
Power Reduction by Gate Sizing with Path-Oriented

Slack Calculation
How-Rern Lin and TingTing Hwang

Department of Computer Science, National Tsing Hua University

Hsinchu, Taiwan 30043, R.O.C.

Abstract
This paper describes methods for reducing power con-

sumption. We propose using gate sizing technique to

reduce power for circuits that have already satis�ed the

timing constraint. Replacement of gates on noncritical

paths with smaller templates is used in reducing the dis-

sipated power of a circuit. We �nd that not only gates

on noncritical paths can be down-sized, but also gates on

critical paths can be down-sized.A power reduction algo-

rithm by means of single gate resizing as well as multiple

gates resizing will be proposed. In addition, to identify

gates to be resized, a path-oriented method in calculat-

ing slack time with false path taken into consideration

will be also proposed. During the slack time computa-

tion, in order to prevent long false path from becoming

sensitizable and thus increasing the circuit delay, slack

constraint will be set for gates. Results on a set of cir-

cuits from MCNC benchmark set demonstrate that our

power reduction algorithm can reduce about 10% more

power, on the average, than a previously proposed gate

sizing algorithm.

Keywords : low power, gate sizing, time slack, sensi-

tizable path.

1 Introduction
There have been ever-increasing portable applica-

tions developed, e.g., notebook, laptop computer, and
personal communications services which are demanding
the same computation capabilities as found in desktop
machines. However, it is unlikely that dramatic solution
to the power problem is forthcoming; it was project-
ed that only 30% improvement in battery performance
will be obtained in the next �ve years. Moreover, as the
fabrication technology advances, high density, large vol-
ume, and high-speed chips have been developed. But,
the cooling problem for the heat generated by the dis-
sipated energy remains unsolved. Therefore, low power
digital design becomes more and more important.

The power dissipation of CMOS devices can be re-
duced by using the lowest possible supply voltage cou-
pled with architectural, logic style, circuit, and tech-
nology optimization [CSB92]. In addition, accurate
selection of technology mapping algorithms [TPD93,
TAM93]has also been proposed to reduce the dissipat-
ed energy of a circuit. Moreover, for a delay optimized
circuit, the power consumption can be reduced by down-
sizing the gates on noncritical paths.

Replacement of the gates on noncritical paths with
smaller templates has been used in reducing the dis-
sipated power of a circuit in [BHM94]. However, we
�nd that not only the gates on noncritical paths can be
down-sized, but the gates on critical paths can be down-
sized in two cases. First, after the gates on noncritical

paths are down-sized, a critical path may become non-
critical since the loading capacitances of some gates on
the critical path are decreased. Consequently, the gates
on the originally critical path may be down-sized. Sec-
ondly, simultaneously down-sizing and up-sizing multi-
ple gates may reduce power consumption. The satis-
faction of delay constraint can be retained if up-sizing
gates can compensate the loss in delay caused by down-
sizing gates on the critical path. Then, the power may
be reduced if the gate with high transition density in-
puts is selected for down-sizing and the gate with low
transition density inputs for up-sizing since the dissi-
pated power of a gate is proportional to the product of
fanout loading capacitance and the transition density.

Gate sizing for delay optimization relies on the de-
tailed timing information to identify gates to be resized.
Traditionally, the circuit is modeled as a directed acyclic
graph, such as the PERT digraph [Eve79]. This static
timing analysis will underestimate the slack of a gate
since the path sensitizability is not taken into account.
Nevertheless, it is impractical to apply all possible in-
put vectors to �nd out the time slack of a gate since the
total number of input vectors grows exponentially with
the number of primary inputs.

In this paper, we will propose a path-oriented method
in calculating slack time with false path taken into con-
sideration. First, we will partition paths into three sets:
sensitizable path, changeable false path, and function-
false path. Based on the type of a path, we compute
the slack time for the gates on the path. During the
computation, in order to prevent long false path from
becoming sensitizable and thus increasing the circuit de-
lay, slack constraint will be set for gates.

