Block: may contain processes, substructures, signal-

routes, signals and data de�nitions.

Substructure: only block substructure is supported.

It may contain blocks, channels, signals and data de�ni-

tions.

Process: supported, but restricted to only one in-

stance per process; dynamic creation of processes is not

allowed. It may contain states, inputs, continuous signals,

tasks, outputs, decisions, variables and data de�nitions.



Signal: Interchange of signals among processes via

input/output primitives is allowed. The in�nite-length

queue abstraction of SDL isn't supported; �nite queues

are used instead. A signal must be conveyed by channels

and signalroutes to its destination. Continuous signals

and enabling conditions are also supported.

Channel, Signalroute: must be used to establish

communication paths among Processes.

Variable: ordinary and Revealed Variables are

supported.

Abstract types: Prede�ned supported types are In-

teger and Boolean. Integer ranges are declared by

using Syntype constructs. Unidimensional arrays of

boolean data are declared using Newtype constructs.

Synonyms are supported for constant declaration.

B. Synthesis constraints

Many SDL features would lead to a very costly imple-

mentation if they were to be represented in hardware. For

example, the dynamic creation of processes, oating-point

arithmetic and in�nite-length signal queues would require

a great number of components for the implementation.

They are not supported.

C. Inter-process communication

The communication model adopted by SDL contains

abstractions that are not easily mapped into digital cir-

cuits; the in�nite-length queue for incoming signals and

the asynchronous nature of signals are two examples.

The mapping algorithm used by Stoht simpli�es this

model, in order to obtain synthesisable hardware at a low

cost in terms of number of gates.

The �rst simpli�cation is applied to the in�nite-length

queue for incoming signals; it is replaced by a �nite queue

that can only hold a limited number of signals. The

lowest-cost implementation uses only one position per

process for this queue; queues with more than one po-

sition are available to the designer for processes that may

need it, signi�cantly increasing the cost of the resulting

hardware.

Also, asynchronous Signals are made synchronous to

a global clock that's automatically assigned by the trans-

lator. Each sending or receiving of a Signal is evaluated

in the rising edge of this master clock.

The algorithm implements the communication model

in a VHDL ENTITY that is separated from the VHDL

ENTITY that models behavior. Thus, each SDL Pro-

cess is mapped into two separated VHDL ENTITYs:

one modeling the behavior and the other one modeling

the communication.

The VHDL ENTITY that models the communication

of an SDL Process is referenced as \protocol" in the rest

of this text. The interfaces between the protocol and the

VHDL ENTITYs modeling behavior are de�ned in such a

way that protocols can be replaced without changes in the

behavior. The algorithm currently supports three types

of protocols.

D. Protocols

The protocol that uses a queue of only one position

for all incoming signals is called \Protocol 1". It's the

most simple protocol, requiring less circuitry to be imple-

mented.

\Protocol 2" allocates a queue of one position for each

incoming signal that an SDL Process may receive.

\Protocol 3" uses a �nite queue of N positions for all

incoming signals (N is a parameter declared by the de-

signer). It's the most expensive protocol in terms of hard-

ware.

Any of these protocols interface with the behavioral

part of the Process in the same way, guaranteeing ex-

ibility for the designer. Furthermore, new protocols can

be added to the algorithm.

E. Input handling and priority

Since �nite queues are used in the implementation of

SDL's communication scheme, conicts may occur when

more than one signal arrive in the same time-slot (clock

cycle) and only one position is available in the queue. To

solve this conict, each signal has to be assigned a priority

by the designer. Also, if a queue is allocated and more

than one signal are in this queue, the signals are consumed

in the order given by their priorities.

III. The mapping algorithm

The hardware implementation of the SDL system is

synchronous to a global clock that triggers every tran-

sition inside processes and every sending or receiving of

SDL signals. Synchronous machines are less sensitive to

timing errors than asynchronous ones, and are more eas-

ily represented in synthesisable VHDL.

With this synchronization scheme every transition body

in an SDL process takes one period of the master clock to

be processed, and every signal sent from one process to

another also takes a clock period to arrive in its destina-

tion.

The master clock is automatically allocated by the

translation algorithm, as well as a master asynchronous

reset that initializes all variables and starting states of

processes. Both VHDL signals above, named clock and

reset, are input PORTs of each VHDL ENTITY gener-

ated by the algorithm.

