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Abstract| Memory Sharing Processor Array

(MSPA) architecture is e�ective in both data storage

and processor cell utilization e�ciency. In this paper,

the design methodology for MSPA is extended to syn-

thesize bit-serial datapath. As a synthesis example, we

propose a new bit-serial multiplier with smaller num-

ber of logic gates than conventional bit-serial multi-

pliers.

I. Introduction

Systolic array is suitable for VLSI implementation. It

can realize the multiple data ow through the processor

cell array by the local communication. However, it some-

times su�ers from the poor processor cell utilization e�-

ciency at the expense of the local communication. Inher-

iting the advantages of both systolic arrays and common

bus architectures, the Memory Shared Processor Array

(MSPA) for the regular algorithms has been proposed[1].

The MSPA architecture consists of the processor cell array

with several memory units and their address generation

hardware units in order to minimize the data storage[2][3].

In this paper, we extend the MSPA technology to an

application of a bit-level system organization, and pro-

pose the bit-serial data path synthesis methodology for a

regular algorithm.

The proposed architecture consists of bit-level systolic

(or semi-systolic) processor cell array with local commu-

nications and the data format converters used e�ciently

to convey the bit-serial data from input to the processor

cell array. Our approach can achieve the optimal trade-o�

of the hardware complexity between the datapath and the

control path. If we select the same number of processor

cells as the number of operations, the conventional sys-

tolic array with the simplest data control scheme may be

obtained. However, if we select the less number of proces-

sor cells than the number of operations, the novel MSPA

architecture will be derived with the reasonable balance

between the datapath and control hardware.

The design methodology of the execution ordering and

the resource allocation for the bit-level MSPA are similar

to the processor cell level MSPA array, which are based on

modi�ed linear transformations with keeping the regular-

ity of the algorithm and increasing the resource utilization

rate. Next to the scheduling, we design the data format

converters. They e�ciently convey the input data to the

processor cell array.

By demonstrating the design of a two's complement

multiplier with the proposed methodology, we make clear

that the proposed methodology achieves higher parallel

e�ciency than the conventional methodology do.

II. Bit-Serial MSPA Architecture

In this paper, we discuss how to schedule bit-level regu-

lar algorithms on processor cell array and how to generate

the data format converters which convey bit serial input

data to the linear array. We consider the bit-level al-

gorithms expressed in two dimensional index space with

two bit serial input data. The LSB of bit serial input data

come in at �rst and the MSB at last.

Let's consider algorithms described by the uniform re-

currence relations as

for i = 0 to n� 1 step 1

for j = 0 to n� 1 step 1

v1(p) = f1(x(0; j); y(i; 0); v1(p� d11); v2(p� d21))

v2(p) = f2(x(0; j); y(i; 0); v1(p� d11); v2(p� d21)).

where vk(p)(p = (i; j)) denotes the value at the index

point (i; j) of the k-th variable. dkl are column vectors in

the same index space to show the data dependency of the

variable vk(i; j) against the variable vl(i; j). The func-

tion fk() represents the operation to produce the variable

vk(i; j). The input variables are devoted by x(0; j) and

y(i; 0) which express the j-th or i-th bit of the input bit

serial data.

In this paper, we restrict the data dependence relations

between the variables and the input data such that they

are described in the index space (i; j). Those dependence

vectors are written as



dxiv = (i; 0)T dyjv = (0; j)T : (1)

The other dependence vectors such as those between vari-

ables are determined according to the algorithms.
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Fig. 1. Bit-Serial MSPA

The proposed bit-serial processing architecture is shown

in Fig.1. It consists of two input data format convert-

ers and the linear processor cell array. The processor

cell array performs the executions to calculate the vari-

ables with the local communications between the proces-

sor cells. This scheme is similar to the systolic array. The

two input bit-serial data are inserted into data format con-

verters, which convert the data format from a bit-serial

form to multiple data streams. This scheme can also be

seen as the data broadcasting. The data format convert-

ers are constructed by plural register units each of which

consists of two stages registers.