The remaining of this paper is organized as follows.
Section 2 will discuss how the static timing analyzer
underestimates the time slack. Taking into account the
path sensitizability, a path-oriented method for slack
calculation will be proposed in Section 3. In Section 4, a
power reduction algorithm based on single gate resizing
and multiple gates resizing will be presented. In Section
5, we give benchmark results on a set of circuits from
MCNC benchmark set.

2 Static Timing Analysis Underestimat-

ing Time Slack
To reduce the power consumption of a circuit by iter-

ative gate sizing without violating the timing constraint,
selecting gates with time slack for replacement is one of
practical ways. Traditionally, time slack is calculated
as follows. The circuit is modeled as a directed acyclic
graph, such as the PERT digraph [Eve79]. The arrival
time at the output of a gate is computed by the length
of the longest path from the primary inputs to this gate.

For a given delay constraint on the primary outputs, the
required time is the time at which the output of the gate
is required to be stable. The time slack is de�ned as the
di�erence of the required time and the arrival time of a
gate. If the time slack is greater than 0, the gate can
be slow-downed. However, only sensitizable path which
can be activated by at least one input vector contributes
to the delay of a circuit. This method for slack calcula-
tion apparently underestimates the slack of a gate since
the path sensitizability is not taken into account.

Figure 1 shows an example of static timing anal-
ysis underestimating time slack. For simplicity, the
rising and falling delays of each gate are assumed to
be the same. The delay of the inverter is set to be
1 and all other gates 4. For each pair of values [a,b]
of signal si, a and b mean the stable times of logic
value 0 and 1 on signal si, respectively. Figure 1(a)
shows the stable time calculated by static timing an-
alyzer and dynamic timing analyzer. For static tim-
ing analysis, the circuit is modeled as a digraph. The
signal stable time is estimated by the length of the
longest path from the primary input. There are three
longest paths P1 = i1 � g4 � s4 � g5 � s5 � g3 � s3,
P2 = i3 � g4 � s4 � g5 � s5 � g3 � s3, and P3 =
i2 � g1 � s1 � g2 � s2 � g3 � s3, by which the value
of signal s3 will settle to 1. Since lengths of P1, P2 and
P3 are 12, 9 and 12, respectively, the stable time of s3
(logic value 1) will be 12 by static timing analysis. For
dynamic analysis which takes the path sensitizability in-
to account, all 8 input vectors in this circuit are applied
to determine the real stable time of each signal. The
stable time of s3 (logic value 1) will be 9 because both
paths P1 and P3 are false.

static: delay is computed by the longest topological path
dynamic: delay is computed by the longest sensitizable path

i2

i1

g
1

g
2

g
4i3

s3
g

3
s5

[0,0] / [,0]s4
[0,0] / [,0]

s1
s2

[0,0] / [0,3]

g5

[3,3] / [3,3]
[3,3] / [3,3]

i2

i1

g
1

g
2

g
3

g
4

g5

i3

s3

s1
s2

s5
s4

[12,12] / [12,9]

[1,1] / [1,1]
[5,5] / [5,5]

[8,8] / [8,8]

[4,4] / [4,4]

static / dynamic

(a)

(b)

Figure 1: The time slack calculation with and without
considering path sensitizability (a) Stable time (b) Time
slack

Let the required arrival time of the primary output
s3 be 12 in this circuit. Figure 1(b) shows the time s-
lack calculated by static and dynamic timing analyzers.
Static timing analyzer �rst computes the required time
of each signal from output to input. The time slack is
then calculated by the di�erence of required time and
stable time. For example, the time slack of s4 is 4 - 4 =
0. Dynamic timing analyzer uses a similar procedure to
calculate time slack but it takes the path sensitizability
into consideration. For example, signal s4 is settled to

value 0 (s4) only by paths P1 and P2. However, both
paths P1 and P2 are false. Therefore, the slack of s4
is 1. Obviously, the static timing analyzer underesti-
mates the time slack.

3 Slack Calculation Taking Path Sensi-

tizability into Account
The delay of a circuit is the length of the longest

sensitizable path in the circuit. During an iterative
optimization process, sensitizable paths may become
false and false paths may become sensitizable [LiH94].
Hence, path sensitizability should be taken into account
in time slack calculation.