A. Structure

The SDL System generates a highest-level VHDL EN-

TITY that instantiates all of its Blocks as VHDL com-

ponents and has input/output PORTs according to the



Signals sent to or received from the environment. Simi-

larly, an SDL Block generates a VHDL ENTITY that

instantiates all of its Processes as VHDL components

and has input/output PORTs according to the Sig-

nals sent to or received from Channels.

An SDL Process generates two separate VHDL ENTI-

TYs. The �rst ENTITY holds the behavior of the corre-

spondent SDL Process. The second one implements the

communication protocol associated with this Process.

B. Data de�nition

Sorts can be derived from the supported prede�ned

sorts (Boolean and Integer) by using either the Syn-

type (for constrained integers) or the Newtype con-

struct (only for the de�nition of constrained vectors of

boolean data); both map into VHDL TYPEs. SDL Syn-

onyms can also be de�ned, and are mapped into VHDL

CONSTANTs.

Sorts de�ned in an SDL System, Block or

Block Substructure are placed in VHDL PACKAGEs,

one for each scope, so they can be further referenced by

the lower-level Blocks and Processes.

Sorts declared in an SDL Process are de�ned in

the correspondent VHDL ENTITY modeling the Pro-

cess behavior.

C. Variables

Variables declared in an SDL Process are declared

as VARIABLEs in the behavior-modeling VHDL PRO-

CESS.

Variables declared Revealed are made visible to

the other Processes in the same Block by creating

a VHDL output PORT having a copy of their value.

Processes that view Revealed Variables have input

PORTs that are read when a View access is made. The

SDL-92 Z.100 [2] recommendation allows the resolution

by name of the viewed Variable inside a Block.

D. Process Communication

Each SDL Process has one corresponding VHDL EN-

TITY modeling its signal-based communication. This

ENTITY, named \protocol", provides an interface be-

tween the incoming Signals and the behavior of the

Process as follows:

� There is one input PORT and one output PORT for

each Signal that is received by the Process. For

each parameter that each Signal might carry, one

input PORT and one output PORT are added.

� The protocol receives a request of Signal sending

by sensing a logic inversion in the respective input

PORT. At this time, the Signal parameters (if any)

are available in the respective input PORTs.

� The protocol gives notice of an incoming Signal by

holding a positive logic pulse for one cycle of the mas-

ter clock in the respective output PORT. It also holds

the parameters (if any) for this period of clock in the

respective output PORTs.

Thus, the action of sending an SDL Signal via the Out-

put primitive is performed with the following actions:

- Assignment of the values of each parameter, if any, to

the respective VHDL output PORTs;

- Logic inversion of the VHDL output PORT that rep-

resents the action of sending a signal.

A transition is initiated when the receiving VHDL

PROCESS senses the presence of this positive pulse in the

VHDL input PORT written by the protocol. This test

is accomplished through the use of an IF-ELSE-ELSIF

structure, ordered according to the priorities assigned by

the designer to each incoming signal.

Fig. 1 shows examples of VHDL code for the commu-

nication synthesis for the sending process, the protocol

and the receiving process. The SDL signal signal1 used

in this example carries one parameter. The protocol used

in this example does not store signals in a queue; it just

converts the input logic inversion (sending request) to a

clock-wide positive logic pulse for the receiving process.

-- Sending process

send_par1_signal1 <= SOME_VALUE;

send_signal1 <= NOT(send_signal1);

-- Action of sending an SDL signal

-- Protocol

latch : PROCESS(clock)

BEGIN

IF (clock'EVENT AND clock='1')

int_signal1 <= rec_signal1;

END IF;

END PROCESS latch;

p_send_signal1<=int_signal1 XOR rec_signal1;

p_send_par1_signal1 <= rec_par1_signal1;

-- The simplest protocol is used here

-- Receiving process

IF (p_rec_signal1='1') THEN -- Priority 1

some_variable := p_rec_par1_signal1;

-- transition body

ELSIF (p_rec_signal2='1') THEN -- Priority 2

-- transition body

END IF;

-- The receiving process tests the

-- presence of signals according to

-- their priorities

Fig. 1: Example of the communication synthesis in VHDL

The �nal implementation of the communicationmodel de-

pends on the protocol chosen by the designer. There are



currently three kinds of protocols supported by the algo-

rithm that are modeled in VHDL. The simplest protocol

requires only one ip-op and an XOR gate for each signal

received by an SDL process.