III. Design Procedure

A. Execution Ordering

We consider the time coordinate by the linear transfor-
mation with a row vector T for each operation set fk. For
an algorithm description of

vk(p) = fk(x(0; j); y(i; 0); v1(p� d1k); v2(p� d2k)); (2)

the operation fk() invokes at

Tp = t1i+ t2j; (3)

and produces the variable vk(p). The mapping with T

can be selected to satisfy the valid execution ordering for

any data dependences. For a data dependence dkl,

Tdkl > 0: (4)

must hold. This condition indicates that the variable vl(p)

is generated by using the variable vk(p� dkl) whose gen-

eration time is earlier than that of vl(p).

Among the mappings with the valid execution ordering,

we select the optimal mapping which requires the mini-

mum total execution time. We derived the optimal vector

for two dimensional cases, but this will be reported in the

other paper. Here, we describe only the result without

the proof in the form of the theorem.

Theorem 1 The optimal mapping vector on exu process-

ing elements which achieves the minimum total execution

time for the uniform recurrence algorithm with the two n

iteration loops of exu < n is given by

T = (1; b
n

exu
c); (5)

where bxc represents the smallest integer more than or

equal to x.

This mapping vector is valid for the algorithm consist-

ing of the depedence vectors of the range speci�ed by

eq.(4).

B. Resource Allocation

The position of each processing cell in the array is de-

scribed by 1 dimensional coordinate. We introduce the

linear mapping with modular operations against the given

algorithm.

Op mod exu = (o1i1 + o2i2) (modexu) (6)

This method increases the resource utilization rate

while preserving the regularity of the algorithm. In fact,

the data transfer schemes derived by this mapping remain

in regular fashion. Of course, the conventional linear map-

ping for the systolic array is included as special cases. The

mapping with O can be selected such that any two oper-

ations of the same execution times are not mapped onto

the same operation cell. (Conict free allocation condi-

tion) For any two index points p, p0 (p 6= p0) which invoke

at the same time (Tp = Tp0), the mapping with the O

satis�es the inequivalence of

Op 6� Op0 (mod exu): (7)

Furethermore, the mapping vector O should realize the

interprocessor communication correspondings to the de-

pendence vectors by the successive one among adjacent

processors. (Local communication condition)

Theorem 2 The optimal mapping vector on exu linear

PE array which achieves both the conict free allocation

and the local communication for the uniform recurrence

algorithm with the two n iteration loops of exu < n is

given by

O = (0; 1) (modexu): (8)

This vector is proved to satisfy the conict free alloca-

tion condition. Furthermore, the range of the dependence

vectors satisfying the local communication condition with

this vector is described as



jOdkl (modexu)j � Tdkl: (9)

Fig.2 shows the case for t2 = 2. The dependence vectors,

which are originated from the large black circle node to

any black circles, satisfy eq.(9).

t =0

=1t

=3t

=6t

t =2

=5t

=4t

P=2

P=1

P=3

P=0

Fig. 2. Valid Range for Dependence Vectors

Thus, the bit-serial MSPA architecture will be realized

by the loosely coupled array structure in which the inter-

mediate variable data circulate in the systolic fashion and

by the memory units or register data format converter, in

which input and output data distribute or collect data to

or from processor elements in the shared memory archi-

tecture fashion.

IV. Data Format Converter

Both execution ordering and resource allocation deter-

mine the data communication schemes which include the

input data loading and the distribution of the input data

and the variable data. We consider here the systematic

data loading and distribution of the bit serial input data

by employing the data format converters. The similar

techniques can be applied to the distribution of the vari-

able data if those are not circulated within the processor

cell array.

The systematic synthesis methodology of the DSP data

format converter architectures have been proposed with

the minimum number of registers[9]. We are able to make

use of the method to derive our data format convert-

ers. However, the register organization designed by the

method requires the complicate control mechanism, so

that the chip area of the converter become so large as

to degrade the advantage of the minimum number of reg-

isters.

We develop a new method to generate data format con-

verters with the smaller chip area. We employ the register

units corresponding to each processor cell. By limiting the

number of registers used in each register unit, we try to

achieve the minimum number of registers. At the same

time, we simplify the control mechanism of registers in

each register unit so as to achieve the cheap hardware

cost.

The positions of the register units are described in the

space coordinate as 0; 1; 2; � � � ; exu� 1, which correspond

to the position of the corresponding processor cell. We

assume that the input bit-serial data will be input to the

register unit at the position 0. The i-th lower bit is as-

sumed to be input at the time i.