Taking the path sensitizability into account, the cal-
culation of slack time is formulated as follows. For
an input vector v, let AT (gi; v) be the arrival time
of gate gi and RT (gi; v) be the required time of gate
gi under a given delay constraint. The time slack of
gate gi with respect to the input vector v is de�ned as
slack(gi; v) = RT (gi; v) � AT (gi; v). For all input vec-
tors, the slack of gate gi is de�ned as:

slack(gi) = min8v slack(gi; v): (1)
However, for a circuit with n primary inputs, there is

2n possible input vectors. It is impractical to apply all
possible input vectors to �nd out the time slack of all
gates. Therefore, we will take a path-oriented approach
to calculating the slack of a gate.

3.1 Classi�cation of Path Set
Since only sensitizable paths contribute to the delay

of a combinational circuit, it is necessary to check if a
path is sensitizable, so as to estimate the delay of a cir-
cuit accurately. A sensitization criterion is needed to
decide whether a path is sensitizable. The loose sensiti-
zation criterion de�ned in [ChD91] will be used in this
paper.
De�nition 3.1 (the loose sensitization criterion):
Given a path P = s0�g0�s1�g1�:::�sk�1�gk�1�sk.
Path P is a sensitizable path if and only if there exists

at least one input vector I such that for each signal si
along P satis�es the following conditions :

(1) if si is a controlling input to gate gi, si must be the

earliest controlling input.

(2) if si is a non-controlling input to gate gi, then all

other side-inputs to gi must be non-controlling inputs.

It is reported in [ChD91] that the loose sensitization
criterion does not overestimate the circuit delay. Based
on this sensitization criterion, the paths in a circuit can
be classi�ed into two subsets: sensitizable path and false
path. During an iterative optimization process [LiH94],
sensitizable paths may become false and false paths may
become sensitizable. Therefore, the path sensitizability
should be considered in each iteration of an optimization
process.

However, not all false paths may become sensitizable.
Certain false paths never become sensitizable during cir-
cuit optimization process, e.g., one that results from
incompatibility in propagation conditions, from the ex-
istence of redundancy in a circuit etc. These paths are
de�ned as function false paths in [LiH94]. Since func-
tion false paths will never become sensitizable during
optimization, they can be put aside during optimization
process and computation e�ort on slack calculation for
function false paths can be saved. Based on the above
observation, the false path can be further classi�ed into

function false path and changeable false path. Figure 2
depicts the classi�cation of path set.

sensitizable
path

false
path

changeable
false
path

function

Figure 2: classi�cation of path set.

3.2 Slack Calculation
Now we are showing how to calculate the slack with

the false path taken into account. Consider a delay-
optimized circuit, where the timing constraint is already
satis�ed and the delay is the length of the longest sen-
sitizable path. Then, when calculating the time slack
of gates on a path P , the following two cases happen,
given the path length (path delay(P))and the delay con-
straint (delay constraint) :

Case 1. path delay(P) � delay constraint:

In this case, the time slack of path P is calculated as
slack(P)= delay constraint - path delay(P). Under
the delay constraint on path P , the gates on P can
be replaced by smaller templates if the increment in
delay is not greater than the slack(P). Therefore,
the time slack of gate gi for all gates gi 2 P is
slack(gi; P) = slack(P).

Case 2. path delay(P) > delay constraint:

In this case, path P must be a false path since the
delay constraint is the length of the longest sensiti-
zable path. Since function false path never become
sensitizable, we only have to concern about change-
able false path. Let P be a changeable false path.
There must exist at least one gate on P , where
the on-input to this gate is a controlling input and
there is at least one earlier side-input which is al-
so a controlling input such that the on-input is not
the earliest controlling input for all input vectors.
If the earliest controlling side-input is restricted to
no later than the on-input, P will not become sen-
sitizable during the optimization process. Let �d
be the value that the earliest controlling side-input
can be slowed down such that path P remains false
during the optimization process. Then, the time s-
lack of all gates, gi, in the cone which fans into the
earliest controlling side-input can not be greater
than �d. Therefore, for all such gates gi, we set

slack constraint(gi; P) = �d:

Based on the classi�cation of path set shown in Fig-
ure 2, we can calculate the slack time of gates for each
path. If a path belongs to sensitizable path, Case 1
can be applied to calculate the time slack of gates re-
siding on P . If a path is a function false path, it can
be ignored since it never become sensitizable. For a
changeable false path P , if the length of P is less than
the circuit delay, Case 1 can be applied and the satisfac-
tion of delay constraint of path P is guaranteed. But, if
the length of P exceeds the circuit delay, Case 2 is used
in setting slack constraint for gates in the cone which

procedure slack calculation(circuit,delay constraint,R)

for all paths P

if (path P is not a function-false path)

if (path delay(P) � R � delay constraint)

if (path delay(P) � delay constraint)

slack(gi)=min(slack(gi), slack(gi,P))

for all gate gi in P ;

else

slack(gi)=min(slack(gi), slack constraint(gi,P))

for all gates gi in the cone which fans into

the earliest controlling side input;

end if

end if

end if

end for

endprocedure

Figure 3: Slack calculation algorithm

fans into the earliest controlling side input to prevent P
from becoming sensitizable.

Since a gate is passed by many paths, the calcula-
tion of slack time of a gate should take all of them into
consideration. Therefore, the time slack of a gate gi,
slack(gi), is determined by the following formula:

slack(gi) = min8P slack(gi; P): (2)

That is, the slack of a gate is set to the mini-
mum of all slacks computed for paths passing through
gi. If Equation 2 is used directly in determining the
time slack of a gate, a large number of paths will be
checked. It will consume a lot of computation time.
Fortunately, we �nd that the time slack of a gate is
usually determined by the long paths passing through
this gate. Therefore, we only have to consider paths
whose length are greater than a threshold value, says
R � delay constraint for 0 � R < 1, to calculate the
time slack of gates. The closer the R to 0, the more
accurate slack of gate can be obtained. However, more
computation time is needed. Moreover, during setting
slack time of each gate, if there is slack constraint for
the gate, the minimumvalue of slack constraint and the
smallest slack time computed so far will be set. Figure 3
shows the slack calculation algorithm. In the algorith-
m, the initial slack time of each gate is set to be 1. In
each iteration, for all gates on a path, if the current-
ly computed slack value is smaller than the minimum
value obtained so far, it replaces the old value.

4 Power Reduction by Iterative Gate

Sizing
4.1 Power Estimation

For a given circuit, the average dissipated energy of
a gate is computed as

Pavg =
1

2
�Cload �

V 2
dd

Tcycle
� E(Transitions); (3)

where Cload is the output capacitive load, Vdd is
the supply voltage, Tcycle is the global clock, and
E (Transitions) is the transition density of the out-
put. In our power dissipation model, the Cload includes
not only the output capacitance of the gate but also the
capacitance of the internal nodes. For example, for the
4-input AND gate shown in Figure 4, the capacitances
of internal nodes node1, node2, node3 and node4 are ex-
tracted from the cell layout in the standard cell library
and included in the term of Cload.

4.2 Single Gate Resizing
To reduce the power consumption of a delay-

optimized circuit without increasing the circuit delay,
the gate on noncritical path can be slowed down by re-
placing the gate with a smaller template. The reason

CLC1

C2

C3

C4

V
DD

node3

node2

node1 OUT

node4

GND

Figure 4: The capacitances of internal nodes in a cell

why the dissipated power of the circuit can be reduced
is because the output capacitive load of the gate which
fans in to the resized gate is decreased. Therefore, all
gates with slack time greater than zero are candidates
for down-sizing. To choose a speci�c one, we have the
following two considerations. To achieve the largest re-
duction of power consumption, the gate with least de-
lay increment has higher priority to be down-sized. To
save the total consumed time slack of multiple paths by
down-sizing a gate, the gate which passed by smaller
number of paths is preferable for resizing. Therefore,
the gain function used in selecting a gate to be down-
sized is de�ned as follow:

gain(gi) =
�power(gi)

�delay(gi)� jPgij
; (4)

where �power(gi) is the decrement of dissipated power,
�delay(gi) is the delay increment by down-sizing gate
gi, and jPgij is the number of noncritical paths passing
through gate gi. The gate with the maximumgain value
is selected to be resized.