E. Process Behavior

Each SDL Process has one corresponding VHDL

PROCESS inside an ENTITY that models its behavior.

The sensitive list of this PROCESS is solely the master

clock and reset automatically allocated by the algorithm.

The current state of a Process is stored in a VHDL

SIGNAL inside this ENTITY. An enumerated TYPE is

used to store each possible State of the Process plus

an initial state arti�cially created by the algorithm.

State transitions are modeled with a CASE/WHEN

structure. Each possible state has a corresponding entry

in a WHEN clause. The body of each WHEN clause has

an IF-ELSIF-THEN construct that tests the presence of

an incoming Signal. The body of each IF-ELSIF-THEN

construct has the transition body (actions) for the corre-

sponding incoming Signal; they are ordered according to

the priorities assigned by the designer

Assignment Tasks are mapped into sequential VHDL

assignments. Decisions are mapped into IF-ELSE-

THEN constructs.

IV. Stoht

The translation algorithm has been implemented in a

software called Stoht (SDL-to-Hardware Translator).

Stoht translates textual SDL descriptions to VHDL

behavioral models. It is designed to work together with

other CASE/CAE tools. It has been successfully tested

with Telelogic's SDT graphical SDL editor, Mentor

Graphics' VHDL compiler and synthesizer.

Stoht reads a single input �le containing an SDL-PR

description and analyzes its syntax and semantics accord-

ing to the synthesis restrictions that the algorithm intro-

duces. The program keeps the original SDL structure

in the generated directory tree. Blocks are placed un-

der their System or Substructure upper scope, Sub-

structures and Processes are placed under their re-

spective Blocks subdirectories.

Stoht also generates library mapping �les and a com-

piling batch script that make the compiling procedure

straightforward.

Stoht is available as public domain software, and

can be installed in several UNIX platforms, from work-

stations to PCs. More information on the software

can be found in the Internet World Wide Web link

\http://dt.fee.unicamp.br".

V. Conclusion

The speci�cation of digital systems at higher levels pro-

vides faster development cycles, technology-independent

circuits and better documentation. The proposed algo-

rithm allows hardware developers to use a subset of the

high-level graphical language SDL as a front-end to their

designs, by automatically generating fully synthesisable

and syntactically correct VHDL. The algorithm is imple-

mented in the program Stoht, available as public-domain

software. Further research will include aspects of hard-

ware/software co-design and cover more features of the

SDL language.

References

[1] CCITT. Recommendation Z.100: Speci�cation and

Description Language SDL, volume X.1-X.5. CCITT,

1988.

[2] CCITT. Recommendation Z.100: Speci�cation and

Description Language SDL, volume X-R25-X-R32.

CCITT, 1992.

[3] W. Glunz, T. Kruse, T. R�ossel, and D. Monjau. In-

tegrating SDL and VHDL for System-Level Hard-

ware Design. In CHDL 93 - Computer Hardware De-

scription Languages and their Application, Ottawa,

Canada, April 1993.

[4] W. Glunz and G. Venzl. Using SDL for Hardware De-

sign. In Proceedings of the Fifth SDL Forum, Glasgow,

1991.

[5] T.B. Ismail, M. Abid, and A. Jerraya. COSMOS: A

Codesign Approach for Communicating Systems. In

Co-Design, Computer Aided Hardware/Software En-

gineering. IEEE Press, 1994.

[6] A.A. Jerraya and K. O`Brien. SOLAR: An Intermedi-

ate Format for System-Level Modelling and Synthesis.

In Co-Design, Computer Aided Hardware/Software

Engineering. IEEE Press, 1994.

[7] B. Lutter, W. Glunz, and F.J. Rammig. Using VHDL

for Simulation of SDL Speci�cations . In Proceedings

of the EURO-VHDL, 1992.

[8] The Institute of Electrical and Electronic Engineers.

IEEE Standard VHDL Language Reference Manual.

IEEE, 1987.

[9] D.L. Perry. VHDL. McGraw-Hill Inc, 1991.


	ASP-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index