A. Data Load

The time duration4tload(xj) of the variable x(0; j) and

y(i; 0) between input and load time to the register units

are de�ned respectively as

4tload(xj) = (t10 + t2j)� j = (t2 � 1)j

4tload(yi) = (1i+ t20)� i = 0:

The load positions Pload(xj) and Pload(yi) of the variable

x(0; j) and y(i; 0) are written respectively as

Pload(xj) = o10 + o2j = 0� 0 + 1j = j (modexu)

Pload(yi) = o1i+ o20 = 0i+ 1� 0 = 0

The j-th bit of the input variable x(0; j) is loaded to the

(j mod exu)-th register unit at (t2 � 1)j cycles after the

bit-serial input cycle. This scheme can be realized by

the cascade connection of the �rst stage registers in ev-

ery (j mod exu) register units, which consists of (t2 � 1)

registers.

The i-th bit of the input variable y(i; 0) is loaded to

the 0-th register unit at the same cycle as the bit-serial

input cycle. This scheme can be realized by the direct

connection between the input and 0-th register.
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Fig. 3. The First Stage Register (a)4tload = 0; Pload = 0,

(b)4tload = 0; Pload = j, (c)4tload = j; Pload = j,

(d)4tload = 2j; Pload = j

Fig.3(a) shows the loading schemes for y(i; 0). While,

Fig.3(b)(c)(d) shows the three kinds of the loading

schemes for x(0; j) in case of t2 = 1; 2; and 3 respectively.



B. Data Circulation

After the �rst stage register allocation, we decide the

method to distribute the input variables through the reg-

ister units so that they can be reused in the processor cell

array. This scheme is achieved by employing the second

stage registers in each register unit.

The loaded data x(0; j) and y(i; 0) are transferred to

the register units of

4Pcirc(xj) = (o11 + o2j)� (o10 + o2j) = o1 = 0

4Pcirc(yi) = (o1i+ o21)� (o1i+ o20) = o2 = 1

position rightward from the current register unit posi-

tion in every time unit of

4tcirc(xj) = (t11 + t2j)� (t10 + t2j) = t1 = 1

4tcirc(yi) = (t1i+ t21)� (t1i+ t20) = t2:

EXU (a)

(b)EXU

Fig. 4. The Second Stage Register (a)4tcirc = 1;4Pcirc = 0,

(b)4tcirc = 2;4Pcirc = 1

Fig.4(a) shows the circulation schemes for x(0; j).

While, Fig.4(b)) shows the circulation schemes for y(i; 0).

V. MSPA Bit-Serial Multiplier

We present here an practical example of our excellent

bit-serial datapath synthesis using the novel MSPA tech-

nology. The result will make clear that the proposed

methodology achieves higher parallel e�ciency than the

conventional systolic method.

There have been proposed various bit-serial multipli-

ers, most of which are realized with the systolic architec-

ture. The number of 8-bits serial multiplier requires 8 full

adders in the conventional systolic realization. Though

our approach includes the systolic case, we show the de-

sign case with 4 full adders as processor cells.

The algorithm description for a bit-serial multiplier

[xj ][yi] for 8-bits serial multiplier is described as

for i = 0 to 7 step 1

for j = 0 to 7 step 1

s(i; j) = f1(x(0; j); y(i; 0); s(i+ 1; j � 1); c(i � 1; j))

c(i; j) = f2(x(0; j); y(i; 0); s(i+ 1; j � 1); c(i� 1; j)),

where s(i + 1;�1) = 0; c(�1; j) = 0: The function

f1 corresponds to the partial sum of one bit full adder,

while the function f2 generates the carry of one bit full

adder. From those expression, the dependence vectors of

this algorithm are written as

dxs = dxc = (i; 0)T dys = dyc = (0; j)T (10)

dss = dsc = (�1; 1)T dcs = dcc = (1; 0)T : (11)

A. Design Procedure

We can obtain the optimal schedule and resource allo-

cation vectors as

T = (1; 2) O = (0; 1); exu = 4: (12)

Fig.5 shows the execution ordering and the resource allo-

cation. This schedule achieves the total execution within

22 steps. Four full adder executions are used in this mul-

tiplier. The operation ordering and the resource alloca-

tion determine the communication schemes of the vari-

ables. The communications corresponding to the depen-

dence vectors dss and dsc are expressed as Tdss = 1,

Odss = 1 and Tdsc = 1, Odsc = 1. This scheme indi-

cates that the partial sum s(i; j) should be sent to the

rightward processor cell in every time units.