The delay increment �delay(gi) is the di�erence be-
tween the stable time after and before down-sizing gi
and is computed as in the following equation:

�delay(gi) = new stable time(gi)�old stable time(gi); (5)

where new stable time(gi) and old stable time(gi) are
the stable times of gate gi after and before down-sizing
gi. The computation of stable time can be performed by
static timing analysis or dynamic timing analysis. Two
analysis methods will result in di�erent accuracy in the
amount of delay that can be increased. In static timing
analysis, only local delay change is considered. When
gate gi is down-sized, the delay of the gate gj which fans
in to gi will be decreased because the fanout loading is
decreased. Let the delay of fanin gate gj is decreased by
�delay(gj) after gi is down-sized. The new stable time
of fanin gate gj is determined by:

new stable time(gj) = old stable time(gj)��delay(gj); (6)

where new stable time(gj) and old stable time(gj) are
the stable time of fanin gate gj after and before gi is
down-sized. The stable time of gi after down-sizing gi
is then computed according to the maximumnew stable
time among the fanin gates and the new gate delay of
gi as in the following equation:

new stable time(gi) = maxjfnew stable time(gj)g
+ new gate delay(gi);

where new gate delay(gi) is the gate delay of gi after
down-sizing gi. We now take the circuit shown in Fig-
ure 5 as an example. Let the gate delay (stable time)
of g1, g2 and g3 are 4 (4), 5 (5), and 5 (10), respective-
ly. Suppose gate g3 is down-sized and the gate delay
is increased to 7 and the delay of gate g1 and g2 are
decreased by 0.5 and 1 due to the decrease in output
capacitive load, respectively. Then the new stable time
of g1 and g2 will be 3.5 and 4, respectively, and the new
stable time of g3 will be calculated as:

new stable time(g3) = maxf3:5; 4g + 7
= 4 + 7
= 11:

Finally, the delay increment by down-sizing g3 will be
11-10=1.

g
2

3
g

g
1

Figure 5: Delay increment calculation using static tim-
ing analysis

The above method does not take the path sensitiz-
ability into account. Hence, the delay increment may
be overestimated. In the dynamic timing analysis, the
new stable time of down-sized gate is computed by an-
alyzing all the paths passing through this gate. That
is, the longest sensitizable path which passes through
the resized gate is extracted to calculate the new stable
time. Therefore, the real delay increment can be ob-
tained by dynamic timing analysis. However, compared
to the static delay increment calculation, the dynamic
one may consume more computation time.

It is worth noticing that not only the gates on the
noncritical paths in the initial circuit can be down-sized,
but also the gates on critical paths can be down-sized
after some noncritical gates are down-sized. Consider
the example circuit shown in Figure 6. In this �gure,

g
j

g
i

Figure 6: Single gate resizing
gate gi is passed by a critical path P and gj is not
passed by any critical path. Simply changing gate gi
with a smaller template will cause the violation of delay
constraint. However, if gate gj, on the noncritical path,
is down-sized �rst, then the output capacitive load of
gate gi is reduced and thus the gate delay of gi as well
as the path delay of P are shortened. Consequently, the
gates on path P which is critical originallymay be down-
sized. In such case, the dissipated power of the circuit
is reduced and the satisfaction of delay constraint can
be retained.