While, the communications corresponding to the de-

pendence vectors dcs and dcc are expressed as Tdcs = 1,

Odcs = 0 and Tdcc = 1, Odcc = 0. This scheme indicates

that the carry c(i; j) should be sent to the same processor

cell in every time units.

Both variables of the partial sums and the carrys are

held in the processor cell array so that the advantages

of the multiple data stream and local communication for

array processing will be enjoyed.

The data format converters to convert the bit-serial in-

put data x(0; j) and y(i; 0) into the multiple data stream

in the processor array are derived as shown in Fig.6 and

Fig.7, respectively.

B. Final Circuit

The practical multiplier needs to perform signed multi-

plications, though we develop the multiplier without sign

consideration. This is because we avoid the exceptional

irregularity of the algorithm in order to enjoy the highly

regular structure of the multiplication algorithm. How-

ever, it turns out that this structure can be kept intact by

using the Hatamian algorithm for two's complement mul-

tiplication[5]. The sign modi�cation with the algorithm
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Fig. 5. Execution Ordering and Resouce Allocation of the

Multiplier

leads to the original structure with the conditionally in-

verted terms and additions of two 1's. It is realized by

slightly modifying the control circuit.

Fig.8 shows the �nal design of 8-bits two's complement

multiplier. Designed multiplier consists of two input data

format converters, as shown in Fig.6 and Fig.7. Since the

lif-time analysis of the variable data x(0; j), we obtain the

largest lif-time overlapping number of 7. We can reduce

the number of registers to 7 in the data converter for

x(0; j) as shown in Fig.8. The linear processor cell array

consists of four full adder executions. We use the AND

and EXOR gates to produce the partial product terms.

The EXOR gates are used to realize the inverted terms

EXU

Fig. 6. The xj 's Data Format Converter

EXU

Fig. 7. The yi's Data Format Converter

for the sign modi�cation.
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Fig. 8. Final design of the two's complement multiplier

C. Comparison

Comparisons between the n�n-bits multipliers of Lyon

[6], Smith [7], Bi [8] and the proposed one are summarized

in Tab.I in terms of e�ciency, performance and structural

regularity.

Chip area is estimated in terms of the number of dual

input AND gates under the assumption that each gate

occupies a unit area. For example, a delay element and

a full adder occupy a chip area equivalent to 6 and 8

unit areas, respectively. Because the total chip area is

determined by the chip area of all the stages, we see that

the proposed design requires considerably less chip area



Lyon[6] Smith[7] Bi[8] Proposed

chip area per stage 64 36 160 62

No: of stages n n n n

2

No: of cycles per product n 2n n 2n

Latency (cycles) 2n+ 1 2 2n+ 4 2n

Parallel efficiency 0:348 0:5 0:348 0:696

Computation time 46 32 46 46

Real time yes no yes yes

Structure regularity systolic semi� systolic systolic semi� systolic

TABLE I

Performance Comparisons

than the other three designs do.

Parallel e�ciency means the processor cell utilization

e�ciency of one multiply execution. It is clear that the

proposed design is e�ective in processor cell utilization

e�ciency.

Overall, it's concluded that the new design based on the

proposed architecture is shown to be attractive in term of

the following features: real-time operation, exible pro-

cessing precision and structural regularity, small chip area

and high processor cell utilization e�ciency.

VI. Conclusion

We present the novel architectures of bit-serial datap-

ath synthesis based on Memory Shared Processor Array

technique for the regular bit-level algorithms. The de-

sign procedure to derive the MSPA bit-level architecture

requires the design of the data format converters. We suc-

ceeded to derive the systematic design to generate data

format converters with the minimum number of registers

and the simpler control scheme.

As a synthesis example, we present a new bit-serial mul-

tiplier with the smaller number of logic gates than con-

ventional bit-serial multipliers. The typical feature of our

multiplier is to select the number of the processor cells. In

our bit-serial multiplier, we selected full adders of half the

number of bits. We can select any number of full adders

with our design methodology. If we adopt the same num-

ber of full adders as the number of data bits, we can

derive the conventional systolic multiplier. If we decrease

the number of full adders, the multiplier with more com-

plex control scheme will be derived. In other words, the

ratio of the hardware complexity between the datapath

and the control circuits can be optimized by the selection

of the number of processor cells.
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