4.3 Multiple Gates Resizing
After performing the power reduction process by sin-

gle gate resizing, replacing any single gate with a smaller
template will cause violation of delay constraint. But,

by up-sizing and down-sizing multiple gates simultane-
ously, the dissipated power of the circuit can still be
reduced. Consider the example circuit shown in Fig-
ure 7. Let paths P1 = a � g1 � s1 � g2 � s2 � g3 � s3
and P2 = a � g1 � s1 � g2 � s2 � g4 � s4. Assume the
transition density of node s2 is much higher than that
of primary input a. If gate g3 is considered solely to
be down-sized to reduce the capacitive load of gate g2,
the power can be reduced but the delay constraint on
path P will become unsatis�ed. If up-sizing gate g1 can
compensate the loss of delay caused by down-sizing g3,
then down-sizing g3 followed by up-sizing g1 can retain
the satisfaction of delay constraint. Moreover, resizing
these two gates simultaneously may reduce the dissipat-
ed power of the circuit if the transition density in node
s2 is much higher than a because the dissipated power of
a gate is proportional to the product of fanout loading
capacitance and the transition density.

s
1

2
s

s
3

s
4

g
1

g
3

g
4

g
2a

b
c

d

Figure 7: Multiple gates resizing
Multiple gates resizing is to replace a group of gates

at the same time. Its goal is to reduce the dissipated
power of a circuit while retaining the satisfaction of tim-
ing constraint. In the following, we will describe how to
select a group of gates for resizing. First, we select the
gate, say gi, to which the transition density of the fanin
gate is highest as candidate for down-sizing. However,
solely down-sizing gi will violate the delay constraint.
We need to up-size some gates to compensate the loss
of delay. The compensating gates are selected as fol-
lows. Presumably, we down-size the gate gi and lock it
as non-replaceable. Then, a delay optimization proce-
dure is invoked which uses gate sizing as optimization
technique (e.g., the system proposed in [LiH94]). Af-
ter the delay optimization is completed, several gates
are selected for replacement. These gates are referred
to as partner(gi). The gates gi and partner(gi) form
a group for resizing. Let �power(G) be the improve-
ment of dissipated power when the gates in the group
of gates G are resized. If �power(G) is greater than 0,
then the gates in G are candidates to be resized. The
same procedure is repeated several times to form group
candidate for the gate with input having the next high-
er transition density. The number of groups to form,
NG, is a user-provided parameter. After NG number of
candidate groups are formed, the group of gates G with
the largest �power(G) value is selected for replacemen-
t. The above group-replacement procedure is repeated
until no more improvement can be made.

4.4 Power Reduction Algorithm
Based on the above observations, a power reduction

algorithm is proposed in Figure 8. The power reduction
algorithm is a two-phase procedure. Phase one performs
single gate resizing. At the beginning of each iteration,
the time slack of each gate is calculated. Then, the gate
with the maximum gain value is resized with the con-
straint that the delay increment by resizing this gate

Algorithm power reduction(circuit;delay constraint;R;NG)

Phase 1: single gate resizing

do f
slack calculation(circuit;delay constraint;R);

selected gate = single gate selection(circuit);

if (selected gate 6= ;)

replace the selected gate by a smaller template;

end if

g while (selected gate 6= ;)
Phase 2: multiple gates resizing

unmark all gates;

do f
high density gates = sort gate(unmarked gates;NG);

for all gates gi in high density gates

if (gate gi can be replaced by smaller template)

then partner(gi)= delay optimization(gi; circuit);

form fgi, partner(gi)g as a candidate group Gi;

else partner(gi)= ;;
mark gate gi ;

end if

end for

Gk = fgk; partner(gk)g, where Gk has the largest

power reduction among all candidate groups;

if (�power(Gk) > 0)

then resize all gates in Gk simultaneously;

mark gate gk ;

end if

g while (�power(Gk) > 0)

endalgorithm

Figure 8: Power reduction algorithm

should not be greater than the time slack of this gate.
The slack calculation and single gate resizing are per-
formed iteratively until down-sizing any gate causes the
violation of delay constraint. The algorithm then pro-
ceeds to the second phase. Phase two is also an iterative
procedure. In each iteration, a number of groups for
replacement are formed. The group of gates with the
highest reduction in power are chosen to be resized si-
multaneously. The iteration repeats itself until no more
improvement can be made.

5 Experimental Results
The algorithm power reduction has been implement-

ed in C language on a SUN SPARC-10 workstation.
Benchmarking process is performed on some combina-
tional circuits from the MCNC benchmark set [Yan91].
First, the circuits are technology mapped to a standard
cell library using SIS mapper [SSM92] with delay opti-
mization option. The delay constraint is set to be the
length of the longest sensitizable path of the mapped
circuit which will not be increased during power reduc-
tion process.

The benchmarking process is �rst conducted to in-
vestigate the e�ectiveness of single gate resizing by dif-
ferent delay increment computation methods. First, the
slack calculation procedure in Figure 3 is performed to
compute the slack of each gate in the circuit. Then,
with static and dynamic delay increment computation
methods, the single gate resizing phase is performed.
Table 1 shows the power reduction comparisons of t-
wo delay increment computation methods in calculat-
ing Equation 4. Columns circuit and gates are the
benchmark circuit and the number of gates in the cir-
cuit, respectively. Columns static and dynamic show
the power reduction by using static and dynamic de-
lay increment computation methods, respectively. Ta-
ble 1 shows that dynamic delay increment computa-
tion method outperforms static one for all the circuit-
s. About 16% reduction in power consumption can be
obtained on the average. The reason is that the de-
lay increment is overestimated in static timing analysis

such that some gates which can be down-sized are not
selected for down-sizing.

Table 1: Comparisons of two delay increment computa-
tion methods
circuit gates static (A) % dynamic (B) % (B) - (A) %

alu2 508 55.14 57.48 2.34

alu4 951 51.82 56.64 4.82

b9 144 30.55 55.34 24.79

c432 247 39.05 53.91 14.86

c8 215 36.56 54.42 17.86

c880 493 45.83 57.34 11.51

cht 278 28.29 55.42 27.13

cmb 50 25.75 53.25 27.50

comp 182 42.14 55.88 13.74

cordic 108 36.26 57.75 21.49

count 173 47.00 57.66 10.66

f51m 177 50.33 57.89 7.56

lal 163 32.83 53.68 20.85

parity 75 41.32 58.76 17.44

rot 818 32.28 55.28 23.00

term1 493 45.05 55.98 10.93

average 40.01 56.04 16.03

The gate selection strategy proposed in [BHM94] is
also implemented. A backward searching of gates for re-
sizing from the primary outputs to the primary inputs
is performed in this gate selection strategy. The gate
is selected for down-sizing if the delay increment is not
greater than the time slack of this gate. After a gate is
resized, the time slack of all its fanin gates are recomput-
ed. The comparison of this method with our single gate
resizing phase is performed. Table 2 shows the results of
these two gate selection and resizing procedures. The

Table 2: Power reduction by single gate resizing
BHM phase1

circuit �Area �Power �Area �Power (B)-(A)

% (A) % % (B) %

alu2 47.50 43.99 63.07 57.48 13.49

alu4 57.94 53.31 62.86 56.64 3.33

b9 56.33 50.57 63.51 55.34 4.77

c432 37.88 36.67 64.04 53.91 17.24

c8 57.63 51.32 63.06 54.42 3.10

c880 53.79 50.76 63.16 57.34 6.58

cht 60.93 55.15 62.60 55.42 0.27

cmb 49.11 44.43 63.23 53.25 8.82

comp 34.83 32.31 62.84 55.88 23.57

cordic 58.06 54.30 63.09 57.75 3.45

count 54.78 53.23 64.27 57.66 4.43

f51m 58.76 54.76 62.31 57.89 3.13

lal 55.74 49.03 63.40 53.68 4.65

parity 0.00 0.00 62.40 58.76 58.76

rot 62.05 55.78 62.02 55.28 -0.50

term1 59.69 54.02 62.70 55.98 1.96

average 50.31 46.23 63.04 56.04 9.82

column circuit is the name of the benchmark circuit.
The column �Area and �Power are the percentages
of area and power improvement of the optimized circuit
to the initial circuit, respectively. As shown in Table 2,
our single gate resizing procedure outperforms BHM for
all selected circuits except rot. It is worth noticing that
no power reduction can be obtained in circuit parity by
BHM, but substantial power reduction is achieved by
our method. On the average, our method gains about
9.8% more power reduction than BHM.

The benchmarking process is continued to investigate
the e�ectiveness of the multiple gates resizing which is
applied when down-sizing any single gate will cause the
violation of delay constraint. Table 3 shows the results
of phase1 and phase1+phase2. As shown in Table 3,

on the average, phase 2 can further reduce about 0.6%
more power.
Table 3: Power reduction by single gate resizing and
multiple gates resizing
circuit phase1 (A) % phase1+phase2 (B) % (B) - (A) %

alu2 57.48 57.48 0.00

alu4 56.64 57.22 0.58

b9 55.34 56.42 1.08

c432 53.91 55.03 1.12

c8 54.42 55.50 1.08

c880 57.34 57.34 0.00

cht 55.42 56.54 1.12

cmb 53.25 54.45 1.20

comp 55.88 55.88 0.00

cordic 57.75 57.75 0.00

count 57.66 58.48 0.82

f51m 57.89 57.89 0.00

lal 53.68 54.87 1.19

parity 58.76 58.76 0.00

rot 55.28 56.38 1.10

term1 55.98 55.98 0.00

average 56.04 56.62 0.58

6 Conclusions
In this paper, a power reduction algorithm by single

gate resizing and multiple gate resizing is presented. A
path-oriented time slack calculation algorithmwith sen-
sitizability taken into account is proposed. For single
gate resizing, a gain function which takes into account
the fanin transition density and the number of noncrit-
ical paths passing through a gate is de�ned to guide
the gate selection for resizing. For multiple gates resiz-
ing, simultaneously down-sizing the gate with high fanin
transition density coupled with up-sizing the gate with
low fanin transition density is used in reducing the total
dissipated power without increasing the circuit delay.
References
[BHM94] R.I. Bahar, G.D. Hachtel, E. Macii, and F. Somenz-

i, \A Symbolic Method to Reduce Power Consump-

tion of Circuits Containing False Pat hs," Proc. IC-

CAD'94, pp. 368-371, Nov. 1994
[CSB92] A.P. Chandrakasan, S. Sheng, and R.W. Brodersen,

\Low-Power CMOS Digital Design," IEEE Journal

of Solid-State Circuits, Vol. 27, No.4, pp. 473-484,

April 1992.
[ChD91] H.C. Chen and H.C. Du, \Path Sensitization in Criti-

cal Path Problem,"Proc. of ICCAD'91, pp. 208-211,

Nov. 1991.
[Eve79] S. Even, \Graph Algorithms," Potomac, Md.: Com-

puter Science Press, 1979.
[LiH94] H.R. Lin and T.T. Hwang, \Dynamical Identi�cation

of Critical Paths for Iterative Gate Sizing," Proc. of

ICCAD'94, pp.481-484, Nov. 1994.
[SGD92] A. Shen, A. Ghosh, S. Devadas, and K. Keutzer,

\On Average Power Dissipation and Random Pat-

tern Testability of CMOS Combinational Logic Net-

works," Proc. of ICCAD'92, pp. 402-407, Nov. 1992.

[SSM92] E. Sentovich, K. Singh, C. Moon, H. Savoj, R.

Brayton, and A. Sangiovanni-Vincentelli, \Sequen-

tial Circuit Design Using Synthesis and Optimiza-

tion," Proc. of ICCD'92, pp. 328-333, Oct. 1992.
[TAM93] V. Tiwari, P. Ashar, and S. Malik, \TechnologyMap-

ping for Low Power," Proc. of 30th Design Automa-

tion Conf., pp.74-79, June 1993.
[TPD93] C.Y. Tsui, M. Pedram, and A.M. Despain, \Tech-

nology Decomposition and Mapping Targeting Low

Power Dissipation," Proc. of 30th Design Automa-

tion Conf., pp.68-73, June 1993.
[Yan91] S. Yang, \Logic Synthesis and Optimization Bench-

marks User Guide Version 3.0," Technical Report,

MCNC, Research Triangle Park, NC, January 1991.

	ASP-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

